图像编码、处理、识别技术综述
- 格式:pdf
- 大小:363.24 KB
- 文档页数:7
计算机图像处理与分析计算机图像处理与分析是指利用计算机技术对图像进行处理、分析和理解的过程。
它涉及到数字图像处理、计算机视觉、图像识别等多个领域,是计算机科学和工程领域的一个重要研究方向。
以下是计算机图像处理与分析的一些基本知识点:1.数字图像处理:将模拟图像转换为数字图像,并进行各种处理,如图像增强、滤波、边缘检测、图像分割、图像配准等。
2.图像分析:对图像进行量化、描述和解释,包括特征提取、目标检测、形状分析、纹理分析等。
3.计算机视觉:通过模拟人类的视觉系统,使计算机能够理解和解释图像和视频。
包括图像识别、场景重建、视觉伺服等。
4.图像识别:识别图像中的对象、场景和个体,是计算机视觉的一个重要任务。
包括监督学习、非监督学习、深度学习等方法。
5.图像编码和压缩:为了节省存储空间和带宽,需要对图像进行编码和压缩。
包括JPEG、PNG、H.264等编码标准。
6.图像重建:从多个图像中重建三维模型或场景,应用于医学、工业等领域。
7.图像处理与分析的应用:包括图像处理软件、计算机辅助设计、机器人视觉、遥感图像处理、医学图像分析等。
8.数学基础:包括线性代数、概率论和数理统计、微积分等,这些数学工具在图像处理与分析中起到重要作用。
9.编程语言和工具:熟悉常用的编程语言,如Python、MATLAB、C++等,以及图像处理库,如OpenCV、MATLAB的Image Processing Toolbox等。
10.硬件设备:图像处理与分析需要高性能的计算机和专业的图像采集设备,如摄像头、扫描仪等。
计算机图像处理与分析是一门综合性的学科,需要掌握多个领域的知识和技能。
通过学习和实践,可以更好地理解和应用图像处理与分析的技术。
习题及方法:1.习题:图像增强的目的是什么?解题方法:回顾图像增强的定义和目的,增强图像的视觉效果,提高图像的质量和清晰度,以便更好地进行图像分析和识别。
答案:图像增强的目的是提高图像的质量和清晰度,以便更好地进行图像分析和识别。
机器视觉中的图像识别与处理技术随着人工智能技术的迅速发展,机器视觉也在快速壮大。
在各种细分领域中,图像识别与处理技术是最具代表性的。
图像识别是指机器对输入的图片进行特征分析,通过学习后识别图片中的物体或场景,同时对这些物体或场景的不同属性进行分类。
图像处理则是指将图像进行前后处理,包括缩放、旋转、裁剪、滤波等操作,以及去除图片中的噪声和失真等。
目前,机器视觉在各个领域都有广泛应用,例如医疗、军事、交通、安防,甚至在日常生活中也随处可见其身影。
以下将从图像识别与处理的技术原理以及应用场景两个方面进行探讨。
一、图像识别与处理技术原理1. 特征提取和分类图像识别与处理最基础的技术是特征提取和分类。
特征提取是将图像中的不同物体或场景特征进行提取,这些特征可以是颜色、纹理、形状等不同方面的属性。
通过学习这些特征,机器可以对图片的不同部分进行感知和分析。
而分类则是对这些特征进行归纳整理,从而达到区分不同物体或场景的目的。
2. 卷积神经网络(CNN)在特征提取和分类方面,卷积神经网络(CNN)是常用的算法之一。
该算法通过构建多层神经网络,对图像中的特征进行提取、处理和分类。
CNN的一个核心组件是卷积层,该层通过滤波器对输入图像进行处理,提取出关键的特征。
随后该神经网络会将提取的特征进行合并,不断进行推理和训练,最终输出对图像的判断结果。
3. 深度学习和强化学习深度学习和强化学习是图像识别与处理的重要技术手段。
通过构建大规模神经网络,深度学习可以对输入的图片进行更为精细的分析和处理,提升机器在复杂环境中的泛化能力。
而强化学习则是指机器通过与环境不断交互,通过尝试和学习达到最优解的一种学习方式。
二、图像识别与处理技术应用场景1. 医疗领域在医疗领域,图像识别与处理技术最大的应用就是医学影像诊断。
通过对CT、MRI等图像进行分析和处理,机器可以帮助医生快速、准确地诊断和治疗疾病,同时还能在手术中帮助医生实时监测病灶和手术进程。
图像编码中的感兴趣区域处理方法在图像编码的过程中,为了减少存储空间和传输带宽的需求,通常需要对图像进行压缩。
感兴趣区域处理方法是一种常用的图像编码技术,它能够根据图像的重要性对感兴趣的区域进行更加精细的编码,从而保持图像的质量和细节。
一、感兴趣区域的定义和识别感兴趣区域可以理解为图像中较为重要或者需要突出的部分。
在图像编码中,感兴趣区域的识别是一个关键步骤。
常用的感兴趣区域识别方法包括图像分割、目标检测和人工标定等。
1.图像分割图像分割是将图像划分为不同的区域或者物体的过程。
通过对图像进行分割,可以将感兴趣的区域从背景中提取出来。
图像分割常用的算法包括阈值法、边缘检测、区域生长和图割等。
2.目标检测目标检测是在图像中自动识别和定位感兴趣的目标。
目标检测可以通过训练模型和特征提取的方法实现。
常用的目标检测算法包括Haar特征和卷积神经网络等。
3.人工标定人工标定是指通过人工的方式对图像中感兴趣的区域进行标记。
虽然这种方法耗时耗力,但是能够准确地确定感兴趣的区域。
人工标定常用的工具包括标注软件和专用设备等。
二、感兴趣区域的编码方法感兴趣区域编码是将感兴趣区域和非感兴趣区域进行区分和编码的过程。
合理的编码方法可以减少编码的冗余和失真,提高图像的质量。
1.基于块的编码基于块的编码是将感兴趣区域分块,并对每个块进行独立的编码。
在感兴趣区域内,采用更加精细的编码参数和方式,以保留更多的细节信息。
而在非感兴趣区域内,采用更加粗糙的编码参数和方式,以减少冗余和编码量。
2.基于特征的编码基于特征的编码是根据感兴趣区域的特征进行编码。
常用的特征包括颜色、纹理、形状等。
通过提取和编码感兴趣区域的特征,可以更加高效地压缩图像,并在解码过程中进行重建和还原。
三、感兴趣区域处理方法的应用感兴趣区域处理方法在许多领域都有广泛的应用。
下面以数字医学图像和虚拟现实为例,介绍其在实际中的应用和效果。
1.数字医学图像数字医学图像是医生进行诊断和治疗的重要工具。
数字图像处理技术综述作者:文德仲来源:《科技资讯》2016年第08期摘要:数字图像处理是指将图像信号通过一定的离散处理转换成数字信号并利用计算机对其进行处理的过程。
早期的图像处理是改善图像的质量,让人们能看到更为直观的图像显示。
该文详细论述了数字图形处理技术的发展历史、技术分类及其主要应用范围。
关键词:数字图像处理应用中图分类号:TP391 文献标识码:A 文章编号:1672-3791(2016)03(b)-0022-02数字图像处理技术发展是十分迅速的,从早期的电报打印机打印的粗糙图片,到图像信号可以远距离传输并清晰显示出来,到现在数字图像处理技术可以观看到人体内部组织结构等等,在技术发展的同时,在人们生活中的作用也越来越显著。
1 数字图像处理技术的主要分类数字图像处理的技术基本可以分为两大类:分别是模拟图像处理和数字图像处理.模拟图像处理内容主要包括光学图像处理和电子图像处理。
如人们平常拍照、摄像头监控和电视信号处理等都属于模拟图像处理。
模拟图像处理的优点是处理速度快,系统占用运行内存小,图像实时性强,能够在处理的同时进行其他图像的处理,其缺点是处理精度较差,处理功能比较单一,没什么智能判断能力和非线性处理的能力。
数字图像处理技术是目前主流的处理技术,其功能的实现一般需要计算机软件的支持,所以一般也称之为计算机图像处理。
数字图像处理有很多优势,如处理内容方面,处理精度方面,处理灵活性等等都是模拟图像处理所比不上的,而且可以进行复杂的非线性处理,改变处理功能只需要进行不同功能模块的重新编码和参数变换,但其处理速度慢,尤其是在进行复杂的图像处理时更要占用更高的内存。
2 数字图像处理技术的主要内容2.1 图像的显示图像显示是数字图像处理技术中最基本也是最重要的一门技术,对于计算机来说,获取信息的最直观的方式就是图像的观看,任何其他图像处理技术都需要先显示图像,然后在图像做后续操作,如对图像进行特效显示,包括图像的扫描,图像的移动,分条栅栏,马赛克效果,百叶窗效果等,所以图像显示的原理和基本方法是数字图像处理技术中所必须掌握的[1]。
图像编码是将图像数据转换为数字信号的过程。
在数字图像领域中,图像编码是非常重要的一部分,因为它可以减少图像数据的存储空间和传输带宽。
在本文中,我们将介绍一些常用的图像编码方法。
一、无损编码方法无损编码方法是指将图像数据进行压缩,但压缩后的数据能够完全恢复为原始图像数据。
这种编码方法适用于对图像质量要求较高的场景,如医学图像和卫星图像等。
1. 预测编码(Predictive coding)预测编码是一种利用前后像素之间的相关性来进行编码的方法。
通过对图像的像素值进行预测,然后将预测误差编码,可以实现对图像数据的无损压缩。
2. 统计编码(Entropy coding)统计编码基于信息论原理,通过对图像数据中出现的符号进行统计分析,按照符号出现的概率进行编码。
在统计编码中,常用的方法有霍夫曼编码和算术编码。
二、有损编码方法有损编码方法是指在压缩图像数据的同时,会引入一定的信息损失,从而导致压缩后的图像质量下降。
这种编码方法适用于对图像质量要求不那么严格的场景,如网络传输和存储等。
1. 变换编码(Transform coding)变换编码是一种将图像数据转换为频域表示的方法。
最常用的变换编码方法是离散余弦变换(DCT),它可以将图像数据从时域转换到频域,然后对频域表示的系数进行量化和编码。
2. 预测编码(Predictive coding)预测编码不仅可以用于无损压缩,也可用于有损压缩。
在有损预测编码中,通过对图像的像素值进行预测,然后对预测误差进行量化和编码,从而实现压缩图像数据。
3. 算术编码(Arithmetic coding)算术编码是一种基于符号概率进行编码的方法。
它可以根据每个符号出现的概率来动态调整编码的长度,从而实现对图像数据的高效压缩。
总结起来,图像编码是数字图像领域中的重要研究方向。
无损编码方法可以实现对图像数据的无损压缩,而有损编码方法可以实现更高比例的压缩,但会引入一定的信息损失。
图像识别与处理技术研究一、图像识别技术的发展历程图像识别技术,是一种基于计算机视觉的应用。
早在二十世纪六十年代,人们开始探索图像处理和识别的技术,那时候主要是基于传统的图像处理算法,如模板匹配、边缘检测、分割、形态学等。
这些算法已经被广泛应用于实际生产中,但是也存在着很多问题,比如说针对不同环境和场景的适应性不强。
随着计算机技术的快速发展,计算机视觉的应用也得到了迅速发展。
二十世纪八十年代,人工神经网络的出现,使得图像识别技术有了大量的革新。
在二十一世纪,深度学习也进一步推动了图像识别技术的发展。
随之而来的就是一个类比人类视觉系统的卷积神经网络的出现。
此外,各家企业利用大量的数据和计算能力进行深度学习的研究,深度学习技术也变得更加成熟,二分类、多分类等模型得到了广泛应用。
二、图像识别技术的分类根据算法的特点和应用场景不同,图像识别技术可以分为以下几类。
1、传统图像处理技术传统的图像处理技术主要是采用一些确定性的算法来进行图像的处理,包括以下几个方面:色彩空间变换,基于阈值的图像分割,边缘检测,形态学,像素级运算。
目前该类算法仍广泛应用于医疗影像、人脸识别、军事照片等领域。
2、机器学习机器学习是用于预测、分类、挖掘等任务的算法或技术。
在图像识别中,机器学习技术主要包括:支持向量机,KNN,朴素贝叶斯,以及最近流行的深度学习。
幸运的是,深度学习以其卓越的性能使其成为最流馁的分类器,利用深度神经网络,可以在图像识别领域实现更好的性能。
3、深度学习算法深度学习算法是指使用深度神经网络来进行图像识别等任务的技术和算法。
该类技术亮点在于数据的深入挖掘,利用相同的网络结构,通过架构修改和数据增强,可以实现对图片等深层次的分析,最终达到较优判别效果。
深度学习算法在人脸识别、自然场景文字识别等领域有着广泛的应用。
三、图像识别技术的应用1、视频监控现代城市中到处都可以看到大规模的的视频监控系统,其作用主要是为了安保。
图像编码是将图像数据进行压缩和存储的过程,通过编码算法可以将图像的冗余信息去除,从而减小图像的文件大小。
本文将详细解析图像编码的原理和流程。
一、图像编码的原理图像编码的原理是基于图像的统计特性和人眼视觉系统的特点。
图像的统计特性包括图像的冗余性和图像中不同区域的相关性。
人眼视觉系统对于细节变化敏感,对于一些细微的变化可能无法察觉。
基于这些原理,图像编码可以通过去除冗余信息和利用视觉系统的特点来实现图像数据的压缩。
二、图像编码的流程1. 图像预处理在图像编码前,需要对图像进行一些预处理工作,包括图像的归一化和分块。
图像归一化是将图像的亮度和对比度进行调整,使得图像数据的范围在一定的范围内,从而方便后续的处理。
分块是将图像分割成小块,每个小块可以独立进行编码处理。
2. 图像采样和量化图像编码的第一步是将图像的空间域数据转换到频域数据。
在这一步骤中,图像需要进行采样和量化。
采样是指将连续的图像数据转换为离散的样本,常用的采样方法有最近邻采样和双线性插值采样。
量化是将连续的图像数据映射到有限的离散值集合中,常用的量化方法包括均匀量化和非均匀量化。
3. 数据变换和编码在图像采样和量化之后,可以对图像数据进行变换和编码。
数据变换是将图像数据从空域转换到频域,常用的变换方法有傅里叶变换和离散余弦变换。
变换后的频域数据具有更好的能量集中性,便于后续的压缩编码。
编码是将变换后的频域数据进行压缩编码,常用的编码方法有哈夫曼编码和算术编码。
4. 熵编码和解码经过数据变换和编码后,可以对编码后的数据进行熵编码。
熵编码是一种无损压缩编码方法,通过统计图像数据的概率分布来进行编码。
常用的熵编码方法有游程长度编码和算术编码。
解码是对编码后的数据进行解码和反变换,将解码后的数据转换回空间域。
5. 反量化和反采样解码后的数据进行反量化和反采样,将离散的频域数据转换回连续的图像数据。
反量化是将量化后的数据映射回连续的图像数据,反采样是将采样后的数据进行插值,恢复原始图像的细节。
基于深度学习的图像识别与处理技术研究随着人工智能技术的发展,基于深度学习的图像识别与处理技术已经逐渐成为了目前研究的热点之一。
在现代社会中,我们已经离不开图像识别和处理技术。
不论是在工业制造、医学诊断、智能交通等方面,图像识别技术都扮演着至关重要的角色。
在本文中,我们将探讨基于深度学习的图像识别与处理技术的研究进展,以及其在实践应用中的展望。
一、深度学习技术的概述深度学习技术属于机器学习的一种,主要特点是能够从海量的数据中自动地学习特征,从而进行模式识别和分类。
深度学习技术的关键在于使用神经网络来模拟人脑神经元之间的关系,以达到在复杂环境下的高效处理和识别。
以图像处理为例,深度学习技术能够自动识别图片中的特征,并进行分类,因此是图像识别和处理技术的重要组成部分。
深度学习技术主要包括:卷积神经网络(CNN)、循环神经网络(RNN)、深度置信网络(DBN)、自编码器等。
CNN主要适用于图像分类问题,而RNN适用于序列数据的处理,深度置信网络和自编码器则逐渐成为了图像增强和降噪的重要方法。
二、基于深度学习的图像识别与处理技术研究进展近年来,深度学习技术的迅速发展,极大地推动了基于深度学习的图像识别与处理技术的研究。
目前,基于深度学习的图像识别与处理技术主要应用于目标检测、图像分类、视觉跟踪和人脸识别等领域。
1. 目标检测针对图像目标检测问题,研究人员提出了一系列基于深度学习的方法,如FastR-CNN、YOLO、SSD等。
这些方法综合运用了卷积神经网络、循环神经网络,有效地避免了传统目标检测方法中分类和定位两个任务之间存在的耦合问题,能够有效地提高目标检测的精度和效率。
2. 图像分类图像分类是深度学习算法中的另一重要应用。
基于深度学习的图像分类方法主要是通过卷积神经网络来实现。
在CNN中,每一层的卷积核都是学习特征的关键。
目前主要应用的是VGG-Net、AlexNet、GoogLeNet等模型,这些模型通过多层卷积和池化操作,能够将输入的原始图像转变成特征图,并最终进行分类。
ocr工作原理OCR(Optical Character Recognition)是光学字符识别的缩写,是一种将印刷体文字转换为可编辑文本的技术。
OCR工作原理是通过将图像中的文字识别为计算机可读的字符编码,从而实现自动化的文字识别和处理。
一、OCR工作原理概述OCR技术的工作原理可以简单分为三个主要步骤:图像预处理、文字分割和字符识别。
1. 图像预处理图像预处理是为了提高OCR识别的准确性,通常包括以下步骤:- 图像灰度化:将彩色图像转换为灰度图像,去除色彩信息。
- 图像二值化:将灰度图像转换为二值图像,即将文字部分转为黑色,背景部分转为白色。
- 去噪处理:消除图像中的噪点和干扰线,提高文字的清晰度和连通性。
- 文字增强:通过增加对比度、锐化边缘等方式,增强文字的清晰度和可读性。
2. 文字分割文字分割是将二值化图像中的文字分割成单个字符的过程,主要包括以下步骤:- 连通区域检测:通过检测二值图像中的连通区域,找到可能包含文字的区域。
- 文字区域切割:根据文字区域的位置和大小,将其切割出来,形成单个字符的图像。
3. 字符识别字符识别是将单个字符的图像转换为计算机可读的字符编码的过程,主要包括以下步骤:- 特征提取:从字符图像中提取出具有区分性的特征,如边缘、角点等。
- 字符分类:将提取的特征与预先训练好的字符模板进行比对,确定字符的类别。
- 字符编码:将字符的类别转换为计算机可读的字符编码,如ASCII码、Unicode等。
二、OCR工作原理详解1. 图像预处理图像预处理是OCR技术中非常重要的一步,它的目的是将原始图像转换为适合进行文字分割和字符识别的图像。
常用的图像预处理方法包括:- 灰度化:将彩色图像转换为灰度图像,去除色彩信息,简化后续处理。
- 二值化:将灰度图像转换为二值图像,即将文字部分转为黑色,背景部分转为白色。
常用的二值化方法有固定阈值法、自适应阈值法等。
- 去噪处理:消除图像中的噪点和干扰线,提高文字的清晰度和连通性。
毕业设计文献综述题目: 基于matlab的图像预处理技术研究专业:电子信息工程1前言部分众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络 、优化计算 、模糊逻辑 、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。
果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。
图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。
视觉是人类从大自然中获取信息的最主要的手段。
拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。
由此可见,视觉信息对人类非常重要。
同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。
通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。
图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。
图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程 。
图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL)。
他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响 ,由计算机成功地绘制出月球表面地图,获得了巨大的成功。
图像编码、处理、识别技术综述 摘 要:随着科技水平的发展和生活质量的提高,在生产生活中,实时处理图像技术被应用得越来越广泛,数字图像处理技术涉及信息科学、计算机科学数学、物理学及生物学,应用于生活中的各个领域。图形识别技术也越来越多地渗透到我们的日常生活中,详细叙述了图像处理、编码和识别技术,展望图像处理技术在现实生活种的重要性。 关键词:科技,图像处理,图像识别
1、图像编码技术 1.1图像编码基础 图像编码压缩是指在满足一定图像质量的条件下,用尽可能少的数据量来表示图像。编码技术比较系统的研究始于Shannon信息论,从此理论出发可以得到数据压缩的两种基本途径。一种是设法改变信源的概率分布,使其尽可能地非均匀,再用最佳编码方法使平均码长逼近信源熵。使用此途径的压缩方法其效率一般以其熵为上界,压缩比饱和于10:1,如Huffman编码、算术编码、行程编码等。另一种是联合信源的冗余度也寓于信源间的相关性之中,去除它们之间的相关性,使之成为或基本成为不相关信源,如预测编码、变换域编码、混合编码等,但也大都受信息熵的约束。总体上可以概括为熵编码,预测编码,变换编码,也称为三大经典编码方法。 随着人们对传统压缩编码方法的深入研究和应用,逐渐发现了这些传统方法的许多缺点。如高压缩比时恢复图像会出现方块效应,人眼视觉系统(HVS)的特性不易被引入到算法中等。为了克服这些缺点,1985年M.Kunl等人提出了第2代图像压缩编码的概念。经过近20年的发展,在这一框架下,人们提出了几种新的编码方法:分形编码、小波变换编码和基于模型的编码方法等。于是,对数据压缩技术的研究就突破了传统Shannon理论的框架,使得压缩效率得以极大提高。
1.2图像编码基本原理 数字图像的冗余主要表现为一下几种形式:空间冗余,时间冗余,视觉冗余,信息熵冗余,结构冗余和知识冗余。图像数据的这些冗余信息为图像压缩编码提供了依据。图像编码的目的就是充分利用图像中存在的各种冗余信息,特别时空间冗余,时间冗余以及视觉冗余,以尽量少的比特数来表示图像。利用各种冗余信息,压缩编码技术能够很好地解决在将模拟信号转换为数字信号后所产生的带宽需求增加的问题,它是使数字信号走上实用化的关键技术之一。虽然表示图像需要大量的数据,但是图像数据是高度相关的,或者说存在冗余信息,去掉这些信息后可以有效压缩图像,同时不会损害图像的有效信息。
1.3图像编码分类(第二代) 1.3.1分型编码 分形图像编码是在分形几何理论的基础上发展起来的一种编码方法。分形理论是欧氏几何相关理论的扩展,是研究不规则图形和混沌运动的一门新科学。它描述了自然界物体的自相似性,这种自相似性可以是确定的,也可以是统计意义上的。这一理论基础决定了它只有对具备明显自相似性或统计自相似性的图像,例如海岸线、云彩、大树等才有较高的编码效率。而一般图像不具有这一特性,因此编码效率与图像性质学特性有关,而且分形图像编码方法实质上是通过消除图像的几何冗余度来压缩数据的,根本没有考虑人眼视觉特性的作用。 分形图像压缩的概念是80年代中后期由Barnsley等人提出的,其理论基础是迭代函数系统(IFS: Iterated Function System)理论,着眼点是利用自然图像普遍存在的自相似特性(几何尺度不论怎样变化,景物任何一小部分的形状都与较大部分的形状极其相似),将这些自相似的结构以某种函数映射关系的形式表现出来,当这些函数映射关系满足一定的条件时,就可通过迭代计算重建图像。所以,分形图像编码过程是找映射关系的过程,而解码过程则是依照映射关系迭代计算的过程。整个方法包括以下步骤: (1)将原图(集合X)予分割为若干分形子图X(m),m=1,2,3⋯M; (2)对每一个子块X(m)提取IFS代码; (3)对IFS代码进行编码、传输(或储存); (4)译码形成IFS代码; (5)由IFS代码构造X(m)的重构子块Y(m); (6)由Y(m)构造X的重构图Y。这种分形图像压缩方法的实现不需要对图像有什么先验知识的了解。
1.3.2模型编码 基于模型的图像编码技术是近几年发展起来的一种很有前途的编码方法它利用了计算机视觉和计算机图形学中的方法和理论,其基本出发点是在编、解码两端分别建立起相同的模型,针对输入的图像提取模型参数,或根据模型参数重建图像。模型编码方法的核心是建模和提取模型参数,其中模型的选取、描述和建立是决定模型编码质量的关键因素。为了对图像数据建模,一般要求对输入图像要有某些先验知识。目前研究最多、进展最快的是针对可视电话应用中的图像序列编码。这类应用中的图像大多为人的头肩像。 基于模型的图像编码方法是利用先验模型来抽取图像中的主要信息,并以模型参数的形式表示它们,因此可以获得很高的压缩比。然而在模型编码方法的研究中还存在很多问题,例如:(1)模型法需要先验知识,不适合于一般的应用。(2)对不同的应用所建模型是不一样的。(3)在线框模型中控制点的个数不易确定,还未找到有效的方法能根据图像内容来选取。(4)由于利用模型法压缩后复原图像的大部分是用图形学的方法产生的,因此看起来不够自然。(5)传统的误差评估准则不适合用于对模型编码的评价。
1.3.3小波变换编码 一维连续小波变换可看成原始信号和一组不同尺度的小波带通滤波器的滤波运算,从而可把信号分解到一系列频带上进行分析处理,将其离散化后即为离散小波变换。 小波变换图像编码压缩的核心问题是要对子带图像进行小波分解系数的量化和编码。低频子带图像包含原图像的大部分能量,即包含图像的基本特性。它在图像重构算法中起主导作用,对重建图像的质量有很大影响,因此这部分信号应精确保留。高频子图像的系数分布符合广义高斯分布,对其系数进行粗量化编码较为有效。这也完全符合人的视觉特性,根据对人眼视觉系统的研究可知,人眼视觉灵敏度具有明显的低通特性,而且对不同方向上的敏感度也不一样,尤其是对倾斜方向的刺激不太敏感,如人眼对对角线方向子图像系数误差敏感度较低,因此可对对角线方向子图像进行粗量化高压缩。小波变换后的能量主要集中在低频系数分量,而其他高频系数分量大多为零值,这为高倍率压缩提供了可能。通过选择合适的具有平滑特性的小波基,就可消除重建图像中出现的方块效应,减小量化噪声,获得较好的重建图像质量。 小波变换图像编码压缩方法可分为如下两大类:基于传统的图像编码方法、基于分形理论的小波变换图像编码方法。
1.4图像编码评价 随着众多图像压缩算法的出现,如何评价图像压缩算法就成为重要的课题。一般来说,评价图像压缩算法的优劣有以下4个参数: (1)算法的编码效率 (2)编码图像的质量 (3)算法的适用范围 (4)算法的复杂度
2、图像处理技术 2.1图像基础 图像是人类智能活动重要的信息来源之一,是人类相互交流和认识世界的主要媒体。随着信息高速公路、数字地球概念的提出,人们对图像处理技术的需求与日剧增,同时VLSI技术的发展给图像处理技术的应用提供了广阔的平台。图像处理技术是图像识别和分析的基础,所以图像处理技术对整个图像工程来说就非常重要,对图像处理技术的实现的研究也就具有重要的理论意义与实用价值,包括对传统算法的改进和硬件实现的研究。
2.2图像处理技术分类 像处理技术基本可以分成两大类:模拟图像处理(Analog Image Processing)和数字图像处理(Digtal Image Processing)。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以处理内容[1]。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容: 几何处理(Geometrical Processing)、算术处理(Arithmetic Processing)、图像增强(Image Enhancement)、图像复原(Image Restoration)、图像重建(Image Reconstruction)、图像编码(Image Encoding)、图像识别(Image Recognition)、图像理解(Image Understanding)。
2.3图像处理研究方面 数字图像处理研究的内容有以下几个方面: (1)图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 (2)图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。 (3)图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。