正比计数器简介
- 格式:pptx
- 大小:161.87 KB
- 文档页数:9
一、气体电离探测器(气体、固体、)气体电离探测器是利用核辐射在气体中的电离效应制成的探测器。
其基本结构是一个内部充有气体、两极施加有一定电压的充气空腔(或充气小室)。
它是电离室、正比计数器、盖革—弥勒(G—M)计数器、和电晕放电型探测器的统称。
图13是电离室、计数管照片。
1. 基本原理当入射带电粒子穿过探测气体时,与气体原子的轨道电子发生库仑作用,使气体分子电离或激发。
电离时,核外电子所获得的一部分能量足以克服原子的束缚,在入射带电粒子通过的路径上产生大量的离子对—电子和正离子。
入射带电粒子在气体中产生一对离子所需要的平均能量叫做平均电离功。
电离产生的电子和正离子从入射带电粒子获得动能它们在气体中运动和极施加有一定电压,使得探测器的气体空腔内形成电场的分布,电子和正离子在电场作用下分别向正负电极方向运动。
探测器收集的离子对数与外加电压有关。
2.探测器收集的离子对数与外加电场的关系入射带电粒子穿过探测气体时在探测器的空间产生N个离子对。
在外加电场作用下这些电子和正离子分别向正负电极漂移而被电极所收集。
电极收集到的离子对数与外加电场的关系如图1-1。
当探测器两极外加电压很小时,这些电子和正离子向正负电极漂移的速度很小,很容易出现电子与正离子碰撞复合成为中性分子。
因而电极收集到的离子数。
这就是图1-1中的第Ⅰ个区域—复合区。
没有探测器在这个外加电压区N<N域中工作。
随外加电压的增加,电极收集到的离子对数N增加。
当到某一电压Va时,离子漂移速度足够快,复合损失很小,这时的电离几乎可全部被收集。
若再增加外加电压,收集的离子数不再增加。
这段区域Ⅱ称为饱和区。
饱和区内电极收集到的离子数N只与入射粒子的种类和能量有关。
电离室型探测器工作在这个区域故又叫做电离室区。
电离室型探测器可制成脉冲计数测量系统测量核素的活度。
也可制成α谱仪。
但最大量的是用作剂量学测量的探测器。
外加电压继续增加,使电子获得很大能量。
电子也可以使气体分子电离产生次级离子对。
流气式正比计数器原理那天,我正跟一群学生聊着数学题,突然一个学生问我:“刘老师,您能给我们讲讲流气式正比计数器的原理吗?”我一听,心想:“哎呀,这个话题有趣!”我就开始讲:“咱们先想象一下,有一根管子,一端通着气体,另一端通着水。
这根管子就相当于我们的计数器。
气体从一端进入,推动水从另一端流出。
流出的水量和进入的气体量是成正比的,这就是流气式正比计数器的原理。
”一个学生插嘴问:“刘老师,那怎么确定流出的水量和进入的气体量是成正比的?”我笑着说:“这就得靠实验了。
我们可以在管子的两端各装一个小桶,分别收集流出和进入的液体。
通过对比两个小桶里的液体量,我们就能得出它们的比例关系。
”这时,一个学生好奇地问:“刘老师,那如果气体进入的速率变化了,水流量也会跟着变化吗?”我笑了笑,说:“当然了,这正是这个计数器的特点。
气体进入的速率越高,水流量也就越大。
这样,我们就可以通过调整气体进入的速率来控制水流量,实现计数。
”又一个学生好奇地问:“刘老师,那这个计数器有什么实际应用呢?”我笑着说:“其实,这个计数器在很多领域都有应用。
比如,在气象观测中,我们可以用这个计数器来测量气体的流量;在工业生产中,我们可以用这个计数器来监测生产线的运行情况。
”正说着,一个学生突然问:“刘老师,那如果气体进入的速率突然变慢了,我们怎么知道水流量会变小呢?”我忍不住笑了起来,说:“哎呀,这个问题问得好!其实,这就是这个计数器最神奇的地方。
我们只需要观察水流量变化的速度,就能大致判断气体进入速率的变化。
就像我们在生活中,通过观察一个人的行为变化,就能猜出他的心情一样。
”看着学生们听得津津有味,我接着说:“其实,这个流气式正比计数器的原理,在生活中也有很多应用。
比如,我们测量体温时,温度计的原理就类似于这个计数器。
当我们的体温升高时,体温计里的水银柱就会上升,这就是温度和体积成正比的道理。
”不知不觉,下课铃响了。
学生们依依不舍地离开教室,我还意犹未尽地回味着这个有趣的数学题。
核化学与放射化学复习资料集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]名词解释部分(4*5’)载体:是以适当的数量载带某种微量物质共同参与某化学或物理过程的另一种物质,载体与被载带物具有相同的化学行为,最终能与放射性物质一起被分离出来;同位素载体:稳定同位素的可溶性盐类作载体,分离89Sr、90Sr用SrCl2;137Cs用CsCl,131I用127I,3H用1H等;非同位素载体:没有稳定同位素的放射性核素,应用化学性质相似的稳定元素的盐类作载体,分离226Ra加入Ba,147Pm-Nd(NO3)3;99Tc-NH4ReO4。
反载体:指在分离过程中,为了减少一种放射性核素对其他放射性核素的污染而加入的该种放射性核素的同位素载体。
同位素反载体:如,在分离90Sr时,容易受到144Ce的污染,去污因数仅为13,但若加入一定量的稳定同位素Ce( Ⅲ)作为反载体后,去污因数可提高到9000用MnO2从95Zr-95Nb体系中吸附95Nb时,加入稳定的Zr;非同位素反载体:如,在分析239Pu的裂变产物时,239Np对分离出的裂变产物会产生污染,加入与Np价态相同的Ce(Ⅳ)盐作为反载体,可明显降低Np的污染核素:具有相同的质子数Z、相同的中子数N、处于相同的能量状态且寿命可测的一类原子。
同位素:质子数相同、中子数不同的两个或多个核素。
同质异能素:处于不同的能量状态且其寿命可以用仪器测量的同一种原子核。
同质异位素:质量数相同、质子数不同的核素。
同中子异荷素:中子数相同、质子数不同的核素。
等超额中子素:核中超额中子数(N-Z)相同的核素。
镜像素:若两个核素的Z、N和A之间存在关系是Z1=N2, Z2= N1,A1=A2。
电离:具有一定动能的带电粒子与原子的轨道电子发生库仑作用时,把本身的部分能量传递给轨道电子如果轨道电子获得的动能足以克服原子核的束缚,逃出原子壳层而成为自由电子,这样过程叫电离。
气体正比计数
气体正比计数是一种测量空气中某种气体浓度的方法。
该方法是基于气体分子的稀疏程度而设计的。
下面是关于气体正比计数的详细介绍。
一、气体正比计数的原理
气体正比计数是一种通过对空气中某种气体分子进行计数来测量气体浓度的方法。
该方法的原理基于统计学中的泊松分布。
具体来说,泊松分布表明,对于一个具有平均分布的随机事件,一次试验中发生k 次该事件的概率为:
P(k)= (λ^k/k!)*e^(-λ)
其中,λ代表平均分布发生的次数。
在气体正比计数中,发生的事件就是某个气体分子进入计数器的次数,λ则代表单位时间内进入计数器的平均分子数。
二、气体正比计数的测量过程
气体正比计数的测量过程主要分为以下几个步骤:
1.采集气体样本:使用特定的气体采集器采集想要测量的气体样本。
2.运行计数器:将气体样本注入计数器中,计数器会自动记录进入其中的气体分子数。
3.校准计数器:在进行实验之前,需要先对计数器进行校准,以确保其读数准确无误。
4.读取计数结果:记录计数器显示的进入计数器的气体分子数,并结合校准数据计算出气体浓度值。
三、气体正比计数的应用领域
气体正比计数广泛应用于工业、环保、医学、科研等领域。
例如,在
空气质量监测中,气体正比计数可用于测量空气中有毒有害气体浓度,从而及早发现环境污染问题;在医学领域,气体正比计数可用于检测
手术室中的乙醚、麻醉气体等化学药品的浓度,保障手术患者和工作
人员的生命安全。
综上所述,气体正比计数是一种简单、高效的气体浓度测量方法,具
有广泛的应用前景和实用价值。
组织等效正比计数器测量系统的建立张伟华;王志强;于伟翔【摘要】对组织等效正比计数器(TEPC)的方法原理和性能进行了初步研究,在此基础上,建立了1套TEPC测量系统,用于测量中子、γ混合辐射场的吸收剂量及剂量当量.中子辐射场通常伴随有γ辐射.根据对混合辐射场测量得到的微剂量谱,将γ辐射的剂量贡献部分从中子辐射中区分出来.依据具体实验环境,使用蒙特卡罗方法进行了模拟计算.计算结果与实验数据取得较好的一致性,从而验证所建立的TEPC测量中子辐射场吸收剂量的方法是可行的.【期刊名称】《原子能科学技术》【年(卷),期】2010(044)011【总页数】5页(P1380-1384)【关键词】组织等效正比计数器;微剂量谱;剂量当量;蒙特卡罗方法【作者】张伟华;王志强;于伟翔【作者单位】中国原子能科学研究院,北京,102413;中国原子能科学研究院,北京,102413;中国原子能科学研究院,北京,102413【正文语种】中文【中图分类】O571.1中子剂量不但与入射的中子数目和能量有关,还与相互作用的介质成分相关。
中子辐射场总是伴随有γ射线,而中子与γ射线的剂量权重因子差别很大,因此,测量中子剂量时,需将中子与γ射线的贡献区分开,这给中子剂量的测量增加了一定困难。
组织等效正比计数器(TEPC)可直接模拟测量μm量级的细胞组织的吸收剂量。
TEPC所测得的微剂量谱可根据各种粒子线能的不同,给出γ、中子及其他粒子的剂量贡献。
因此,在TEPC测量系统中引入飞行时间法,即可区分γ和中子的剂量。
本工作基于TEPC的上述特点,引入美国远西公司的TEPC,开展TEPC性能的初步研究,建立TEPC测量系统,并进行中子、γ混合辐射场的吸收剂量及剂量当量的测量工作的初步研究。
1 实验原理依据法诺定理[1-2],在初级不带电粒子注量均匀和极化效应可忽略的条件下,吸收剂量与介质的密度无关。
如果1个气体腔室及其室壁由同样的原子组成的材料构成,室壁的厚度大于次级电子的最大射程,在均匀的不带电粒子辐射场照射下,腔室气体中则处处存在着带电粒子平衡,气体中的吸收剂量与室壁的相同。
中子氦3 正比计数器前放电路《中子探测技术及其在正比计数器中的应用》1.前言在现代物理科研和工程技术中,中子探测技术起着不可或缺的作用。
中子作为一种无电荷的粒子,相比于带电粒子,其探测和测量技术具有独特的挑战性。
本文将深入探讨中子探测技术中的正比计数器,并重点介绍其前放电路设计和氦3的应用。
2.中子的性质中子是原子核的组成部分,其质量略大于质子,不带电荷,也不受普通电磁场影响,因此对其进行探测和测量相对困难。
在中子辐照方面,中子与物质的相互作用主要通过核反应和散射来实现,因此需要借助探测器进行测量。
3.正比计数器正比计数器是一种常用的中子探测器,其工作原理是利用气体放大效应来探测中子。
当中子进入正比计数器并与气体发生核反应时,产生的次级粒子(例如电子、正电子等)在电场作用下被加速,并在气体中产生大量电离电子。
这些电离电子在电场的作用下被收集到阳极板上,产生电荷脉冲信号,从而实现对中子的计数和测量。
4.前放电路设计前放电路在正比计数器中起着至关重要的作用,其设计不仅影响了探测器的灵敏度和分辨能力,还直接影响了信号的放大和处理效果。
常见的前放电路设计包括电荷前置放大器和脉冲形成器两部分,通过前置放大器将电荷信号放大并传送至后续的脉冲形成器进行信号整形和处理,最终输出符合要求的脉冲信号。
5.氦3的应用氦3是正比计数器中常用的工作气体,其在中子探测和测量中具有良好的性能和稳定性。
氦3核截面小、中子吸收截面小,能够有效地提高正比计数器的灵敏度和分辨能力。
氦3还具有较高的电离能和较低的电容率,有利于产生清晰的电离电子脉冲信号并降低放电时间。
6.结论通过本文对中子探测技术和正比计数器的深入探讨,了解了正比计数器的工作原理和前放电路设计的重要性,以及氦3作为工作气体的优势和应用。
中子探测技术的发展对于核能、材料科学和医学影像等领域都具有重要意义,希望本文的介绍能够对相关领域的科研工作者和工程技术人员有所帮助。
7.个人观点作为中子探测技术的一部分,正比计数器在科学研究和工程应用中扮演着至关重要的角色。
核探测器一、核探测器的分类1、按探测器的辐射物理过程分类1)电离型探测器如:电离室、G-M管、正比计数器、半导体、核径迹2)发光型探测器如:闪烁体、热释光、火花室2、按探测器材料和工作原理分类1)气体探测器电离室、正比计数器、G-M计数器、多丝室正比室、漂移室2)闪烁体探测器NaI(Tl)、CsI(Tl)、ZnS(Ag)、玻璃、液体、塑料体、有机晶体3)半导体探测器结型、势垒型、HPGe、Si-PIN、PN结金硅面垒型半导体探测器4)其它探测器:核径迹、热释光二、各核探测器的工作原理1、气体探测器气体电离探测器是以气体作为带电粒子电离或激发的介质,在气体电离空间置有两个电极,外加电场并保持一定的电位差,当带电粒子穿过气体时与气体分子轨道上的电子发生碰撞,使气体分子产生电离而形成离子对,在电场中电子向正极移动,正离子向负极移动,最后到达二极而被收集起来,使电子线路上引起瞬时电压变化(电压脉冲)而由后续的电子仪器记录。
气体中电子与离子的运动规律决定探测器的基本特性。
电离室分类1)脉冲电离室,记录单个辐射粒子,主要用于测量重带电粒子的能量和强度。
2)电流电离室和累计电离室,分别记录大量辐射粒子平均效应和累计效应,主要用于测量X,β,γ和中子的照射量率或通量、剂量或剂量率,它是剂量监测和反应堆控制的主要传感元件。
正比计数器的工作原理:气体探测器工作于正比区,在离子收集的过程中将出现气体放大现象,即被加速的原电离电子在电离碰撞中逐次倍增(雪崩现象)。
于是,在收集电极上感生的脉冲幅度V∞将是原电离感生的脉冲幅度的M倍,处于这种工作状态下的气体探测器就是正比计数器。
采用不同的结构,充不同的气体,可以设计出测量不同射线:α、β、γ、X、n的正比计数管。
G-M计数器的工作原理:1)射线进入计数管内,引起管内惰性气体电离,形成正负离子对。
在电场作用下,正离子向负极,电子向正极移动。
射线引起的电离称为原电离。
2)当电子靠近阳极电场强度越大,受到作用也大,运动速率加快,又碰撞到阳极附近的惰性气体分子引起次级电离。
第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。
同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。
X射线仪的基本组成1895年德国物理学家伦琴在研究阴极射线管中气体放电现象时,发现有一种荧光无论用木板,纸板,还是衣服都不能遮挡住,伦琴帮他定位x射线。
现在X射线仪用于航天,石油建设,天然气管道,锅炉,压力容器等无损探伤中不可缺少的设备。
X射线仪由x射线发射器,测角仪,x射线探测器,技术测量电路几部分构成。
一. 测角仪测角仪是X射线衍射仪的核心组成部分。
样品台H位于测角仪中心,样品台的中心轴O与测角仪的中心轴O垂直。
平板状试样C放置于样品台上,要与中心重合,误差≤0.1mm,样品台既可以绕测角仪中心轴转动,又可以绕自身中心轴转动。
如图1.1 X射线源是由X射线管的靶T上的线状焦点S发出的,S也垂直于纸面,位于以O为中心的圆周上,与O轴平行。
狭缝B、光阑F和计数管G固定于测角仪台E上,台面可以绕O轴转动(即与样品台的轴心重合),角位置可以从刻度盘K上读取。
测量动作分为两种。
一种是θ—2θ连动,X射线管不动,样品台转过θ角,技术管转过2θ角。
另外一种是θ—θ连动,样品台不动,X 射线转过θ角,技术管转过θ角。
图 1.1 测角仪图1.2 聚焦圆如图1.2 X射线管的焦点S、样品表面O、计数器接收光阑F位于聚焦圆。
聚集条件是:试样应当是弯曲的,试样表面应永远保持与聚焦圆有相同的曲率。
按聚焦条件的要求,试样表面应永远保持与聚焦圆有相同的曲率,即聚焦圆的圆心永远位于试样表面的法线上。
在图中满足布拉格方程的(hkl)反射是向四面八方的。
平行于试样表面的(hkl)晶面满足入射角=反射角=θ的条件。
图 1.3 测角仪的光学布置如图1.3 测角仪要求与X射线管的线状焦点联接使用。
线焦点的长边方向与测角仪的中心轴平行。
X射线管的线焦点S的尺寸一般为1.5mm×10mm,但靶是倾斜放置的,靶面与接受方向夹角为30º,这样在接受方向上的有效尺寸变为0.08mm×10mm。
采用线焦点的好处是可使较多的入射线能量照射至试样。
新型涂硼正比计数器研制及其实验测试和模拟计算正比计数器是一种用于测量中子、伽马射线等辐射粒子的仪器。
在核物理、粒子物理、天文学等领域中,正比计数器被广泛应用。
传统的正比计数器采用气体放大器,但由于气体放大器存在灵敏度低、易受湿度影响、易受放射性污染等缺点,因此需要开发新型的正比计数器。
本文介绍一种新型涂硼正比计数器的研制及其实验测试和模拟计算。
该计数器采用涂硼层作为探测器,具有灵敏度高、抗干扰性强、安全可靠等优点。
本文首先介绍了涂硼层的制备方法和性质,然后详细介绍了涂硼正比计数器的结构和工作原理。
接着,本文对涂硼正比计数器进行了实验测试,验证了其性能优越性。
最后,本文对涂硼正比计数器进行了模拟计算,进一步证明了其在中子测量中的应用前景。
涂硼层的制备方法和性质涂硼层是一种由硼粉和聚合物混合物制成的薄膜,具有极高的中子吸收截面和良好的机械性能。
制备涂硼层的方法有很多种,如溶胶凝胶法、化学气相沉积法、热喷涂法等。
其中,溶胶凝胶法是一种简单、成本低、操作方便的方法,被广泛应用于制备涂硼层。
溶胶凝胶法的制备过程如下:首先将硼酸钠溶解在水中,然后加入适量的硝酸铵和聚乙烯醇,搅拌均匀形成溶胶。
接着将溶胶倒入模具中,经过干燥和热处理,形成硼酸钠-硝酸铵-聚乙烯醇复合物。
最后将复合物进行研磨和筛分,得到细粉末,即为涂硼层的原料。
涂硼层的性质主要取决于硼粉的质量和含量。
硼粉的质量越高,涂硼层的中子吸收截面就越大,但硼粉的含量也不能太高,否则会影响涂硼层的机械性能。
因此,制备涂硼层时需要控制硼粉的质量和含量,以达到最佳的性能。
涂硼正比计数器的结构和工作原理涂硼正比计数器由涂硼层、阳极、阴极和高压电源组成。
涂硼层作为探测器,阳极和阴极分别位于涂硼层两侧,高压电源提供工作电压。
当中子进入涂硼层时,会与硼原子发生反应,产生α粒子和锂离子。
α粒子和锂离子在涂硼层内逐渐扩散,最终被阳极和阴极吸收,产生电荷信号。
通过测量电荷信号的大小和时间,可以确定中子的能量和入射位置。
正比计数器管正比计数器管,也叫做分频器,是一种常见的计数器件。
它是由若干个分级组成的,每个分级都是一个可逆电路,在被输入一个由外部信号源产生的脉冲后,便能够将其输出成一个周期减小的脉冲。
正比计数器管的特性主要体现在其可靠性、电路结构与工作原理等方面。
下面详细介绍它的相关内容。
一、正比计数器管的基本原理正比计数器管是由一个稳定的振荡器、若干级二进制计数器以及补码转换电路等组成的。
在输入一个输入信号后,第一级计数器开始工作,逐级计数,直至最高的级数为1,此时输出的总线电压高电平,反之则为低电平。
同理,在再输入一个输入信号后,最后一级计数器开始计数,当计到定值的时候,一次性输出,然后重新复位。
它的分频器系数是由硬件电路所决定的,它可以被用在精确的频率测量、逻辑控制甚至数字信号处理方面的应用。
二、正比计数器管的特点1.电路结构简单,工作稳定:它的电路结构非常简单,通常是由少量的逻辑门和少量的计数器模块组成的。
由于它的分频器系数是以2的幂次方表示的,所以它的工作稳定性比其它计数器件更高。
2.精度高,可靠性强:正比计数器管采用的是数字化的技术,因此其计数的精度很高。
而且由于它的电路简单,所以其可靠性也比其它计数器件更高。
3.计数范围大:正比计数器管的可扩展性很好,可以同时对多个计数器进行计数。
因此,它的计数范围通常比其它计数器件更大。
4.速度快:由于其采用的是数字计数的技术,所以正比计数器管的工作速度很快。
一般来说,它的计数速度可以达到十亿次每秒。
三、正比计数器管的应用由于正比计数器管具备了上述的特征,它可以被广泛应用在各个领域。
其中包括:1.频率测量:正比计数器管可以对高速的脉冲信号进行计数,并以此进行频率测量。
2.数字信号处理:正比计数器管可以被用来处理数字信号,例如数字图像或音频信号的处理。
3.逻辑控制:在数字控制领域,正比计数器管常常被用来控制电路的逻辑与运算。
4.计数器:正比计数器管可以被用来构造长度可变的计数器。
论述正比计数器工作原理【摘要】正比计数器是一种常见的数字电路,其工作原理基于正比性质。
本文首先介绍了正比计数器的基本概念,然后详细阐述了其工作原理,包括计数器的输入输出关系和计数方式。
接着探讨了正比计数器的应用领域,例如在数字系统中的计数功能和控制任务。
本文分析了正比计数器的优缺点,如速度快、精度高、但受限于计数范围等。
展望了正比计数器未来的发展趋势,如集成度的提升和功能的扩展。
通过本文的论述,读者能够全面了解正比计数器的工作原理及其在电路设计中的重要性,以及未来的发展方向。
【关键词】正比计数器、工作原理、基本概念、应用、优缺点、发展趋势、引言、结论1. 引言1.1 引言正比计数器是一种常用的电子计数器,其工作原理基于正比计数规律。
正比计数器能够准确地记录输入信号的脉冲数目,广泛应用于各种领域,如计数、计时、测量等。
本文将从正比计数器的基本概念、工作原理、应用、优缺点和发展趋势等方面进行论述。
在现代科技发展的背景下,正比计数器的作用愈发重要。
本文将对正比计数器的基本概念进行介绍,包括其定义、结构和原理等方面。
我们将详细探讨正比计数器的工作原理,阐明其如何实现精确测量和计数功能。
本文还将探讨正比计数器在各个领域的应用情况,包括电子学、通信、仪器仪表等方面的具体案例。
通过本文的论述,读者将深入了解正比计数器的工作原理及其在各个领域中的应用情况,从而更好地认识和利用这一重要的电子计数器设备。
2. 正文2.1 正比计数器的基本概念正比计数器是一种常用的数字电子电路,用于按照输入信号的频率进行计数,并输出计数结果。
它的基本原理是通过将输入信号与一个基准频率信号进行比较,进而实现计数功能。
在正比计数器中,基准频率信号通常由一个稳定的时钟信号提供,而输入信号则是需要计数的信号。
当输入信号的频率高于基准频率信号时,正比计数器会逐次递增计数值;当输入信号的频率低于基准频率信号时,则不会进行计数。
通过这种比较和计数的方式,正比计数器能够准确地记录输入信号的频率,并输出对应的计数结果。
《核辐射探测器与核电子学》期末考试复习题一、填空题(20分,每小题2分)1.α粒子与物质相互作用的形式主要有以下两种:激发、电离2.γ射线与物质相互作用的主要形式有以下三种:康普顿散射、光电效应、形成电子对3.β射线与物质相互作用的主要形式有以下四种:激发、电离、形成离子对、形成电子-空穴对、轫致辐射4.由NaI(Tl)组成的闪烁计数器,分辨时间约为:几μs;G-M计数管的分辨时间大约为:一百μs。
5.电离室、正比计数管、G-M计数管输出的脉冲信号幅度与入射射线的能量成正比。
6.半导体探测器比气体探测器的能量分辨率高,是因为:其体积更小、其密度更大、其电离能更低、其在低温下工作使其性能稳定、气体探测器有放大作用而使其输出的脉冲幅度离散性增大7.由ZnS(Ag)组成的闪烁计数器,一般用来探测α射线的强度8.由NaI(Tl)组成的闪烁计数器,一般用来探测γ、X 射线的能量、强度、能量和强度9.电离室一般用来探测α、β、γ、X、重带电粒子射线的能量、强度、能量和强度。
10.正比计数管一般用来探测β、γ、X 射线的能量11.G-M计数管一般用来探测α、β、γ、X 射线的强度12.金硅面垒型半导体探测器一般用来探测α射线的能量、强度、能量和强度13.Si(Li)半导体探测器一般用来探测α、β、γ、X射线的能量、强度、能量和强度14.HPGe半导体探测器一般用来探测α、β、γ、X、带电粒子、重带电粒子射线的能量15.对高能γ射线的探测效率则主要取决于探测器的有效体积16.对低能γ射线的探测效率则主要取决于“窗”的吸收17.G-M计数管的输出信号幅度与工作电压无关。
18.前置放大器的类型主要分为以下三种:电压型、电流型、电荷灵敏型19.前置放大器的两个主要作用是:提高信-噪比、阻抗匹配。
20.谱仪放大器的两个主要作用是:信号放大、脉冲成形21.滤波成效电路主要作用是:抑制噪声、改造脉冲波形以满足后续测量电路的要求22.微分电路主要作用是:使输入信号的宽度变窄和隔离低频信号23.积分电路主要作用是:使输入信号的上升沿变缓和过滤高频噪声24.单道脉冲幅度分析器作用是:选择幅度在上下甄别阈之间的信号25.多道脉冲幅度分析器的道数(M)指的是:多道道脉冲幅度分析器的分辨率26.谱仪放大器的线性指标包括:积分非线性INL、微分非线性DNL二、名词解释及计算题(10分,每小题5分)1.能量分辨率: 表征γ射线谱仪对能量相近的γ射线分辨本领的参数,可用全能峰的半高宽度FWHM或相对半高宽度表示2.探测效率:定义为探测器输出信号数量(脉冲数)与入射到探测器(表面)的粒子数之比3.仪器谱:由仪器(探测器)探测(响应)入射射线而输出的脉冲幅度分布图,是一连续谱4.能谱:脉冲幅度经能量刻度后就可以得到计数率5.全能峰:入射粒子以各种作用方式(一次或多次)将全部能量消耗在探测器内而形成的仪器谱峰6.逃逸峰:若光电效应在靠近晶体表面处发生,则X射线可能逸出晶体,相应的脉冲幅度所对应的能量将比入射光子能量小,这种脉冲所形成的峰称为全能峰7. 特征峰:许多放射源本身具有特征X 射线它们在能谱上形成的峰为特征X 射线峰8. 分辨时间:第一个脉冲开始到第二个脉冲幅度恢复到Vd 的时间,该时间内探测器无法记录下进入计数管的粒子9. 死时间:入射粒子进入计数管引起放电后,形成了正离子鞘,使阳极周围的电场削弱,终止了放电。