递归神经网络
- 格式:doc
- 大小:61.00 KB
- 文档页数:5
人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。
简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。
1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。
自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。
1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。
人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。
人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。
这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。
每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。
基于深度学习的语音降噪技术研究一、引言随着人工智能技术的不断发展,深度学习技术已经广泛应用于语音识别、自然语言处理等领域。
在语音处理领域中,语音降噪是一个重要的问题。
由于环境噪声的干扰,语音信号往往会受到很大的影响,并且影响语音信号的质量和识别的准确率。
基于深度学习的语音降噪技术得到了广泛的关注和研究。
本文将介绍基于深度学习的语音降噪技术的相关研究。
二、语音降噪技术简介语音降噪技术是指在语音信号中去除噪声的过程。
传统的语音降噪技术主要包括基于滤波器的方法、基于谱减法的方法、基于时频域重构的方法等。
这些方法虽然简单易用,并且已经被广泛应用,但是由于其依赖于先验知识和假设,并且对噪声的特征要求较高,所以在一些复杂环境中的效果较差。
随着深度学习技术的发展,基于深度学习的语音降噪技术也得到了快速的发展。
基于深度学习的语音降噪技术主要利用深度神经网络模型对语音信号进行建模和学习,并将噪声信号估计为附加的噪声。
与传统的语音降噪技术相比,基于深度学习的语音降噪技术具有更高的鲁棒性和适应性。
三、基于深度学习的语音降噪技术研究1. 基于自编码器的语音降噪技术自编码器是一种无监督学习的神经网络模型,在图像处理和语音处理中被广泛应用。
基于自编码器的语音降噪技术主要利用一个自编码器网络建模语音信号,将编码器网络作为噪声信号的估计器,将解码器网络作为原始语音信号的重构器。
通过调整自编码器网络中的参数,可以去除噪声信号,从而得到更纯净的语音信号。
2. 基于深度神经网络的语音降噪技术深度神经网络是一种可以通过多层神经元进行学习的神经网络模型。
基于深度神经网络的语音降噪技术主要是通过建立一个深度神经网络模型对语音信号进行建模。
在该模型中,输入为包含噪声信号的语音信号,输出为纯净语音信号。
通过对神经网络的训练,模型可以学习到输入信号和输出信号之间的复杂映射关系,从而去除噪声信号,得到更好的语音信号。
3. 基于递归神经网络的语音降噪技术递归神经网络是一种可以处理序列数据的神经网络模型。
《神经网络电子教案》PPT课件第一章:神经网络简介1.1 神经网络的定义1.2 神经网络的发展历程1.3 神经网络的应用领域1.4 神经网络的基本组成第二章:人工神经元模型2.1 人工神经元的结构2.2 人工神经元的激活函数2.3 人工神经元的训练方法2.4 人工神经元的应用案例第三章:感知机3.1 感知机的原理3.2 感知机的训练算法3.3 感知机的局限性3.4 感知机的应用案例第四章:多层前馈神经网络4.1 多层前馈神经网络的结构4.2 反向传播算法4.3 多层前馈神经网络的训练过程4.4 多层前馈神经网络的应用案例第五章:卷积神经网络5.1 卷积神经网络的原理5.2 卷积神经网络的结构5.3 卷积神经网络的训练过程5.4 卷积神经网络的应用案例第六章:递归神经网络6.1 递归神经网络的原理6.2 递归神经网络的结构6.3 递归神经网络的训练过程6.4 递归神经网络的应用案例第七章:长短时记忆网络(LSTM)7.1 LSTM的原理7.2 LSTM的结构7.3 LSTM的训练过程7.4 LSTM的应用案例第八章:对抗网络(GAN)8.1 GAN的原理8.2 GAN的结构8.3 GAN的训练过程8.4 GAN的应用案例第九章:强化学习与神经网络9.1 强化学习的原理9.2 强化学习与神经网络的结合9.3 强化学习算法的训练过程9.4 强化学习与神经网络的应用案例第十章:神经网络的优化算法10.1 梯度下降算法10.2 动量梯度下降算法10.3 随机梯度下降算法10.4 批梯度下降算法10.5 其他优化算法简介第十一章:神经网络在自然语言处理中的应用11.1 词嵌入(Word Embedding)11.2 递归神经网络在文本分类中的应用11.3 长短时记忆网络(LSTM)在序列中的应用11.4 对抗网络(GAN)在自然语言中的应用第十二章:神经网络在计算机视觉中的应用12.1 卷积神经网络在图像分类中的应用12.2 递归神经网络在视频分析中的应用12.3 对抗网络(GAN)在图像合成中的应用12.4 强化学习在目标检测中的应用第十三章:神经网络在推荐系统中的应用13.1 基于内容的推荐系统13.2 协同过滤推荐系统13.3 基于神经网络的混合推荐系统13.4 对抗网络(GAN)在推荐系统中的应用第十四章:神经网络在语音识别中的应用14.1 自动语音识别的原理14.2 基于神经网络的语音识别模型14.3 深度学习在语音识别中的应用14.4 语音识别技术的应用案例第十五章:神经网络在生物医学信号处理中的应用15.1 生物医学信号的特点15.2 神经网络在医学影像分析中的应用15.3 神经网络在生理信号处理中的应用15.4 神经网络在其他生物医学信号处理中的应用重点和难点解析重点:1. 神经网络的基本概念、发展历程和应用领域。
递归神经网络概述 一、引言 人工神经网络的发展历史己有60多年,是采用物理可实现的系统模仿人脑神经细胞的结构和功能,是在神经生理学和神经解剖学的基础上,利用电子技术、光学技术等模拟生物神经网络的结构和功能原理而发展起来的一门新兴的边缘交叉学科,(下面简称为神经网络,NeuralNetwork)。这些学科相互结合,相互渗透和相互推动。神经网络是当前科学理论研究的主要“热点”之一,它的发展对目前和未来的科学技术的发展将有重要的影响。神经网络的主要特征是:大规模的并行处理、分布式的信息存储、良好的自适应性、自组织性、以及很强的学习能力、联想能力和容错能力。神经网络在处理自然语言理解、图像识别、智能机器人控制等方面具有独到的优势。与冯·诺依曼计算机相比,神经网络更加接近人脑的信息处理模式。 自从20世纪80年代,Hopfield首次提出了利用能量函数的概念来研究一类具有固定权值的神经网络的稳定性并付诸电路实现以来,关于这类具有固定权值神经网络稳定性的定性研究得到大量的关注。由于神经网络的各种应用取决于神经网络的稳定特性,所以,关于神经网络的各种稳定性的定性研究就具有重要的理论和实际意义。递归神经网络具有较强的优化计算能力,是目前神经计算应用最为广泛的一类神经网络模型。 根据不同的划分标准,神经网络可划分成不同的种类。按连接方式来分主要有两种:前向神经网络和反馈(递归)神经网络。前向网络主要是函数映射,可用于模式识别和函数逼近。递归神经网络因为有反馈的存在,所以它是一个非线性动力系统,可用来实现联想记忆和求解优化等问题。由于神经网络的记亿信息都存储在连接权上,根据连接权的获取方式来划分,一般可分为有监督神经网络、无监督神经网络和固定权值神经网络。有监督学习是在网络训练往往要基于一定数量的训练样木。在学习和训练过程中,网络根据实际输出与期望输出的比较,进行连接权值和阂值的调节。通常称期望输出为教师信号,是评价学习的标准。最典型的有监督学习算法是BP(BackProPagation)算法。对于无监督学习,无教 师信号提供给网络,网络能根据其特有的结构和学习规则,进行连接权值和闽值的调整,以表示外部输入的某种固有特征。 与有监督和无监督神经网络相比,固定权值神经网络不需要进行学习,权值是根据要解决的问题事先确定的。具有反馈的固定权值递归神经网络,如目前受到广泛研究的Hopfield网络、细胞神经网络、双向联想记忆网络和Cohen-Grossberg网络等,主要用在优化计算、联想记忆和模式识别等方面。
二、递归神经网络的分类 递归神经网络是一种具有固定的权值、外部的输入和内部的状态的神经网络,可将其看作以权值和外部输入为参数的,关于内部状态的行为动力学。 根据基本变量是神经元状态(神经元外部状态)或局部场状态(神经元内部状态),或者从外部状态和内部状态作为建模方法来分,递归神经网络分为:静态场神经网络模型和局部场神经网络模型。这两种模型在递归神经网络中代表两类基本的建模方法。局部场模型包括Hopfield型神经网络(即原始Hopfield神经网络及各种变形的Hopfield神经网络)和细胞神经网络模型等。静态场模型包括盒中脑状态模型和优化型神经网络模型。静态场模型广泛应用于求解线性变分不等式和线性补问题。根据处理信号的不同方式,可将神经网络分为连续型系统和离散型系统。 根据时滞的存在与否,可将神经网络分为无时滞系统和有时滞系统。根据神经网络在硬件实现中(产生的)时滞(或利用延迟元件产生的时滞)的不同,可将神经网络分为定常时滞和时变时滞系统、单时滞和多时滞系统、分布时滞和中立型时滞系统等。 总之,根据不同的划分标准,形成了大量的神经网络模型,这些模型都是从不同侧面来反映生物神经网络的功能和特性。
三、Hopfield神经网络动力行为介绍 Hopfield网络是人们最熟悉的全反馈网络,可以说它在人们的心目中就是递归神经网络的典型代表。实际上,Hopfield网络应当是最简单的全反馈网络,它只有一层网络,其激活函数为阈值函数,将k时刻的网络输出反馈到对应的网 络输入端,并直接作为下一个时刻网络的输入,组成动态系统,所以网络具有相同的输入和输出节点。Hopfield网络已经被广泛地被应用于联想记忆和优化计算中。
1982年,美国加州工学院生物物理学家Hopfield开创性地提出了一种新型的连续时间递归神经网络模型(原始的Hopfield模型),可用如下常微分方程组来描述: niJxgRxdtdxijjnjijiii,...,1,TC1
(1)
其中,电阻R,和电容C的并联模拟了生物神经输出的时间常数,跨导ijT则模拟神经元之间互连的突触特征,且如果i=j则ijT=0;运算放大器jxjg模拟神经元的非线性特性,其为连续有界、可微、严格单调增的函数,ix为第i个神经元的输入,i,j=l,…,n。 Hopfleld网络在高强度连接下,依靠协同作用能自发产生计算行为。Hopfield模型是典型的全互连网络,通过在网络中引入能量函数以构造动力学系统,并使网络的平衡态与能量函数的极小解相对应,从而将求解能量函数极小解的过程转化为网络向平衡态的演化过程。 Hopfield在网络中引入了能量函数的概念,证明了当连接权矩阵nnijTT
为对称的情况下,网络在平衡点附近是稳定的,这在神经网络研究领域成为一个重要的里程碑。Hopfield神经网络用它作为联想记忆模型时,利用的就是它的非线性反馈动力学特性,并且以其强大功能和易于电路实现等特点,成功地应用 到联想记忆和优化领域。 该网络模型用微分方程描述,则称为广义Hopfield模型: niIxgaxcdtjjnijijiii,...,1,dx
(2)
其中,T1111,...,,...,,,,...,CnTnnnnijnIIIxgxgxgaAccdiag。 虽然Hopfield网络在理论及应用上取得了许多的成果,然而随着人们对它的研究的不断深入,发现Hopfield网络存在着一些不可克服的缺点。最主要的缺点是它的全连接性导致在网络大规模的情况下,网络运算量大,而且硬件实现有困难。而且,Hopield网络对于每个神经元与其它神经元全连接的要求,与生物神经网络不符。现代神经生理学的研究结果表明:人脑是由大约101'个神经元构成的神经系统,而每个神经元仅与约103一104个其它神经元相互连接。这一结果表明,真实神经网络中神经元之间的连接是相当稀疏的。因此,全连接型的Hopfield网络显然与真实神经网络差异很大。
四、递归神经网络的优化计算和联想记忆 由于具有固定权值的递归神经网络模型易于硬件电路实现,进而易于用来实现优化计算、模式识别和联想记忆等,到目前为止,研究最多的是Hopfield神经网络、cohen-Grossberg神经网络和双向联想记忆模型(BAM神经网络)等。 所谓优化问题是求解满足一定条件下的目标函数的极小值问题。有关优化的传统算法很多,如梯度法、单纯形法等。由于在某些情况下,约束条件过于复杂,加上变量维数较多等诸多原因,使得采用传统算法进行的优化工作耗时过多,有的甚至达不到预期的优化结果。由于采用了能量函数作为分析工具,比数值算法更易得到理论依据,递归神经网络在优化计算上己表现出巨大的潜力,因此近年来许多研究者都在努力开发用于最优化计算的人工神经网络模型。Hopfield网络是人们最熟悉的全反馈网络,可以说它在人们的心目中就是递归神经网络的典型代表。实际上,Hopfield网络应当是最简单的全反馈网络,它只有一层网络,其激活函数为阈值函数,将k时刻的网络输出反馈到对应的网络输入端,并直接作为下一个时刻网络的输入,组成动态系统,所以网络具有相同的输入和输出节点。Hopfield网络已经被广泛地被应用于联想记忆和优化计算中。 自从1982年Hopfield提出了具有联想和优化计算功能的神经网络以来,关于原始Hopfield神经网络及Hopfield型神经网络的动态特性分析就没有间断过。其实现联想记忆和优化功能表现为如下: 对于由模型构成的动力系统,从数学观点看,它是由许多子系统组成的一个大系统。众所周知,一个动力系统的最终行为是由它的吸引子决定的。吸引子可以是稳定的,也可以是不稳定的。吸引子可以是平衡点、极限环或混沌吸引子。 自联想记忆的过程是:如果将动力系统的一个吸引子视为一个记忆,那么从初态朝该吸引子流动的过程就是从部分信息找出全部信息的过程。因此,Hopfield神经网络模型就可以用于联想记忆。当用于联想记忆时,能量函数是给定的,网络的运行过程是通过确定合适的权值以满足最小能量函数的要求。 Hopfield神经网络实现优化计算的过程是:如果将动力系统的稳定吸引子考虑为适当的能量函数的极小点,从一个初始点找到函数相应的极小点就是优化计算。这个动力系统的初始条件,随着系统演化达到某一极小点。如果相应的能量函数是某一径向无界的正定函数,则系统最终会达到所期望的最小点,而计算也就在系统的演化过程中完成了。当用于优化计算时,网络的连接权值是确定的,首先将目标函数与能量函数相对应,然后通过网络的运行使能量函数不断下降并最终达到最小,从而得到问题对应的极小解。 神经网络求解优化问题的实质是将优化问题的最优解转化为神经动态系统的平衡状态,任给系统一个初始状态,让系统演化到稳定状态就得到问题的解。因而,如何将优化问题的解与神经动态系统的平衡状态一一对应起来是神经网络求解优化问题的关键。对于复杂的优化问题,目前绝大多数优化神经网络本质上都是基于梯度法,因而往往容易陷入局部极小点。如何把求优化问题全局最优解的思想和方法引进神经网络,建立全局优化的神经网络模型,是一个值得研究的重要课题。