三相变压器的接线及波形分析.
- 格式:ppt
- 大小:486.50 KB
- 文档页数:49
第5章三相变压器的联结组与不对称短路原理简述1.极性测定的依据高、低压线圈之间的相电压相位决定于两个线圈的标号及其绕向,如图5-1示。
若高、低压线圈的标号和绕向都相同(或都相反,图略),则高、低压侧的相电压同相,这时我们说两点同极性。
若只有标号(或绕向,图略)反了,如图5-2,则相电压的相位相反,这时我们说两点不同极性。
2.三相绕组的联接方法把三个单相绕组联成三相绕组将有好几种联法,其中最基本的形式有星形(或形)接法和三角形(D或形)接法两种,此外,还有曲折接法(或接法)。
它们的绕组联接图和电压相量图如图5-3所示。
形联接方法的副方每相绕组有一中间抽头,将绕组分成为相等的两半,和、和、和分别套在不同的铁芯柱上,把一个铁芯柱上的上半个绕组与另一铁芯柱上的下半个绕组反向串联,组成新的一相绕组后,再接成星形联接,其相量图每相相量连接线成曲折形,顾名思意称为曲折形(或形)接法。
从电压相量图可见,相电压只有原来绕组的,就是说在相同的电压下绕组匝数增加到倍,增加了用铜量和损耗。
但形联接的变压器能防止冲击波影响,运行在多雷雨地区可减少变压器雷击损耗。
还常使用于某些整流变压器中以防止中性点位移,使三相电压接近平衡来提高整流效率。
因此形接法近年来渐渐增多,国家标准GB1094-85中也被列为常用联结组之一。
图5-3 三相绕组联接的基本形式(1)形联接法(2)△形联接法(3)形联接法图 5-4 △联接和联接的左行接法在图5-4中画出了三角形接法和曲折形接法的另一种联接次序。
我们把图5-3称右行接法,图5-4就称左行接法。
由于联接次序不同,它们的线电压相位关系就不相同,这一点在下面的联结组别中应注意区别。
一般情况下三角形联接和曲折形联接只采用右行联接,以后不加说明的三角形联接和曲折形联接都是指右行联接。
3.三相变压器的联结组三相变压器高、低压侧线电压之间的相位关系,不但与标号和绕向有关,还与三相线圈的联接方式有关。
根据电机学理论,习惯上用“时钟法”来表示高、低压两侧间线电压的相位关系。
超详细的三相电原理和接法图解单相电用来为民用和办公电器供电,而三相交流(a.c.)系统则广泛用于配电及直接为功率更高的设备提供电力。
本文介绍了三相系统的基本原理以及可能的不同测量连接之间的差异。
三相系统三相电由频率相同、幅度类似的三个AC电压组成。
每个ac电压“相位”与另一个ac电压相隔120°(图1)。
这可以通过图形方式,使用波形和矢量图(图2)进行表示。
图1. 三相电压波形图2. 三相电压矢量使用三相系统的原因有两个:1. 可以使用三个矢量间隔的电压,在马达中产生旋转磁场。
从而可以在不需要额外绕组的情况下启动马达。
2. 三相系统可以连接到负载上,要求的铜缆连接数量(传输损耗)是其它方式的一半。
我们看看三个单相系统,每个系统为一个负载提供100W的功率(图3)。
总负载是3 x 100W = 300W.为提供电力,1安培电流流经6根线,因此有6个单位的损耗。
也可以把三个电源连接到一个公共回程上,如图4所示。
当每个相位中的负载电流相同时,负载被认为是均衡的。
在负载均衡、且三个电流相位彼此位移120°的情况下,任何时点上的电流之和都为零,回程线路中没有电流。
图3. 三个单相电源 - 6个单位损耗图4. 三相电源,均衡负载 - 3个单位损耗在三相120°系统中,要求3根线传送功率,而在其它方式下则要求6根线。
要求的铜缆数量减少了一半,导线传输损耗也将减半。
Y形接法或星形接法拥有公共连接的三相系统通常如图5的示意图所示,称为“Y形或星形”接法。
公共点称为中性点。
为安全起见,这个点通常在电源上接地。
在实践中,负载并不是完美均衡的,要使用第四条“中性”线传送得到的电流。
如果本地法规和标准允许,中性导体可能会比三条主导体小得多。
图5. Y形接法或星形接法 - 三相四线三角形接法上面讨论的三个单相电源也可以串联起来。
在任何时点上,三个120°相移电压之和都是零。
如果和为零,那么两个端点都处在相同的电位,可以联接在一起。
科 技 天 地39INTELLIGENCE························三相变压器的磁路对电势波形的影响新乡职业技术学院 马丽娟摘 要:本文介绍了三相变压器磁路系统对电势波形的影响及三相压器的相电动势波形与绕组接法和磁路系统的关系。
关键词:三相变压器 磁路系统 电势波形 影响一、变压器的基本结构变压器的铁心既是磁路,又是套装绕组的骨架。
铁心由心柱和铁轭两部分组成,心柱用来套装绕组,铁轭将铁心柱连接起来,形成闭合磁路。
为减少铁心损耗,铁心用厚0.35mm 的硅钢片叠成,片上涂以绝缘漆。
在大型电力变压器中。
为提高磁导率和减少铁心损耗,常采用冷轧硅钢片;为减少接缝间隙和激磁电流,有时还采用由冷轧硅钢片卷成的卷片式铁心。
二、主磁通和激磁电流1、主磁通 通过铁心并与一次、二次绕组相交链的磁通叫做主磁通,用φ表示。
空载时由于-e1≈u1,而电源电压通常为正弦波,故电动势e1也可认为是正弦波,Φm 为主磁通的幅值,对于已经制成的变压器,主磁通的大小和波形主要取决于电源电压的大小和波形。
2、激磁电流 产生主磁通所需要的电流叫做激磁电流,用im 表示。
空载运行时,铁心上仅有一次绕组电流i0所形成的激磁磁动势,所以空载电流就是激磁电流,即i0=im。
激磁电流im 中包括两个分量,一个是磁化电流iμ,另一个是铁耗电流iFe。
磁化电流iμ用于激励铁心中的主磁通φ,对已制成的变压器,iμ的大小和波形取决于主磁通φ和铁心磁路的磁化曲线。
当磁路不饱和时,磁化曲线是直线,iμ与φ成正比,故当主磁通φ随时间正弦变化时,iμ亦随时间正弦变化,且iμ与φ同相而与感应电动势e1相差900相角,故磁化电流为纯无功电流。
三相变压器空载合闸励磁涌流的大小和波形1. 引言三相变压器是电力系统中常见的设备之一,用于将电能从一个电压等级传输到另一个电压等级。
在变压器启动或切换时,需要进行励磁操作,以产生磁场并建立变压器的工作状态。
励磁涌流是指在变压器合闸励磁过程中产生的瞬态电流。
本文将深入探讨三相变压器空载合闸励磁涌流的大小和波形,并解释其原因和影响。
2. 励磁涌流的定义与原理励磁涌流是指在变压器合闸过程中,由于电源电压突然施加到变压器绕组上而产生的暂态电流。
这种暂态电流是由于绕组中的自感、互感和铁芯饱和等因素引起的。
当变压器合闸时,输入侧绕组上突然施加了额定电源电压。
由于绕组中存在着自感和互感,突然施加的电压会导致绕组中产生较大的暂态电流。
铁芯饱和也会导致励磁涌流的增大。
3. 励磁涌流的大小励磁涌流的大小取决于多个因素,包括变压器的参数、电源电压和频率等。
一般来说,励磁涌流的大小与变压器的容量成正比。
在变压器空载合闸时,励磁涌流的峰值通常为额定电流的2-6倍。
具体数值取决于变压器的设计和制造质量。
4. 励磁涌流波形分析励磁涌流通常呈现出一个尖峰,其波形可以分为三个阶段:启动阶段、衰减阶段和稳定阶段。
•启动阶段:在合闸刹那间,突然施加到绕组上的电压会导致绕组中产生一个很大的暂态电流尖峰。
这个尖峰通常持续几个周期。
•衰减阶段:随着时间的推移,暂态电流逐渐减小并趋于稳定。
这个过程通常持续约20-30个周期。
•稳定阶段:励磁涌流逐渐趋于稳定状态,维持在一个较小的数值上。
这个阶段可以持续几分钟到几十分钟。
励磁涌流的波形与变压器的设计和制造有关,不同类型的变压器可能会产生不同的波形特征。
5. 励磁涌流的影响励磁涌流对变压器和电力系统都会产生一定的影响。
5.1 对变压器的影响励磁涌流会在变压器绕组中产生较大的暂态电流,这会引起电阻损耗和额外的温升。
长期以来,大幅度的励磁涌流可能导致绕组过热,从而降低变压器的寿命。
励磁涌流还可能导致铁芯饱和。
第3章 三相变压器[内容]目前,电力系统均采用三相制,所以三相变压器得到了广泛应用。
三相变压器在对称负载下运行时,其各相的电压、电流大小相等,相位互差,因此对三相变压器的分析和计算可取其中的一相来进行,即三相问题可以转化为单相问题,于是单相变压器的基本理论(基本方程式、等效电路、相量图等)完全适用于三相变压器中的任一相。
本章主要研究三相变压器的几个特殊问题:(1)三相变压器的磁路结构;(2)三相变压器的联结组别;(3)联结组别和磁路结构对相绕组感应电动势波形的影响。
°120[要求]● 掌握三相组式变压器和三相心式变压器磁路结构的特点。
● 掌握三相变压器联结组别的概念,联结组别的判定方法。
●掌握联结组别和磁路结构对相绕组感应电动势波形的影响。
3.1 三相变压器的磁路结构三相变压器按磁路结构(铁心结构)可分为组式变压器和心式变压器两类。
一、三相组式变压器的磁路特点三相组式变压器由三台相同的单相变压器组合而成,如图3.1.1所示。
其磁路特点是: (1)各相磁路彼此独立,互不关联,即各相主磁通都有自己独立的磁路; (2)各相磁路几何尺寸完全相同,即各相磁路的磁阻相等;(3)当一次侧外加三相对称电压时,三相主磁通、、是对称的,三相空载电流也是对称的。
U Φ&V Φ&WΦ&二、三相心式变压器的磁路特点三相心式变压器的铁心结构是从三相组式变压器铁心演变而来的。
将三台单相变压器铁心合并成图3.1.2(a)的样子;当一次侧外加三相对称电压时,三相主磁通、、是对称的,中间铁心柱内磁通++=0,因此可以去掉中间铁心柱,变成图3.1.2(b);为使结构简单、制造方便,把三相铁心布置在同一平面内,便得到图3.1.2(c),这就是常用的三相心式变压器铁心。
U Φ&V Φ&W Φ&U Φ&V Φ&WΦ&三相心式变压器的磁路特点是:(1)各相磁路不独立,互相关联。
第三章 三相变压器§3-1.三相变压器的磁路1.三相变压器组三相变压器的磁路系统可分为各相磁路彼此独立和各相磁路彼此相关的两类。
图3-1 三相组成磁路系统三相是由变压器由三个单相磁通沿各自的磁路闭合,彼此毫无关系,所以三相变压器组的磁路系统属于彼此无关的一种。
当原边加上三相对称电压时, 变压器组成的,由于各相的三相主磁通•φA,•φB,•φ特点:(1)三相磁路彼此无关相互独立C 也是对称的,因此三相空载电流也是对称的。
•••(2)三相磁通对称φA ,φB ,φ大小相等,互差120º (3)三相激磁电流对称2.三相相磁通对称其总和A+ B C=0,即在任何瞬间,中间芯柱磁通为零,所以在结构上可省去中间的芯柱。
外两相的磁路闭合,故属于各相磁路彼此相关的一种。
(2)三相磁通代数和为零 C 心式变压器三个单相铁芯由于三•φ•φ+•φ三相磁能的流通均以其它两相为回路,为了简便,把三个芯板排列在芯柱同一平面上。
在这种磁路中,因每相主磁通都要借另而且三相磁路长度不相等,B 相最短,A、C 磁路较长的i ,i 相等,i 较小,但与A 0oC oB 外接电压相比,如电压对称,仍然认为三相电流对称。
特点:(1)三相磁路彼此相关 (3)三相的空载电流不对称由于与负载电流相比,励磁电流很小,如负载对称,仍可认为三相电流对称。
三相芯式变压器的磁路系统§3-2.三相变压器的电路系统——联接组1.单相变压器(1)同名端(同极性端)个绕组而言无极性,但当两个绕组同时链着一个磁通极性。
“●”表示。
首末a )图:当图3-2绕组的标志方式由于感应电动势是交变的,对于一时,感应电动势存在着相对例如,在某一瞬间,高压绕组正电位,则低压绕组必定有一个端点也为正电位,把这两个极性相同的端点称为同极性端,用图3-3 端的两种标法(dtd Φ增加时,根据楞次定律,两个绕组感应电势瞬时实际方向应从2指向1,4椤次指向3。
实验三三相变压器的极性和组别测定
一、实验原理:
三相变压器的极性和组别是变压器接线的重要参数,正确的极性和组别对于正常运行至关重要。
极性是指在变压器中不同绕组的极性方向,它直接影响变压器的电气性能。
组别是指在三相变压器中三相绕组的接法方式,它影响变压器的输出电压和相序的变化。
在三相变压器的标牌上通常会标明极性和组别信息。
极性通常用“Y”、“△”或“Y/△”标识,其中“Y”表示星形接法,“△”表示三角形接法,“Y/△”表示一侧为星形接法,另一侧为三角形接法。
组别通常用数字表示,如“0”、“1”、“2”、“3”等,分别代表不同的接法方式。
本实验中将通过实验方法测定三相变压器的极性和组别信息。
二、实验仪器:
三相变压器、电源、电压表、电流表、互感器、继电器、示波器等。
三、实验步骤:
1、三相变压器的接线:
接入三相电源和电流表,注意电源相序和电流表的接线方向。
电源相序:表示电源的三相电压波形顺序;
电流表接线方向:两端正负极性应该与电流表箭头方向一致。
2、测量三相变压器高压、低压侧相间电压和相序,观察三相
电压波形。
3、利用互感器和继电器,分别依次将高压侧A相、B相、C
相电压信号输入示波器,通过观察示波器上的波形和振幅变化,判断高压侧的极性和组别。
4、根据高压侧的判断结果,判断低压侧的极性和组别。
具体
方法同上。
5、根据实验结果,填写实验报告。
四、注意事项:
1、测量前请仔细检查仪器的接线,确保电源相序正确;
2、实验过程中应注意个人安全;
3、实验完成后应及时关闭电源并清理实验现场。
三相变压器相电动势的波形一、引言在电力系统中,三相变压器是一种常见的设备,用于对三相电压进行变换和调节。
而在三相电压的变换过程中,相电动势的波形对于电力系统的稳定运行和电能的传输具有重要意义。
本文将深入探讨yd接线的三相变压器相电动势的波形,以便更好地理解这一重要主题。
二、相电动势的含义和作用相电动势是指在三相变压器中,由于磁链的变化而在绕组中产生的感应电动势。
它代表着绕组中的电压变化情况,对于维持电路中的电流平稳运行和保证电能传输具有重要作用。
相电动势的波形特点直接影响着绕组电压的变化规律和电能的传输效率。
三、yd接线的三相变压器yd接线是三相变压器的常见接线方式之一,它具有较好的性能和稳定性,在电力系统中得到广泛应用。
在yd接线中,相电动势的波形受到多种因素的影响,如磁场变化率、绕组匝数等。
通过对yd接线的三相变压器进行全面评估,我们可以更好地理解相电动势波形的特点和规律。
四、相电动势的波形特点在yd接线的三相变压器中,相电动势的波形通常呈现出一定的规律性。
首先是波形的周期性变化,由于三相电压之间存在一定的相位差,导致相电动势的波形呈现出明显的周期性变化。
其次是波形的幅值和频率变化,随着绕组匝数和磁场变化率的不同,相电动势的波形幅值和频率也会发生相应的变化。
最后是波形的相位差,三相变压器中的相位差对于相电动势的波形具有明显的影响,不同的相位差会导致不同的波形特点。
五、相电动势波形与电能传输的关系相电动势的波形特点直接影响着电能在三相变压器中的传输和转换。
通过对相电动势波形的分析,可以更好地了解电能的传输效率和稳定性。
合理控制相电动势的波形特点,可以提高电能传输的效率和稳定性,保证电力系统的正常运行和电能的高效利用。
六、个人观点和总结相电动势的波形是三相变压器运行中的重要参数,其波形特点直接影响着电力系统的稳定运行和电能的传输效率。
通过对yd接线的三相变压器相电动势的波形进行全面评估和分析,我们可以更好地理解这一重要主题,并且能够更有效地设计和控制电力系统,提高电能的利用率和传输效率。
三相变压器三相变压器原理三相变压器是 3个相同的容量单相变压器的组合.它有三个铁芯柱,每个铁芯柱都绕着同一相的 2个线圈,一个是高压线圈,另一个是低压线圈.三相变压器是电力工业常用的变压器.变压器接法与联结组用于国内变压器的高压绕组一般联成 Y 接法,中压绕组与低压绕组的接法要视系统情况而决定。
所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系。
如低压系配电系统,则可根据标准规定决定。
1.国内的 500、330、220与 110kV 的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器, 高压与中压绕组都要用星形接法。
当三相三铁心柱铁心结构时, 低压绕组也可采用星形接法或角形接法, 它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后 30°电气角。
500/220/LVkV─YN,yn0,yn0或 YN,yn0,d11220/110/LVkV─YN,yn0,yn0或 YN,yn0,d11330/220/LVkV─YN,yn0,yn0或 YN,yn0,d11330/110/LVkV─YN,yn0,yn0或 YN,yn0,d112.国内 60与 35kV 的输电系统电压有二种不同相位角。
如 220/60kV变压器采用 YNd11接法, 与 220/69/10kV变压器用 YN,yn0,d11接法,这二个 60kV 输电系统相差 30°电气角。
当 220/110/35kV变压器采用 YN,yn0,d11接法,110/35/10kV变压器采用 YN,yn0,d11接法,以上两个 35kV 输电系统电压相量也差 30°电气角。
所以,决定 60与 35kV 级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求。
根据电压相量的相对关系决定 60与 35kV 级绕组的接法。
否则,即使容量对,电压比也对,变压器也无法使用,接法不对,变压器无法与输电系统并网。