浅谈汽车线控转向系统的结构及工作原理
- 格式:docx
- 大小:11.41 KB
- 文档页数:3
线控转向系统工作原理线控转向系统是一种被广泛应用于汽车技术中的创新技术。
它采用电子信号传输的方式,将车辆驾驶员的转向操作转化为车辆实际转向的动作。
这项技术通过电子信号的传输实现了驾驶员和车辆之间的无线联系,为车辆的操控性、稳定性和安全性带来了明显的提升。
线控转向系统主要由三个主要组成部分构成:转向传感器、转向控制单元和转向执行器。
转向传感器是整个系统的核心部件。
它负责感知驾驶员转动方向盘的动作,并将其转化为电子信号传输给控制单元。
转向传感器通常采用压力传感器或角位传感器,它们能够准确地感测到方向盘的角度和转向力的大小。
转向控制单元是系统的控制中枢。
它接收来自转向传感器的信号,并根据这些信号判断驾驶员的意图,然后发送相应的指令给转向执行器。
控制单元通常由微处理器和电路板组成,它能够实现信号处理、指令判断和数据传输等功能。
转向执行器是系统的执行机构。
它接收来自控制单元的指令,将电子信号转化为机械动作驱动车辆转向。
转向执行器通常由电动助力转向机构、电机和转向放大器等部件组成,能够实现精确、高效的转向反应。
在工作过程中,当驾驶员转动方向盘时,转向传感器感知到驾驶员的动作,并将这个信号传输给控制单元。
控制单元根据驾驶员的转向意图,通过发送相应的指令给转向执行器,使其按照驾驶员的意愿实现车辆的转向动作。
整个过程中,驾驶员只需要轻轻转动方向盘,系统会自动识别并执行相应的转向操作。
线控转向系统的工作原理简单而高效。
它不仅能够降低驾驶员的操作难度,还能够提高车辆的操控性和稳定性,并且对于车辆安全性的提升也起到了关键作用。
这项创新技术为汽车行业带来了新的发展机遇,将在未来得到更广泛的应用和推广。
线控转向下汽车转向系统技术的研究摘要:随着现代经济水平的不断进步,我国居民整体的物质生活水平得到了大幅度的提升,汽车私有率越来越高,同时人们开始对汽车的整体操作便捷性和驾驶舒适性也提出了更高的标准要求。
传统汽车所采用的机械转向系统具有很高的稳定性和可靠性,但操作往往较为费力,且转向圈数数量较多,操作难度相对较大。
随着现代科技的高速发展,线控转向系统的应用能够根据驾驶员的实际需要进行反馈力度和圈数的调整,从而降低了驾驶员方向盘操作的难度。
本篇文章主要针对线控转向下汽车转向系统技术做出仔细的分析,首先介绍线控转向系统的结构和其特点,简单阐述线控转向系统的工作原理,最后针对线控转向下汽车转向系统关键技术进行简要的展示。
关键词:线控转向;汽车转向系统;工作原理;关键技术线控技术最初是应用在航空领域,但随着对线控技术的不断改进和研发。
国外开始将线控技术应用到汽车制造当中,而汽车系统当中所应用的线控技术主要是指利用电机系统来替代纯机械或液压驱动系统零部件。
通过线控系统技术的应用,加快了车辆电子化的脚步,其主要工作原理是利用控制信号来对汽车方向盘与转向轮进行有效连接的电子化连接方法,打破了以往齿轮啮合的机械连接模式,使整体的转向系统传动更加快捷且灵活,并实现通过软件来进行设置。
一、线控转向下汽车转向系统的结构及原理汽车线控转向系统结构主要为方向盘控制系统、前轮转向系统、控制系统共同组成。
其结构图如图1所示:图1 线控转向系统结构细节图方向盘系统主要包括方向盘角度传感器方向盘正力矩回馈电机方向盘力矩传感器等,主要功能作用为当驾驶员进行方向盘转向时,方向盘会转动一个角度,而此角度会被传感器实时采集并传输到主控制器,由主控制器控制力矩,电动机转动将路感信息及反馈力矩的形式传输回驾驶员。
前轮转向系统则主要包括前轮转角传感器、前轮转向电动机、前轮转向机械系统,主要运行流程为传感器进行前轮转角信号的采集,并实时传输给控制系统,由控制系统通过计算后对前轮角度实施调整,确保能够依据驾驶员意图进行汽车转向控制[1]。
汽车线控转向系统的研究一、本文概述随着汽车技术的不断发展和创新,汽车线控转向系统作为一种先进的转向技术,正在逐步改变传统的机械转向方式,为驾驶者带来更加安全、舒适和智能的驾驶体验。
本文旨在对汽车线控转向系统进行深入的研究,分析其工作原理、技术特点、应用现状以及未来发展趋势,以期为汽车工程领域的发展提供有益的参考和借鉴。
本文首先介绍了汽车线控转向系统的基本概念和组成结构,阐述了其与传统机械转向系统的区别和优势。
接着,文章重点分析了线控转向系统的工作原理,包括转向信号的传递、控制策略的实现以及转向执行机构的动作等。
在此基础上,文章还探讨了线控转向系统在提高车辆稳定性、操控性以及安全性等方面的技术特点和应用优势。
本文还综述了国内外汽车线控转向系统的研究现状和发展趋势,分析了当前线控转向系统面临的挑战和未来的发展方向。
文章指出,随着智能化、电动化等技术的不断发展,汽车线控转向系统将进一步优化和完善,为未来的智能交通和自动驾驶技术提供有力支持。
本文总结了汽车线控转向系统的研究意义和价值,强调了其在推动汽车产业技术进步和产业升级方面的重要作用。
文章也指出了当前研究的不足之处和未来的研究方向,以期为相关领域的研究人员提供有益的参考和启示。
二、汽车线控转向系统基本原理与组成汽车线控转向系统,又称为线控转向系统(Steer-by-Wire,简称SBW),是一种新型的转向技术,它通过电子信号传递转向指令,取消了传统的机械连接,实现了转向系统的完全电气化。
这种系统的基本原理和组成部分,对理解其工作方式和性能优化具有重要意义。
线控转向系统的基本原理在于,驾驶员通过方向盘发出转向指令,这个指令通过传感器转化为电信号,然后通过电子控制单元(ECU)处理,最终通过执行机构实现车轮的转向。
这个过程中,电子控制单元是关键,它负责处理传感器信号,并根据车辆状态、驾驶员意图和道路环境等因素,计算出最合适的转向角度和转向力矩,实现车辆的稳定、安全和舒适行驶。
线控四轮转向系统的结构和原理-概述说明以及解释1.引言1.1 概述线控四轮转向系统是一种先进的汽车转向技术,通过控制车辆的四个轮子分别转向,实现更加灵活和稳定的转向效果。
与传统的前后轮联动转向系统相比,线控四轮转向系统可以提升车辆的操控性和行驶稳定性,同时也能够实现更小的转弯半径和更高的转向效率。
该系统通过电子控制单元(ECU)来实现对车辆转向的精准控制,根据车辆速度、转向角度、操控输入等参数,动态调整四个轮子的转向角度,从而使车辆实现更加灵敏和平稳的转向操作。
此外,线控四轮转向系统还可以根据不同的行驶状态和路况,自动调整转向参数,提升车辆的驾驶安全性和舒适性。
在未来的汽车发展中,线控四轮转向系统将成为越来越重要的技术,为驾驶员提供更加便捷和安全的驾驶体验,同时也有助于提升汽车的燃油经济性和环保性能。
通过深入了解线控四轮转向系统的结构和原理,我们可以更好地理解其优势和应用前景,为未来的汽车发展指明方向。
1.2 文章结构文章结构部分的内容如下:文章结构部分旨在介绍本文的整体结构和各个章节的内容安排。
本文主要分为引言、正文和结论三个部分。
在引言部分,我们将概述线控四轮转向系统的基本概念和重要性,介绍文章的结构和目的,旨在引导读者对本文进行初步了解和认识。
在正文部分,我们将详细介绍线控四轮转向系统的概述、结构和原理,包括系统的组成部分、工作原理和技术特点,以及系统在汽车行驶中的作用和应用场景。
在结论部分,我们将对本文进行总结,概括线控四轮转向系统的关键信息和特点,展望其未来的发展方向和应用前景,为读者提供对该系统的深入理解和思考。
通过以上内容安排,本文将全面介绍线控四轮转向系统的结构和原理,帮助读者深入了解和掌握该技术的核心知识和应用价值。
1.3 目的目的部分:本文旨在深入探讨线控四轮转向系统的结构和原理,旨在帮助读者更好地理解这一先进的汽车转向技术。
通过对线控四轮转向系统的概述、结构和原理进行分析和解释,读者将能够全面了解该系统的工作原理和优势,从而对其应用前景有更清晰的认识。
线控转向系统的组成和工作原理一、线控转向系统组成线控转向系统由6部分组成:1、导航仪:导航仪是线控转向系统的核心部件,它可以实时获取车辆的定位信息,并根据设定的路径向操纵员反馈当前位置相关的数据,以便操纵员对车辆实现更精确的控制和定位。
2、操纵杆:操纵杆是由操纵员直接控制车辆运行的手柄,操纵杆的操纵如同手控方向盘一样,操纵员通过操纵杆控制车辆的行驶方向和速度,经过线控转向系统的控制后驱动车辆向指定方向行驶。
3、指令接收器:指令接收器是接收来自导航仪发出的指令信息,并将其转换成机械和电气信号,传递给电控单元,从而实现车辆按照指定路线行驶。
4、电控单元:电控单元是将指令接收器获取的信号转换成机械指令,传递给操纵机构,实现对车辆转向和行驶方向的控制。
5、操纵机构:操纵机构是将电控单元发出的指令信号转换成转向角度,调节车辆的行驶方向,以实现线控转向系统的控制作用。
6、速度控制器:速度控制器是实现车辆的速度控制的装置,它可以根据实时获取的信息,控制车辆的行驶速度,以免超速等异常行为发生。
二、线控转向系统工作原理线控转向系统是由导航仪、操纵杆、指令接收器、电控单元、操纵机构和速度控制器组成,是自动驾驶技术的重要组成部分。
1、导航仪获取车辆的定位信息,并根据设定的路径向操纵员反馈当前位置相关的数据。
2、操纵杆接收来自导航仪反馈的指令信息,并将其转换成电气信号传递给电控单元。
3、电控单元将指令信息转换成机械指令,传递给操纵机构,实现对车辆转向和行驶方向的控制。
4、操纵机构将电控单元发出的指令信号转换成转向角度,调节车辆的行驶方向,以实现线控转向系统的控制作用。
5、速度控制器根据实时获取的信息控制车辆的行驶速度,以免超速等异常行为发生。
汽车线控转向系统分析汽车线控转向系统的主要组成部分包括电子控制单元(ECU)、电动转向助力装置(EPAS)、转向传感器、角度传感器和驱动电机等。
ECU是系统的中央控制单元,它接收来自转向传感器和角度传感器的信号,并根据车辆条件和驾驶员的意图来控制电动转向助力装置和驱动电机的工作。
EPAS是系统的核心装置,它通过控制驱动电机的转向力矩来实现车辆的转向操作。
汽车线控转向系统相比传统的机械转向系统具有多种优势。
首先,它可以根据驾驶员的意图自动调整转向力矩,使转向操作更加轻松、流畅且精确,减少驾驶的疲劳感。
其次,它可以通过调整转向力矩的大小和方向来提高车辆的稳定性和操控性能,增加驾驶的安全性。
此外,它还可以根据行驶速度和路面状况等因素主动调整转向力矩,以提供最佳的驾驶体验。
汽车线控转向系统的关键技术包括转向算法和电动转向助力装置设计。
转向算法根据转向传感器和角度传感器的数据以及驾驶员的意图,计算出合适的转向力矩,并将其发送给EPAS。
电动转向助力装置设计需要考虑转向力矩的输出范围和响应速度,以及与车辆其他系统的协同工作等问题。
汽车线控转向系统在汽车工程领域具有广泛的应用前景。
随着自动驾驶技术的不断发展,线控转向系统可以与其他相关系统集成,实现自动驾驶和智能驾驶功能。
同时,它还可以与电子稳定系统等安全辅助系统结合,提供更高的安全性能。
此外,随着电动汽车的推广,线控转向系统可以与电动驱动系统相结合,进一步提高能源利用效率和车辆的性能。
总之,汽车线控转向系统是现代汽车的重要组成部分,它通过利用电子和传感器技术来实现车辆的转向操作。
它具有精度高、操控性强和安全性能好等优势,并且在自动驾驶和智能驾驶等领域具有广泛的应用前景。
随着科技的不断发展,汽车线控转向系统将继续迎来新的突破和创新。
线控转向系统(SBW)在车辆高速化、驾驶人员大众化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的易操纵性设计显得尤为重要。
线控转向系统(Steering-By-Wire Systerm,简称SBW)的发展,正是满足这种客观需求。
它是继EPS后发展起来的新一代转向系统,具有比EPS操纵稳定性更好的特点,它取消转向盘与转向轮之间的机械连接,完全由电能实现转向,彻底摆脱传统转向系统所固有的限制,提高了汽车的安全性和驾驶的方便性。
线控转向系统的构成SBW系统一般由转向盘模块、转向执行模块和主控制器ECU、自动防故障系统以及电源等模块组成。
转向盘模块包括路感电机和转向盘转角传感器等,转向盘模块向驾驶员提供合适的转向感觉(也称为路感)并为前轮转角提供参考信号。
转向执行模块包括转向电机、齿条位移传感器等,实现2个功能:跟踪参考前轮转角、向转向盘模块反馈轮胎所受外力的信息以反馈车辆行驶状态。
主控制器控制转向盘模块和转向执行模块的协调工作。
线控转向系统的工作原理当转向盘转动时,转向传感器和转向角传感器检测到驾驶员转矩和转向盘的转角并转变成电信号输入到ECU,ECU根据车速传感器和安装在转向传动机构上的位移传感器的信号来控制转矩反馈电动机的旋转方向,并根据转向力模拟,生成反馈转矩,控制转向电动机的旋转方向、转矩大小和旋转角度,通过机械转向装置控制转向轮的转向位置,使汽车沿着驾驶员期望的轨迹行驶。
线控转向系统特点(1)取消了方向盘和转向车轮之间的机械连接,通过软件协调它们之间的运动关系,因而消除了机械约束和转向干涉问题,可以根据车速和驾驶员喜好由程序根据汽车的行驶工况实时设置传动比。
(2)去掉了原来转向系统各个模块之间的刚性机械连接,采用柔性连接,使转向系统在汽车上的布置更加灵活,转向盘的位置可以方便地布置在需要的位置。
(3)提高了汽车的操纵性。
由于可以实现传动比的任意设置,并针对不同的车速,转向状况进行参数补偿,从而提高了汽车的操纵性。
Internal Combustion Engine &Parts1线控转向系统的优势1.1改善了操纵稳定性汽车线控转向系统的应用,有效地实现了转向系统和转向盘两者之间的同步,从而使得驾驶员对于汽车的控制更加的灵敏,不仅有效地改善了以往传统汽车在转向的过程当中所出现的转向力和转向相应时间相矛盾的问题,而且还在很大程度上改善了以往传统转向角随着汽车的行驶状态处于不同的变化状态的缺点。
1.2提高了舒适性汽车线控转向系统,取消了以往传统的机械连接,而且使得汽车在行驶的过程当中由于地面的不平整以及转向轮的不平衡等因素所导致的抖动传递到方向盘上,这样一来,就有效地提高了驾驶人员的舒适感,并且取消了转向柱,使得驾驶人员的腿部活动空间更加的自由。
1.3改善了路感转向盘和转向轮两者之间的无机械连接,使得驾驶员对路感的认知主要是通过主控制器控制方向盘当中的路感电动机模拟形成的。
在这种情况下,驾驶人员就能够在车内更加真实地感受到来自路面的感觉。
1.4节能环保线控转向系统是利用电动机来进行驱动的,取消了以往传统的机械、液压装置,通过这样的防守,就能够有效地避免出现泄露液压油、废弃油管所造成的环境污染现象。
与此同时,汽车线控转向系统只需要在转向的时候进行工作,不仅有效增加了传动效率,而且还使得燃油更加的经济、环保。
2线控转向系统的基本结构与工作原理2.1线控转向系统的基本结构所谓的汽车线控转向系统,其实是一种全新概念的转向系统。
它主要是利用方向盘、主控制器、以及车轮转向三个模块和自动防故障系统、电源等重要辅助系统构成的。
具体如图1所示。
①汽车的方向盘总成主要是由方向盘、方向盘转角传感器、方向盘回正力矩电机以及火炬传感器等一系列部件构所构成的。
其工作模式主要是方向盘总成将驾驶人的转向意图转变为数字信号,并将其传送给主控制器,然后发出指令控制汽车的前轮完成的转向动作。
②在线控转向系统当中,主控制器的作用就是采集驾驶人员所发出的信号,然后对所采集到的信号进行相应的分析处理,并向汽车的控制器、前轮转向电机等发送控制信号,然后通过驾驶人员的实际操作,进而达到控制汽车的目的。
线控转向1. 简介线控转向是一种汽车技术,通过电子信号控制转向系统,使车辆的转向动作更加精确和灵活。
传统的机械转向系统通过转向轴和传动装置来将驾驶员的操控信号传递到前轮,而线控转向则利用电子系统来实现这一功能。
2. 线控转向的实现原理线控转向系统主要由以下几个部分组成: - 转向传感器:通过感知驾驶员转动方向盘的角度和力度,将这些信号转换为电子信号。
- 控制单元:接收来自转向传感器的信号,并根据预设的算法进行处理,然后发送控制信号给转向执行机构。
- 转向执行机构:根据控制信号,控制车辆的前轮转向角度和速度。
3. 线控转向的优势与传统的机械转向系统相比,线控转向具有以下优势: - 精准控制:线控转向系统通过电子信号的控制,可以实现更精确的转向控制,使驾驶员的操控更加准确和灵敏。
- 个性化设置:线控转向系统可以根据驾驶员的喜好和驾驶习惯进行个性化设置,如转向助力的大小、方向盘的灵敏度等。
- 防滑功能:部分线控转向系统还可以通过监测车辆的速度或路面情况,自动调整转向助力,提供更好的防滑功能,提高行驶安全性。
- 动态调节:线控转向系统可以根据车辆的行驶状态自动调节转向助力,如在高速行驶时降低转向助力的大小,提高稳定性。
4. 线控转向的应用线控转向技术目前已广泛应用于各种类型的车辆,包括乘用车、商用车、电动车等。
随着智能驾驶和自动驾驶技术的发展,线控转向系统也逐渐融入到这些系统中,为自动驾驶提供更精确的转向控制。
5. 线控转向的发展趋势随着科技的不断进步,线控转向技术也在不断演进和发展。
未来的线控转向系统可能具有以下特点: - 更高的精度和灵敏度:通过优化算法和传感器技术,线控转向系统可以实现更高的精度和灵敏度,使驾驶员的操控更加准确自如。
- 更智能的功能:线控转向系统可能会与其他智能驾驶辅助系统相结合,如自动泊车、自适应巡航等,实现更智能化的驾驶体验。
- 更高的安全性:未来的线控转向系统可能会进一步提高车辆的安全性,如通过预测转向需求,主动调节转向助力,提供更好的驾驶控制和防滑功能。
简述线控转向系统的组成一、引言线控转向系统是现代汽车的重要组成部分,它可以让驾驶员通过方向盘来控制车辆的转向。
本文将对线控转向系统的组成进行详细介绍。
二、线控转向系统的概述线控转向系统是由多个部件组成的,主要包括方向盘、转向柱、传感器、电动助力器和传动机构等。
方向盘是驾驶员用来控制车辆转向的手柄,而转向柱则将驾驶员通过方向盘的操作信号传递给其他部件。
三、方向盘和转向柱方向盘通常由一个圆形或半圆形的轮子和一个中心轴组成。
中心轴上有一个齿轮,这个齿轮与传动机构相连。
当驾驶员旋转方向盘时,中心轴上的齿轮也会随之旋转,从而使传动机构产生相应的运动。
转向柱则负责将驾驶员旋转方向盘时产生的信号传递给其他部件。
在一些现代汽车中,还会加入防抖装置来减少因路面颠簸等因素导致的抖动。
四、传感器传感器是线控转向系统的重要组成部分,它可以检测驾驶员的操作信号并将其转换为电信号。
这些电信号会被送往电动助力器和其他部件,从而实现车辆的转向。
常见的传感器有角度传感器和扭矩传感器。
角度传感器可以检测方向盘旋转的角度,而扭矩传感器则可以检测驾驶员施加在方向盘上的力量大小。
五、电动助力器电动助力器是线控转向系统中最重要的部件之一。
它通过产生一个旋转力矩来帮助驾驶员控制车辆转向。
在一些高档车型中,还会加入主动转向功能,即车辆能够根据路面情况自动调整方向。
六、传动机构传动机构是将驾驶员通过方向盘产生的运动信号传递给轮胎的部件。
它包括齿轮、链条、轴等多个组成部分。
当驾驶员旋转方向盘时,中心轴上的齿轮也会随之旋转,并通过传动机构将运动信号传递给轮胎。
七、总结线控转向系统是现代汽车中不可或缺的部件之一,它通过多个部件的协作来实现驾驶员对车辆转向的控制。
在未来,随着自动驾驶技术的发展,线控转向系统也将会有更多的创新和改进。
线控转向系统(SBW)在车辆高速化、驾驶人员大众化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的易操纵性设计显得尤为重要.线控转向系统(Steering-By-Wire Systerm,简称SBW)的发展,正是满足这种客观需求。
它是继EPS后发展起来的新一代转向系统,具有比EPS操纵稳定性更好的特点,它取消转向盘与转向轮之间的机械连接,完全由电能实现转向,彻底摆脱传统转向系统所固有的限制,提高了汽车的安全性和驾驶的方便性。
5.1线控转向系统的构成SBW系统一般由转向盘模块、转向执行模块和主控制器ECU、自动防故障系统以及电源等模块组成。
转向盘模块包括路感电机和转向盘转角传感器等,转向盘模块向驾驶员提供合适的转向感觉(也称为路感)并为前轮转角提供参考信号。
转向执行模块包括转向电机、齿条位移传感器等,实现2个功能:跟踪参考前轮转角、向转向盘模块反馈轮胎所受外力的信息以反馈车辆行驶状态.主控制器控制转向盘模块和转向执行模块的协调工作。
5。
2线控转向系统的工作原理当转向盘转动时,转向传感器和转向角传感器检测到驾驶员转矩和转向盘的转角并转变成电信号输入到ECU,ECU根据车速传感器和安装在转向传动机构上的位移传感器的信号来控制转矩反馈电动机的旋转方向,并根据转向力模拟,生成反馈转矩,控制转向电动机的旋转方向、转矩大小和旋转角度,通过机械转向装置控制转向轮的转向位置,使汽车沿着驾驶员期望的轨迹行驶。
5.3线控转向系统特点(1)取消了方向盘和转向车轮之间的机械连接,通过软件协调它们之间的运动关系,因而消除了机械约束和转向干涉问题,可以根据车速和驾驶员喜好由程序根据汽车的行驶工况实时设置传动比.(2)去掉了原来转向系统各个模块之间的刚性机械连接,采用柔性连接,使转向系统在汽车上的布置更加灵活,转向盘的位置可以方便地布置在需要的位置。
(3)提高了汽车的操纵性.由于可以实现传动比的任意设置,并针对不同的车速,转向状况进行参数补偿,从而提高了汽车的操纵性.(4)改善驾驶员的“路感”。
汽车线控转向系统的结构与技术原理分析一、线控转向系统的结构及工作原理(一)线控转向系统的结构汽车线控转向系统主要由转向盘模块、前轮转向模块、主控制器(ECU)以及自动防故障系统组成。
1.转向盘模块转向盘模块包括转向盘组件、转向盘转角传感器、力矩传感器、转向盘回正力矩电机。
其主要功能是将驾驶员的转向意图(通过测量转向盘转角)转换成数字信号并传递给主控制器,同时主控制器向转向盘回正力矩电机发送控制信号,产生转向盘回正力矩,以提供给驾驶员相应的路感信息。
2.前轮转向模块前轮转向模块包括前轮转角传感器、转向执行电机、电机控制器和前轮转向组件等。
其功能是将测得的前轮转角信号反馈给主控制器,并接受主控制器的命令,控制转向盘完成所要求的前轮转角,实现驾驶员的转向意图。
3.主控制器主控制器对采集的信号进行分析处理,判别汽车的运动状态,向转向盘回正力矩电机和转向电机发送命令,控制两个电机协调工作。
主控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。
当汽车处于非稳定状态或驾驶员发出错误指令时,前轮线控转向系统将自动进行稳定控制或将驾驶员错误的转向操作屏蔽,以合理的方式自动驾驶车辆,使汽车尽快恢复到稳定状态。
4.自动防故障系统自动防故障系统是线控转向系统的重要模块,它包括一系列的监控和实施算法,针对不同的故障形式和故障等级做出相应的处理,以求最大限度的保持汽车的正常行驶。
线控转向技术采用严密的故障检测和处理逻辑,以最大程度地提高汽车安全性能。
(二)线控转向系统的工作原理其工作过程:来自转向盘传感器和各种车辆当前状态的信息送给电子控制子系统后,利用计算机对这些信息进行控制运算,然后对车辆转向子系统发出指令,使车辆转向。
同时车轮转向子系统中的转向阻力传感器给出的信息也经电子控制子系统,传给转向盘子系统中模拟路感的部件。
二、线控转向系统的性能特点由于线控转向系统中的转向盘和转向轮之间没有机械连接,是断开的,通过总线传输必要的信息,故该系统也称作柔性转向系统。
• 65•当前,我国的私家车数量迅速增加,而为了实现对汽车更加良好的控制,线控转向技术被逐渐应用其中。
基于此,本文首先介绍了汽车线控转向系统的基本组成及其工作原理,研究了汽车线控转向系统中的关键技术,希望通过文章内容,大家能够对汽车线控转向技术有更进一步的认识。
目前,汽车转向系统中普遍采用线控转向技术,这是一种较为先进的转向技术。
利用该种转向技术的汽车车轮与转向盘之间无需进行机械连接,能够对汽车传动比进行任意设计,主动控制转向轮,同时可以根据车辆行驶速度相关参数的改变实施补偿,确保理想的转向特性得以良好实现,而且给底盘的布置提供了便利,符合当前汽车发展的特点,是一种值得大力推广的技术。
1 汽车线控转向系统的基本组成及其工作原理1.1 汽车线控转向系统的基本组成汽车线控转向有多种实现方式,例如:前后轮的线控转向以及四轮的线控转向。
其中前轮的线控转向又被分成多种,比如,汽车运用轮毂对电机形成的牵引力会使绕主销的转向力矩得以产生,实现汽车的转向;或是利用两个相对独立的电机对汽车左右两个轮胎进行驱动,完成阿克曼转角。
当前比较常用的线控转向系统,采用的是转向电机对齿轮齿条转向器驱动的方式,具体结构如图1所示。
图1 汽车线控转向系统基本结构关于汽车线控转向系统,主要由控制器、前轮子系统以及转向盘子系统等几个部分组成。
针对控制器,其包含如下算法:转向盘前车轮的转角算法以及正力矩的算法,分别对前轮子系统的协调处理及转向盘子系统加以控制;针对前轮子系统,其包含转向电机等系统,具有如下作用:追踪参考前轮的转角,给转向盘子系统反馈相关信息内容,如汽车行驶状况以及车胎受到外界作用力的实际情况;针对转向盘子系统,其中包含转向盘转角传感器和路感电机等部件,具有的作用如下:给汽车驾驶人员提供适宜的转向感觉,同时给前轮转角提供相关参考信号。
1.2 汽车线控转向系统的工作原理驾驶人员转动方向盘的过程中,控制器会依据方向盘转角传感器以及车辆行驶速度传感器发出的信号,通过前车轮转角的相应算法计算出参考前轮转角,并给转向电机传送相关控制信号,令转向电机实施PI 与PD 控制,确保这一参考前轮转角得以实现。
sbw线控转向系统的工作原理
SBW线控转向系统的工作原理是传感器检测驾驶员的转向数据,这些数据
通过数据总线传递给车上的ECU。
然后,ECU进行综合计算,并将命令发
送给转向控制系统。
转向控制系统再从转向操纵机构获得驾驶员的转向指令,并从转向系统获得车轮情况,从而指挥整个转向系统的运动。
这种系统的优点包括减少机械连接的零部件,如电动助力系统的转向柱和传动轴,从而提升驾驶者的腿部空间和驾驶座的舒适性。
此外,它也适合在高级别的自动驾驶中,将方向盘系统收入到操控台内部,以进一步提升驾驶人员的空间和舒适性。
然而,线控转向系统也存在一些问题,如可靠性的问题,以及线控系统的设计、制造成本较高。
因此,尽管这种系统具有许多优点,但目前尚未得到广泛应用。
以上信息仅供参考,如有需要建议查阅专业汽车书籍。
浅谈汽车线控转向系统的结构及工作原理
前言
汽车转向性能是汽车的主要性能之一,转向系统的性能直接影响到汽车的操
纵稳定性,它对于确保车辆的安全行驶、减少交通事故以及保护驾驶员的人身
安全、改善驾驶员的工作条件起着重要的作用。
如何合理地设计转向系统,使
汽车具有良好的操纵性能,始终是设计人员的重要研究课题。
在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同水平
的驾驶人群,汽车的易操纵性设计显得尤为重要。
线控转向系统(Steering
– By - WireSystem,简称SBW)的发展,正是迎合这种客观需求。
它是继EPS 后发展起来的新一代转向系统,具有比EPS 操纵稳定性更好的特点,而且它在转向盘和转向轮之间不再采用机械连接,彻底摆脱传统转向系统所固有的
限制,在给驾驶员带来方便的同时也提高了汽车的安全性。
一、线控转向系统的发展概况
德国奔驰公司在1990 年开始了前轮线控转向的研究,并将它开发的线控转
向系统应用于概念车F400Carving 上。
日本Koyo 也开发了线控转向系统,但
为了保证系统的安全,仍然保留了转向盘与转向轮之间的机械部分,即通过离
合器连接,当线控转向失效时通过离合器结合回复到机械转向。
宝马汽车公司
的概念车BMWZ22,应用了SteerByWire 技术,转向盘的转动范围减小到
160°,使紧急转向时驾驶员的忙碌程度得到了很大降低。
意大利Bertone 设计开发的概念车FILO,雪铁龙越野车C-
Crosser,Daimlerchrysler 概念车R129,都采用了线控转向系统。
2003 年日本本田公司在纽约国际车展上推出了LexusHPX 概念车,该车也采用了线控转向系统,在仪表盘上集成了各种控制功能,实现车辆的自动控制。
估计几年后,。