电动助力转向系统开发平台的仿真分析
- 格式:pdf
- 大小:301.15 KB
- 文档页数:4
基于电动助力转向系统的车辆主动悬架动力学仿真研究摘要:通过建立1/4车辆模型和随机路面输入系统模型,进行了PID 车辆主动悬架控制器的设计,在Matlab/simulink环境中建立相应的系统仿真模型,并对不同路面情况下车身加速度曲线进行对比分析。
通过仿真结果分析得到,应用PID 控制策略设计的主动悬架系统,在车辆行驶平顺性和乘坐舒适性等方面都取得了很好的改善效果。
Abstract: Throughestablished the 1/4 vehiclemodel and randomroad input systemmodelto designthe PID vehicle active suspensioncontroller, established systemsimulation model in the Matlab/simulink, and compared and analyzed the body acceleration curves of the different road conditions. By analyzing the simulation results, Application of PID control strategy design of active suspension system, can made very good improvement effect in vehicle ride comfort and ride comfort and so on.电动助力转向(Electric power steering, EPS> 和主动悬架 (Activesuspension system, ASS>是车辆的重要组成部分,直接影响到车辆行驶平顺性和操纵稳定,本文重点研究的是主动悬架系统,为电动助力转向系统研究提供理论依据和实验数据。
汽车电动助力转向系统控制策略及仿真研究汽车电动助力转向系统控制策略及仿真研究摘要:随着汽车电动助力转向系统的应用越来越广泛,对其控制策略的研究也变得越来越重要。
本文基于对汽车电动助力转向系统的分析,提出了一种基于滑模控制的控制策略,并进行了仿真研究。
通过与传统的PID控制策略进行对比,结果表明本文提出的滑模控制策略具有更好的控制性能和鲁棒性。
1. 引言汽车电动助力转向系统可以通过电动助力提供额外的转向力,使得驾驶更加轻松灵活。
为了在不同驾驶条件下实现良好的转向性能,需要采用合适的控制策略来调节电动助力转向系统。
2. 汽车电动助力转向系统建模2.1 汽车动力学模型在建模之前,首先要了解汽车的动力学模型,包括车辆质量、惯性矩、悬挂刚度等。
本文假设汽车为四轮驱动、四轮转向的车辆,采用简化的二自由度车辆模型。
2.2 电动助力转向系统模型电动助力转向系统包括电动助力转向机构、电机控制器和传感器等。
本文建立了电动助力转向系统的数学模型,并考虑了其非线性特性。
3. 控制策略设计基于以上的汽车电动助力转向系统模型,本文提出了一种基于滑模控制的控制策略。
滑模控制是一种常用的非线性控制方法,具有较好的鲁棒性和快速响应特性。
本文设计了滑模控制器,并通过仿真验证了其控制性能。
4. 仿真实验与结果分析通过Matlab/Simulink软件进行仿真实验,并与传统的PID控制策略进行对比。
结果表明,基于滑模控制的电动助力转向系统具有更好的响应速度和稳定性。
在不同的驾驶工况下,滑模控制策略能够有效改善转向性能。
5. 结论本文通过对汽车电动助力转向系统的控制策略进行研究和仿真,提出了一种基于滑模控制的策略,并与PID控制策略进行对比。
结果表明,滑模控制策略能够有效改善转向性能,具有较好的控制性能和鲁棒性。
未来,还可以进一步研究优化该控制策略,提高汽车电动助力转向系统的性能通过对汽车电动助力转向系统的研究和仿真实验,本文提出了一种基于滑模控制的控制策略。
基于Adams与Matlab的汽车电动助力转向系统的联合仿真一、本文概述随着汽车工业的快速发展和环保理念的深入人心,电动汽车在全球范围内得到了广泛的关注和研究。
电动助力转向系统(EPS)作为电动汽车的重要组成部分,其性能直接影响到车辆的操控性和安全性。
对电动助力转向系统进行深入研究,优化其设计,提高其性能,对于推动电动汽车的发展具有重要意义。
本文旨在通过Adams与Matlab的联合仿真,对汽车电动助力转向系统进行深入研究。
介绍了电动助力转向系统的基本原理和结构,分析了其在实际应用中的挑战和难点。
详细阐述了Adams和Matlab在电动助力转向系统仿真中的应用,包括模型的建立、仿真参数的设置、仿真结果的获取和分析等。
通过Adams进行机械系统的运动学和动力学仿真,结合Matlab进行控制系统设计和优化,实现了对电动助力转向系统的全面仿真分析。
本文的研究方法结合了仿真模拟和理论分析,旨在通过联合仿真,对电动助力转向系统的性能进行深入挖掘和优化。
通过对比不同参数和设计方案下的仿真结果,本文为电动助力转向系统的设计和优化提供了有价值的参考。
本文的研究不仅有助于加深对电动助力转向系统的理解,也为电动汽车的发展提供了有益的探索和实践。
通过Adams与Matlab的联合仿真,我们可以更加准确地预测和优化电动助力转向系统的性能,为电动汽车的安全性和操控性提供有力保障。
二、汽车电动助力转向系统概述汽车电动助力转向系统(Electric Power Steering,简称EPS)是一种通过电动机提供辅助转向力矩的先进转向系统。
该系统主要由转向传感器、车速传感器、扭矩传感器、电子控制单元(ECU)和助力电机等组成。
EPS系统的核心在于电子控制单元,它可以根据驾驶员的转向意图、车速以及转向力矩等因素,实时计算出所需的辅助转向力矩,并通过助力电机为驾驶员提供适当的助力。
与传统的液压助力转向系统(Hydraulic Power Steering,简称HPS)相比,EPS系统具有诸多优势。
乘用车电动助力转向系统匹配与仿真分析的开题报告一、研究背景及意义随着电动汽车的不断普及和推广,电动助力转向系统作为电动汽车控制系统的一个重要组成部分,正在得到越来越广泛的应用。
因此,研究乘用车电动助力转向系统的匹配与仿真分析,具有重要的实践意义。
乘用车电动助力转向系统的匹配可以帮助汽车制造商在生产过程中合理选择电动助力转向系统的参数和控制策略,从而使汽车的转向性能更加稳定、灵活和安全。
同时,对电动助力转向系统的仿真分析可以帮助汽车制造商在生产过程中优化系统设计,降低成本,提高产品质量和性能。
二、研究目标和研究内容1. 研究目标本研究旨在探究乘用车电动助力转向系统的匹配问题,并利用仿真分析方法对系统性能进行评估,为汽车制造商提供优化电动助力转向系统设计的参考。
2. 研究内容(1)乘用车电动助力转向系统的构成和原理(2)电动助力转向系统匹配的基本原则和方法(3)电动助力转向系统的建模和仿真分析(4)验证仿真结果与实际测试结果的一致性三、研究方法和技术路线本研究采用文献研究、理论分析和仿真分析相结合的研究方法,具体技术路线如下:(1)文献研究和理论分析:查阅相关文献资料,了解乘用车电动助力转向系统的构成、工作原理和匹配原则等相关理论知识。
(2)电动助力转向系统的建模和仿真分析:利用MATLAB/Simulink 等软件工具,对电动助力转向系统进行建模和仿真分析,并进行系统参数优化和性能评估。
(3)验证仿真结果与实际测试结果的一致性:利用实车测试等方法,对仿真结果进行验证和对比分析,评估仿真模型的准确性和可靠性。
四、预期成果和应用前景本研究的预期成果包括:(1)掌握乘用车电动助力转向系统的构成、工作原理和匹配方法等相关理论知识。
(2)建立乘用车电动助力转向系统的仿真模型,并对系统进行参数优化和性能评估。
(3)验证仿真结果与实际测试结果的一致性,评估仿真模型的准确性和可靠性。
(4)为汽车制造商提供优化电动助力转向系统设计的参考,提高产品质量和性能。
7310.16638/ki.1671-7988.2021.08.024基于六自由度平台的电动助力转向系统(EPS )试验仿真分析*郑晓东1,朱留存1,2,3*(1.北部湾大学机械与船舶海洋工程学院,广西 钦州 535011;2.北部湾大学先端科学技术研究院,广西 钦州 535011;3.扬州大学信息工程学院,江苏 扬州 225127)摘 要:通过对电动助力转向系统(EPS )的原理分析,给出了一种六自由度的电动助力转向系统(EPS )试验仿真平台,并利用Matlab/Simulink 构建了电动助力转向系统(EPS )试验仿真平台的仿真模型,用以对于电动助力转向系统在各种实验条件、各种工况下的试验仿真分析,从而得到其在各种情况下所需的助力电流和助力转矩,用于对电动助力转向系统的设计和开发。
关键词:六自由度;电动助力转向系统(EPS );电动助力转向系统试验仿真平台;助力转矩;助力电流 中图分类号:U463.4 文献标识码:A 文章编号:1671-7988(2021)08-73-04Simulation Analysis of Electric Power Steering System (EPS) Test Basedon Six Degrees of Freedom PlatformZheng Xiaodong 1, Zhu Liucun 1,2,3*(1.School of Naval Architecture & Ocean Engineering, Beibu Gulf University, Guangxi Qinzhou 535011; 2.Advanced Science and Technology Research Institute, Beibu Gulf University, Guangxi Qinzhou 535011;3.College of Information Engineering, Yangzhou University, Jiangsu Yangzhou 225127)Abstract: Based on the principle analysis of the electric power steering system (EPS), a six-degree-of-freedom electric power steering system (EPS) test simulation platform is given, and use Matlab/Simulink to build a simulation model of the electric power steering system (EPS) test simulation platform, for the simulation analysis of the electric power steering system under various experimental conditions and working conditions, so as to get the boost current and boost torque needed in various situations, for the design and development of electric power steering systems.Keywords: Six degrees of freedom; Electric power steering(EPS); Electric power steering system test simulation platform; Boost torque; Boost currentCLC NO.: U463.4 Document Code: A Article ID: 1671-7988(2021)08-73-04前言电动助力转向系统的助力特性曲线都是通过对不同车型不同工况的实验数据进行拟合的方法来确定[1],这样获取试验数据的周期长,研发成本高,需要复杂的数学计算且精度不高,同时在复杂的车况下实验员安全隐患增大。
第1篇一、实验目的本次实验旨在了解电动助力转向系统(EPS)的工作原理、性能特点以及与传统液压助力转向系统的差异。
通过实验,验证EPS在提高转向效率、降低能耗、提升驾驶舒适性和安全性等方面的优势。
二、实验原理电动助力转向系统(EPS)是一种利用电动机作为动力源的新型动力转向装置。
与传统液压助力转向系统相比,EPS省去了液压泵、油管等液压部件,采用电机直接驱动转向机构,从而实现转向助力。
EPS系统主要由以下几部分组成:1. 信号传感装置:包括扭矩传感器、转角传感器和车速传感器,用于检测驾驶员的转向意图、方向盘转角和车速等信息。
2. 转向助力机构:包括电机、减速器、离合器等,用于根据驾驶员的转向意图和车速,提供相应的转向助力。
3. 电子控制单元(ECU):根据扭矩传感器、转角传感器和车速传感器的信号,控制电机的旋转方向和助力电流的大小,实现实时助力转向。
三、实验内容1. EPS系统组成及工作原理讲解。
2. EPS系统与传统液压助力转向系统的对比实验。
3. EPS系统在不同车速下的转向助力性能测试。
4. EPS系统在转向过程中抗干扰性能测试。
四、实验步骤1. 准备实验设备:EPS系统实验平台、扭矩传感器、转角传感器、车速传感器、数据采集器等。
2. 搭建实验平台,连接实验设备。
3. 根据实验要求,设置实验参数。
4. 进行EPS系统与传统液压助力转向系统的对比实验,记录数据。
5. 在不同车速下进行EPS系统的转向助力性能测试,记录数据。
6. 在转向过程中进行EPS系统的抗干扰性能测试,记录数据。
7. 分析实验数据,得出结论。
五、实验结果与分析1. EPS系统与传统液压助力转向系统的对比实验结果显示,EPS系统在转向效率、能耗、驾驶舒适性和安全性等方面均优于传统液压助力转向系统。
2. EPS系统在不同车速下的转向助力性能测试结果显示,EPS系统在不同车速下均能提供稳定的转向助力,且转向助力大小与车速成正比。
摘要汽车电动转向器是一种新型的汽车转向助力系统。
文章先对EPS系统原理及结构进行说明,介绍了三种EPS典型助力曲线,建立了机械转向系统数学模型、EPS系统数学模型,文中提出了EPS系统控制目标,说明了EPS系统的PID控制策略,介绍了电动助力转向系统中的三种控制模式:助力控制模式,回正控制模式,阻尼控制模式,文章重点研究助力控制。
并建立了机械转向系统、EPS系统和基于PID控制的系统三种数学模型,然后应用MATLAB的Simulink模块进行运动仿真,通过调整参数和分析参数,来研究系统稳定性随参数变化的影响。
仿真结果表明,所设计的PID 控制对能对转向系统模型进提供助力控制,同时能使系统满足很好的动态性能。
关键词:电动转向器;助力控制;MA TLAB/Simulink;仿真AbstractElectric Power Steering is a new automotive power steering system.This article first on the principle and structure of EPS system are described, three kinds of typical EPS power curve is introduced in this paper, the mathematical model of the system, the EPS system mathematical model of the pure mechanical steering system is established in this paper, the target control of EPS system, the control strategy of EPS system of PID, this paper introduces three kinds of control mode of electric power steering in: power control mode, return control mode, the damping control mode, this paper focuses on the study of power control. Under pure mechanical steering system, EPS system and PID power control of EPS system based on the mathematical model, the application of MA TLAB/Simulink simulation, parameters, and analysis of influence parameters on the stability of the system, and the use of PID control strategy for power control of the model, and that the system can meet the dynamic performance is very good.Key words: electric power steering ; assist control ; MA TLAB/Simulink; simulationII目录摘要 (I)Abstract (II)目录 (V)1 绪论 (1)1.1 本课题的研究背景和意义 (1)1.2 国内外的发展概况 (1)1.3 本课题应达到的要求 (2)2 电动转向系统的动力学模型 (3)2.1 电动转向系统的结构和工作原理 (3)2.2EPS典型助力曲线 (5)2.3 EPS动力学的模型 (7)2.3.1 机械转向系统数学模型 (7)2.3.2 EPS系统的模型 (8)2.4 EPS稳定性与转向助力增益分析 (10)2.4.1 转向助力增益的确定 (10)2.4.2 EPS稳定性与转向助力增益关系 (11)3 EPS系统控制分析 (16)3.1系统控制的目标 (16)3.2 EPS系统的控制策略 (16)3.3 系统的控制模式 (17)3.4 系统的补偿控制 (18)3.4.1 补偿控制原理 (18)3.4.2 补偿控制的作用 (18)4 EPS系统的仿真与分析 (19)4.1 MATLAB/Simulink仿真平台的介绍 (19)4.2 系统仿真参数取值 (19)4.3 机械转向系统仿真与研究 (20)4.3.1 机械转向系统的Simulink模型 (20)4.3.2 汽车机械转向系统在阶跃输入时不同参数下的仿真研究 (22)4.3.3 不同参数对系统性能影响的仿真分析 (28)4.4 EPS转向系统仿真与研究 (28)4.4.1 EPS系统的Simulink模型 (28)4.4.2 EPS系统加入PID控制的Simulink模型 (30)4.4.3 EPS系统加入PID控制的仿真与分析 (32)4.5 不同系统的比较仿真与分析 (36)5 结论与展望 (40)5.1 主要结论 (40)5.2 不足之处及未来展望 (40)致谢 (41)参考文献 (41)附录 (42)汽车电动转向器动力学建模与控制仿真研究1 绪论1.1 本课题的研究背景和意义目前汽车已经走入寻常百姓家中,人们对汽车需求逐渐增大。
汽车电动助力转向系统控制策略及仿真研究首先,本文介绍了汽车电动助力转向系统的原理和结构。
汽车电动助力转向系统由电动电机、转向机构和控制单元组成。
电动电机通过转向机构与汽车的转向轴相连接,当驾驶者转动方向盘时,电动电机会提供相应的力量辅助转向。
接下来,本文提出了一种基于PID控制的汽车电动助力转向系统控制策略。
PID控制是一种经典的控制方法,通过不断调节比例、积分和微分三个控制参数,使得系统的输出能够稳定地跟踪期望的轨迹。
在汽车电动助力转向系统中,PID控制可以通过测量转向轴的角度和驾驶者的方向盘输入来自动计算出合适的转向力量,以达到准确转向的目的。
为了验证PID控制策略的有效性,本文利用Simulink工具进行了仿真实验。
仿真实验采用了真实的汽车转向系统参数,通过输入不同的方向盘转动信号,模拟不同的转向操作。
实验结果表明,基于PID控制的汽车电动助力转向系统能够准确地跟踪方向盘输入,并提供适当的转向力量,实现稳定的转向。
最后,本文总结了汽车电动助力转向系统控制策略及仿真研究的主要结果和贡献。
通过研究和仿真实验,本文验证了基于PID控制的汽车电动助力转向系统的有效性和稳定性。
这一研究为汽车电动助力转向系统的设计和控制提供了一定的参考和借鉴。
综上所述,本文对汽车电动助力转向系统的控制策略进行了研究,并进行了相关的仿真实验。
本文的研究结果表明,基于PID控制的汽车电动助力转向系统能够实现准确转向,并具有稳定性和可靠性,为汽车驾驶员提供了良好的转向体验。
但是,仍然有一些问题和挑战需要进一步研究和解决,比如如何提高转向系统的响应速度和抗干扰能力。
对于未来的研究,可以考虑将其他的控制方法应用到汽车电动助力转向系统中,并进一步优化转向系统的性能。
电动助力转向系统的建模与仿真分析[摘要] 在建立电动助力转向系统的数学模型和状态空间模型的基础上,对系统进行稳定性分析,并对系统模型进行仿真分析,分析电动助力转向系统的转向动态特性和路面干扰对于转向系统的影响,进而提出电动助力转向系统的阻尼控制方法。
关键词: 汽车电动助力转向状态空间仿真1 概述由于动力转向系统具有转向操纵轻便、灵活,汽车设计时对转向器结构形式选择的灵活性增大,同时可以吸收路面对轮胎产生的冲击等优点,自20 世纪50 年代以来,在国外汽车上得到采用。
但是,传统的液压动力转向系统在汽车行驶的时候需要消耗一定的能量,同时,它增加了液压油泵、液压缸、油管和一些辅助装置,还存在液压油的泄漏问题,对环境造成一定的危害。
随着电子控制技术的发展,电子控制液压动力转向系统应运而生,该系统的某些性能要优于传统的液压动力转向系统,但它仍然无法克服液压动力转向系统的某些固有的缺陷。
电子控制电动助力转向系统属于另一种形式的动力转向系统,该系统根据汽车的转向状态,通过电子控制单元控制电动机直接驱动转向机构,使汽车的转向轮发生偏转。
该系统不直接利用发动机动力,只有在需要转向的时候才由电动机提供动力,不转向的时候不消耗能量。
电动机使用的动力来自于蓄电池,省去了液压油泵、液压缸、油管等装置,结构紧凑,重量轻。
另外,该系统可以通过软件的方法实现汽车在不同车速下获得不同的静态助力特性,提高驾驶员转向时的路感。
2 系统数学模型的建立电动助力转向系统结构如图1 所示,主要包括转向柱、减速机构、齿轮齿条和助力电动机,以及ECU控制单元,这里建立的转向系统动力学方程为:转向柱: (1)输出轴:(2)齿条:(3)电动机:(4)式中s J 为转向柱、转向盘的转动惯量,s B 为转向柱的阻尼系数,s K 为扭杆的刚性系数,s q 为转向柱的旋转角,h T 为作用在转向盘上的转向扭矩,e J 为减速机构的转动惯量,e B 为减速机构的阻尼系数,e q 为输出轴的旋转角,G 为蜗轮蜗杆减速器的减速比,w T 为作用在输出轴上的反作用扭矩,r m 为小齿轮及齿条质量,r b 为齿条的阻尼系数,r K 为等效弹簧的弹性系数,r x 为齿条的位移, d F 是路面的随机信号,m I 是电枢电流,m B 是电动机粘性摩擦系数,m K 为电动机和减速机构的刚性系数,m J 是电动机惯性矩,m q 是电动机转角,p r 为小齿轮半径。
电动助力转向系统的建模与仿真陈新月;麦云飞【摘要】以电动助力转向系统为研究对象,分析其结构构成和工作原理,建立了EPS 系统模型以及MATLAB/Simulink仿真模型.根据车速信号、传感器转矩信号以及一些主观性因素,给出了ECU助力特性曲线.模型使用传统PID控制,并在MATLAB/Simulink环境下进行了仿真.仿真结果表明,该模型响应快、准确且稳定,一定程度上接近真实的EPS系统,对真实EPS系统的研究具有一定的参考价值.【期刊名称】《农业装备与车辆工程》【年(卷),期】2018(056)009【总页数】4页(P71-74)【关键词】电动助力转向;PID控制;建模;仿真【作者】陈新月;麦云飞【作者单位】200093 上海市上海理工大学机械工程学院;200093 上海市上海理工大学机械工程学院【正文语种】中文【中图分类】U463.440 引言电动助力转向系统(EPS, Electric Power Steering System),是一个依靠电机提供辅助扭矩的动力转向系统,是汽车电子化、智能化的产品,是国内外汽车转向的研究热点,具有广阔的市场前景。
在当前EPS的研发过程中,大部分的实验是进行实车测试,但是实车测试需要的人力、物力和财力比较多。
本文在MATLAB/Simulink仿真环境下建立EPS的仿真模型并对其进行仿真分析,该模型主要包括电子控制单元ECU、助力电机、涡轮蜗杆减速机构、转向输入轴和十字万向联轴节等组成部分,在一定程度上接近真实的EPS试验台。
在该模型上进行试验,可以减少人力、物力和财力的浪费,同时解决研发周期过长的问题。
1 EPS系统构成与传动原理本文研究的是转向轴助力式电动助力转向系统,它的机械结构传动系统原理如图1所示。
它的工作原理为由电子控制单元根据车速传感器测得的车速信号和扭矩传感器测得的扭矩信号共同决定其助力电机的旋转方向和助力电流的大小,实现EPS的助力转向控制。
轻型载货汽车电动助力转向系统的设计与仿真分析近年来,随着环保意识的增强和电动技术的快速发展,电动助力转向系统逐渐在轻型载货汽车中得到广泛应用。
本文将介绍轻型载货汽车电动助力转向系统的设计原理,并进行相应的仿真分析。
一、设计原理1.1 电动助力转向系统概述轻型载货汽车的电动助力转向系统主要由电动助力转向电机、助力转向控制器、扭矩传感器、传感器控制模块和转向机构组成。
其工作原理是通过电动助力转向电机产生的扭矩来改变转向机构的转向力,从而实现转向的灵活性和舒适性。
1.2 电动助力转向系统的设计要点在设计轻型载货汽车的电动助力转向系统时,需要考虑以下几个要点:1)电动助力转向电机:选用高效能、高可靠性的电动助力转向电机,其功率与车辆的转向需求相匹配。
2)助力转向控制器:根据车辆的具体情况,设计合适的助力转向控制器,能够精确地控制电动助力转向电机的扭矩输出。
3)扭矩传感器:安装在转向机构上的扭矩传感器能够实时感知转向机构产生的扭矩,并将数据反馈给助力转向控制器,以实现精确的转向控制。
4)传感器控制模块:将扭矩传感器采集的数据通过传感器控制模块处理,并与助力转向控制器相连,实现转向系统的协调运行。
5)转向机构:设计合理的转向机构,能够通过电动助力转向电机的扭矩输出,使车辆具有灵活且准确的转向性能。
二、仿真分析为了验证电动助力转向系统的设计效果,我们采用仿真软件对系统进行分析和测试。
通过仿真,可以模拟车辆在不同工况下的转向性能,评估系统的稳定性和准确性。
2.1 建立仿真模型首先,根据实际车辆的参数和转向机构的结构,建立电动助力转向系统的仿真模型。
通过引入电动助力转向电机、助力转向控制器、扭矩传感器和转向机构等组件,建立起完整的汽车转向系统模型。
2.2 仿真参数设置在进行仿真分析前,需要设置相应的仿真参数,如车辆速度、转向角度、路面摩擦系数等。
通过调整这些参数,可以模拟不同工况下的转向性能。
2.3 仿真分析和评估在完成仿真参数设置后,进行转向系统的仿真分析和评估。
第24卷Vol .24 第3期No .3重庆理工大学学报(自然科学)Journal of Chongqing University of Technol ogy (Natural Science )2010年3月Mar .2010 3 收稿日期:2009-12-16基金项目:江苏省汽车工程重点实验室开放基金项目(QC200703);2009年度扬州大学大学生学术科技创新基金资助项目作者简介:钱学武(1981—),男,山东临沂人,硕士研究生,主要从事汽车电子控制技术研究;马明星(1974—),男,安徽巢湖人,博士,副教授,硕士生导师,主要从事汽车系统动力学和汽车电子控制技术等方面的研究。
电动助力转向系统建模及仿真3钱学武,马明星,徐国民,管延才(扬州大学机械工程学院,江苏扬州 225127)摘 要:建立了电动助力转向系统主要部分的数学模型,根据助力原理设计了助力特性曲线,采用Matlab /Si m ulink 工具箱建立了无电机助力、无P I D 控制算法助力和有P I D 控制算法助力的仿真模型。
分析了3种模型的仿真结果,为进一步控制系统性能研究提供依据。
关键词:助力特性;Matlab;P I D中图分类号:U463.4 文献标识码:A文章编号:1674-8425(2010)03-0014-04S im ul a ti on and M odeli n g of Electr i c Power Steer i n g SystemQ I A N Xue 2wu,MA M ing 2xing,XU Guo 2m in,G UAN Yan 2cai(School of M echanical Engineering,Yangzhou University,Yangzhou 225127,China )Abstract:A t first,the mathe matic models of electric power steering syste m is built .The assisting characteristics curve is designed according t o the assisting p rinci p le,and si m ulati on models of syste m s with no power mot or,no P I D contr ol assist and with P I D contr ol assist are built thr ough Matlab /Si m u 2link t oolbox .A t last,the si m ulati on results of the three models are analyzed t o p r ovide reference f or further study on the perfor mance of contr ol syste m.Key words:assist characteristic;Matlab;P I D1 系统组成及工作原理电动助力转向系统(electric power steering,简称EPS )主要由机械转向系统、转矩传感器、车速传感器、电流传感器、控制单元(ECU )、离合器、助力电动机及减速机构等组成,如图1所示。
基于CarSim的电动助力转向系统仿真与硬件在环验证一、本文概述随着汽车工业的快速发展,电动助力转向系统(Electric Power Steering, EPS)已成为现代车辆的重要组成部分。
EPS系统不仅提高了驾驶的便捷性和舒适性,同时也对车辆的操纵稳定性和安全性起着至关重要的作用。
然而,EPS系统的设计和优化面临着众多挑战,包括系统性能的优化、安全性的保障以及成本的控制等。
因此,对EPS系统进行精确而高效的仿真分析以及硬件在环验证成为了研究和开发过程中的关键步骤。
本文旨在介绍基于CarSim的电动助力转向系统仿真与硬件在环验证的研究方法和技术。
本文将概述EPS系统的基本原理和结构,以及其在车辆动力学中的作用。
本文将详细介绍CarSim仿真软件在EPS 系统仿真中的应用,包括建模过程、仿真参数设置以及仿真结果的分析和处理。
接着,本文将探讨硬件在环验证的重要性,以及如何在CarSim环境中实现硬件在环验证。
本文将通过实例分析,展示基于CarSim的EPS系统仿真与硬件在环验证的实际应用效果,为EPS系统的设计和优化提供有效的技术支持。
通过本文的研究,旨在为EPS系统的研究者和工程师提供一种基于CarSim的仿真与硬件在环验证的方法论,以提高EPS系统的开发效率和性能优化,为现代汽车工业的发展做出贡献。
二、EPS系统原理及CarSim仿真建模电动助力转向系统(EPS,Electric Power Steering)是一种先进的汽车转向系统,旨在通过电机提供辅助转向力矩,以提高驾驶的舒适性和安全性。
EPS系统主要由转向传感器、车速传感器、电机、电子控制单元(ECU)等组成。
当驾驶员转动方向盘时,转向传感器检测方向盘的转角和转速,车速传感器则检测车辆的速度。
这些信息被传递给ECU,ECU根据预设的控制策略计算出所需的辅助转向力矩,并控制电机产生该力矩,从而帮助驾驶员更轻松、更稳定地驾驶汽车。
为了对EPS系统进行仿真分析,我们采用了CarSim软件。
电动助力转向(Electronic Power Steering ,简称EPS )系统依靠电动机提供助力转矩,根据车速和方向盘输出转矩调整助力转矩的大小,以增强驾驶员在低速行驶的转向轻便性和高速行驶时的路感。
与机械式和液压式助力转向系统相比,具有节能、环保、助力特性可控和结构紧凑等优点[1]。
汽车行驶过程中的姿态和选用轮胎的差异对动态助力特性存在影响。
目前对EPS 研究中的系统建模通常忽略了这2个因素[2]。
本文采用整合EPS 系统模型、轮胎模型和三自由度整车模型的集成仿真模型对EPS 动力学特性进行研究,突出轮胎回正力矩和车身侧倾角对EPS 的影响,为EPS的控制器开发以及实车实验奠定理论基础。
1EPS 集成模型结构汽车本身是涵盖多个子系统的多刚体系统,通过惯性、阻尼、弹性等动力学因素相互作用。
考虑到转向时车身侧倾角的变化会对轮胎的侧偏特性进行干涉,造成轮胎回正力矩的变化;而轮胎回正力收稿日期:2011-11-10基金项目:国家自然科学基金资助项目(51075010);北京市教委科技重点项目(KZ200910005007)作者简介:彭剑坤(1987-),男,安徽合肥人,硕士生,主要从事汽车动力学控制研究。
电动助力转向系统集成建模及仿真彭剑坤1,张小龙1,冯能莲1,2(1.安徽农业大学工学院,安徽合肥230036;2.北京工业大学环能学院,北京100022)摘要:构建了基于M atlab/Simulink 的EPS 系统模型、H.B.Pacejka 轮胎模型以及三自由度整车模型,进而应用系统集成的方法构建了集成仿真模型,在此基础上分析了EPS 系统对方向盘瞬态响应品质的影响并验证了助力控制策略。
结果表明集成仿真模型具有较好的动态模拟特性,EPS 具有较好的稳定性且控制策略能够较好的协调转向轻便性与路感的矛盾。
关键词:电动助力转向;轮胎;整车;仿真中图分类号:U461.6文献标志码:A文章编号:1008-5483(2011)04-0019-05Integrated Modeling and Simulation ofElectric Power Steering SystemPeng Jiankun 1,Zhang Xiaolong 1,Feng Nenglian 1,2(1.School of Engineering,Anhui Agriculture University,Hefei 230036,China;2.College of Environment and Energy Engineering,Beijing University of Technology,Beijing 100022,China )Abstract:The simulation models of EPS system,H.B.Pacejka tyre and 3-DOF vehicle were built basedon Matlab/Simulink.Then the integrated simulation model was built by the system integration method,the impact of EPS system on the transient state response quality of steering wheel was analyzed and the assistance control strategy was validated.The results show that the integrated simulation model has better dynamic simulation feature,EPS has better stability and the control strategy can coordinate successfully the contradiction between steering agility and road feel.Key words:EPS ;tyre;vehicle;simulation 湖北汽车工业学院学报Journal of Hubei Automotive Industries Institute第25卷第4期2011年12月Vol.25No.4Dec.2011湖北汽车工业学院学报2011年12月矩的变化又会改变转向系的阻力,从而影响EPS 系统的输出特性,具体表现为通过小齿轮位移的变化影响前轮转角的变化,而前轮转角的变化又会对整车动力学进行重新评价。
电动助力转向用无刷直流电机控制系统的建模和仿真摘要:在分析无刷直流电机(BLDCM)数学模型的基础之上,提出了一种新型的无刷直流电机控制系统建模仿真方法。
在Matlab/Simulink环境之下,利用无刷直流电机的电压方程、电磁转矩方程和运动方程构建了无刷直流电机本体的仿真模型。
系统采用三闭环控制:速度环采用经典PID控制,电流控制采用滞环电流跟踪型PWM。
仿真实验结果表明:系统具有良好的静、动态特性,验证了该方法的有效性,为实际电机控制系统的设计和调速提供了新的思路。
1 引言无刷直流电动机因卓越的性能和不可替代的技术优势倍受人们的关注,特别是自70年代后期以来伴随着永磁材料技术、计算机及控制技术等支撑技术的快速发展及微电机制造工艺水平的不断提高,无刷直流电动机在高性能中、小伺服驱动领域获得广泛应用并日趋占据主导地位。
随着无刷直流电机应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理。
建立无刷直流电机控制系统的仿真模型,可以有效的节省控制系统设计时间,及时验证系统的控制算法,同时可以充分利用计算机仿真的优越性,很方便的改变系统的结构,加入不同的扰动和参数变化,可以更好的考察系统在不同结构和不同工况下的静、动特性。
因此如何建立无刷直流电机控制系统的仿真模型成为迫切需要解决的关键问题。
汽车转向系统是控制其行驶路线和方向的重要装置,直接影响汽车的操纵性和稳定性。
为保证汽车在转向时获得良好的助力及回正等性能.动力转向系统得到了广泛的应用,从最初的液压助力转向系统(Hydraulic Power Steering),到现在的电动助力转向系统(Ectric Power Steerin)。
与HPS相比,EPS具有诸多的优点:效率高、能耗少、路感好、回正性好、对环境污染小,因此EPS成为汽车转向系统的热门课题。
本文通过分析电动助力转向控制系统和无刷直流电机控制系统,对其电机控制系统进行建模、仿真分析。