粉末冶金工艺及材料
- 格式:docx
- 大小:25.80 KB
- 文档页数:11
粉末冶金材料配方粉末冶金(PowderMetallurgy,简称PM)是将金属(粉末)制成零件的一种技术,它比传统机械加工技术更省时、更可靠。
PM材料可用于制造锻件和其他类型的零件,它们的强度和耐久性比传统锻件要高。
PM材料的配方直接决定了最终零件的性能,因此非常重要。
PM 材料的配方通常包括金属、非金属和合金。
金属包括铁、钢、铝、镍、铜和锡等;非金属包括碳、氮、氧、硅、氟等;合金包括钨铁、铬钽、钛铌、钛钡和钛锌等。
PM材料通常需要经过多次添加材料来改变配方,以确保粉末在热压模具中获得高品质的零件。
PM材料的配方也可以用来制造膨胀体和其他特定形状、重量或力学性能的零件,这些零件经常用于涡轮机和制动器等电气设备。
PM 材料的配方还可以用来制造各种新型复合材料,用于特殊应用,如汽车零件、航天器零件和太阳能电池片。
为了达到最佳性能,PM材料的配方应该考虑其特性、性能和结构。
首先,应考虑金属和合金的粒子大小、元素组成和比例,以及非金属的种类和比例,这些都会影响PM材料的机械性能。
粒子大小和元素比例在确定烧结行为和结构的时候也很重要。
其次,应考虑PM 材料的热性能、弹性、疲劳和潮湿行为,以及高温、低温和抗腐蚀行为。
最后,应考虑PM材料的重量和形状,以及其制造的零件的尺寸和精度。
PM材料的配方是一项复杂的科学技术,需要考虑多因素因素,改变其中任何一个因素都会引起PM材料性能的变化。
经验丰富的冶金工程师可以根据用户的要求,研究不同的材料配方,确定最优的配方,并可以给出有关参数和具体的生产工艺要求。
PM材料的配方是一门复杂的科学技术,其配方的精密性和复杂性直接影响零件的性能,因此需要专业的冶金工程师研究原料配方,及时调整配方,以达到最佳性能。
只有通过正确的配方和工艺技术,才能达到最佳的性能要求,保证质量,并降低生产成本。
粉末冶金工艺基本知识粉末冶金成形粉末冶金工艺及材料粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。
但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。
粉末冶金材料和工艺与传统材料工艺相比,具有以下特点:1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。
2.提高材料性能。
用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。
3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。
提高材料利用率,降低成本。
粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。
随着粉末冶金生产技术的发展,粉末冶金及其制品将在更加广泛的应用。
1 粉末冶金基础知识⒈1 粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴ 粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
图描绘了由若干一次颗粒聚集成二次颗粒的情形。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
粉末冶金知识大全简介粉末冶金是一种重要的制备材料的方法,它通过将金属或非金属加工成粉末,再通过压制和烧结等工艺将粉末粒子紧密结合形成所需的材料。
本文将介绍粉末冶金的基本原理、工艺流程和应用领域。
1. 粉末制备粉末冶金的第一步是制备粉末。
常见的粉末制备方法包括:•原子熔化法:通过将金属或合金加热到高温,使其熔化后迅速冷却,冷却过程中形成的微细颗粒即为粉末。
•机械研磨法:将金属块或合金块放入球磨机中与球磨介质一起磨碎,经过一定时间后得到所需的粉末。
•物理气相法:通过高温蒸发和凝聚,使金属或合金从气相转变为粉末。
常见的物理气相制备方法有气体凝聚法、物理溅射法等。
2. 粉末冶金工艺粉末冶金包括压制、烧结和后处理等多个工艺步骤。
2.1 压制压制是将制备好的粉末以一定的压力塑造成所需形状的过程。
常见的压制方法有:•静态压制:即将粉末放置在模具中,施加垂直于模具方向的压力,使粉末颗粒之间发生塑性变形,形成一定形状的绿体。
•动态压制:即通过提供一个快速冲击力,使粉末颗粒互相碰撞并发生变形,形成一定形状的绿体。
2.2 烧结烧结是将压制好的绿体在一定温度下进行加热,使粉末颗粒之间发生扩散和结合,形成致密的材料。
常见的烧结方法有:•常压烧结:将绿体放在电炉或气炉中进行加热,使粉末颗粒熔结或固相扩散结合。
•热等静压烧结:在加热的同时施加一定的压力,用于加强绿体的结合。
2.3 后处理烧结完成后,还需要进行一些后处理步骤以提高材料的性能。
常见的后处理方法有:•热处理:通过控制温度和时间,在一定的条件下改变材料的组织结构,提高其硬度、强度等性能。
•表面处理:在材料表面形成覆盖层、涂层或改变表面形貌,以提高耐磨、耐腐蚀等性能。
3. 应用领域粉末冶金在许多领域都有着广泛的应用。
3.1 金属制品粉末冶金可以制备各种金属制品,如汽车零部件、工具等。
由于独特的结构和物理性能,粉末冶金制品具有优异的耐磨、抗拉伸和耐腐蚀等特点。
3.2 陶瓷制品通过粉末冶金技术可以制备出高纯度、高强度的陶瓷制品,如陶瓷刀具、陶瓷齿轮等。
粉末冶金渗铜工艺
粉末冶金渗铜工艺是一种基于粉末冶金技术的金属材料表面处理方法。
该工艺通过在金属材料表面渗透铜粉末,并在高温下进行烧结,使金属材料表面形成一层致密、坚固的铜合金层。
这种铜合金层具有优异的导电性、导热性和耐腐蚀性能,可以广泛应用于电子、机械、汽车等领域。
粉末冶金渗铜工艺的主要步骤包括: 清洗金属材料表面,涂布铜粉末,包覆材料,烧结等。
其中,涂布铜粉末是关键步骤,需要掌握适当的涂布方法和铜粉末的选择。
烧结过程中,需要控制温度、时间和气氛,以确保金属材料表面形成均匀、致密的铜合金层。
与传统的电镀、喷涂等方法相比,粉末冶金渗铜工艺具有以下优点:1. 渗铜层厚度可控,可在0.1-2.0mm范围内调节;2. 渗铜层与基材之间结合强度高,不易脱落;3. 渗铜层具有优异的电导率和导热性能;4. 渗铜层不含有害物质,环保性能好。
总之,粉末冶金渗铜工艺是一种高效、环保、可控的金属材料表面处理方法,有望在未来得到更广泛的应用。
- 1 -。
粉末冶金工艺基本知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN粉末冶金工艺基本知识粉末冶金成形粉末冶金工艺及材料粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。
但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。
粉末冶金材料和工艺与传统材料工艺相比,具有以下特点:1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。
2.提高材料性能。
用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。
3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。
提高材料利用率,降低成本。
粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。
随着粉末冶金生产技术的发展,粉末冶金及其制品将在更加广泛的应用。
1 粉末冶金基础知识⒈1 粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
粉末冶金是什么?粉末冶金(Powder Metallurgy)是制取金属粉末,及采用成形和烧结工艺将金属粉末(或金属粉末与非金属粉末的混合物)制成材料和制品的工艺技术。
它是冶金和材料科学的一个重要分支学科。
粉末冶金有历史2500年前块炼铁锻造法制造铁器20世纪初制取难熔金属。
1909年制造电灯钨丝,推动了粉末冶金的发展;1923年粉末冶金硬质合金的出现被誉为机械加工中的革命。
30年代成功制取含油轴承。
粉末冶金铁基机械零件的发展,充分发挥了粉末冶金少切削甚至无切削的优点。
40年代金属陶瓷、弥散强化等材料60年代粉末冶金高速钢,粉末高温合金应用80年代~ 汽车领域应用迅速发展粉末冶金的特点节材,节能低环境污染较好的尺寸精度较好的表面状态接近最终形状降低产品制造成本产品一致性好特殊的多合金组织多孔性组织复杂的形状适合大批量生产经济性节能:粉末成形所需压力远低于锻造、辊轧等传统制程;烧结温度又低于主成分熔点。
故耗费之能源远低于铸造、机械加工等其它制程。
省材:粉末冶金法的材料利用率高达95%以上,远高于其它制程。
例如机械加工法的材料利用率平均仅有40∼50%之间。
省时:在自动化生产在线,成形一个生胚的时间可低至0.5秒;而每一成品所耗费的平均烧结时间亦可低至数秒钟。
其时间成本远低于其它制程。
精度:粉末冶金产品的尺寸精度极高,在一般用途中,几乎无须后续加工性质上某些具有独特性质或显微组织的产品,除粉末冶金制程外,无法以其它制程获得。
例如:多孔材料:过滤器、含油轴承、透气钢等复合材料:弥散强化或纤维强化复合材料合金系统:大部分合金系统均有固溶限,超过此一限度,其铸造组织会产生共晶、共析、或金属间化合物等偏析现象,形成不均匀的组织结构;而某些元素间即使在熔融状态下也不互溶,故不可能以铸造法制造。
粉末冶金法的特性却使其可轻易调配出任意比例且组织均匀的合金材质(因其制程中未达熔点)。
特殊性上有些材料虽可能以其它方法制作,在实作上却有相当的困难度,例如:高熔点金属:钨(3380℃)、钼(2615℃)、陶瓷等高熔点材料很难熔化铸造。
粉末冶金技术粉末冶金技术是一种重要的金属加工方法,它是将金属粉末经过混合、成型和烧结等工艺制成制品的工艺方法。
相比传统的熔炼和锻造工艺,粉末冶金技术具有许多优点,如能够制备出具有复杂形状的零件、材料性能均匀、精确控制产品尺寸和性能等。
本文将从粉末冶金技术的历史发展、工艺流程、应用领域等方面进行介绍。
粉末冶金技术的历史可以追溯至早在公元前3000年左右,早期人们已经开始使用粉末冶金技术来制作金属工艺品。
然而,直到20世纪初,粉末冶金技术才得到广泛应用,并在战争期间得到了飞速发展。
战后,在石油、汽车、航空航天等领域的需求推动下,粉末冶金技术得到了进一步的发展壮大。
粉末冶金技术的工艺流程主要包括粉末的制备、混合、成型和烧结等步骤。
首先,原料金属被经过研磨等工艺得到所需的粉末。
然后,将不同种类和粒径的金属粉末混合,并添加适量的添加剂以改变材料的性能。
下一步,通过压制等成型方法将混合得到的金属粉末压制成所需形状的绿体。
最后,将绿体在高温下进行烧结,使金属粉末颗粒之间发生相互扩散和连结,形成致密的金属制品。
粉末冶金技术的应用领域非常广泛。
在汽车工业中,粉末冶金技术被广泛应用于发动机、传动系统、悬挂系统等零部件的制造。
由于粉末冶金技术可以制备出具有复杂形状和高精度需求的零件,因此在航空航天领域也被广泛应用。
此外,粉末冶金技术还可用于制备具有高耐磨性、高温强度和耐腐蚀性能的材料,用于工具、刀具、模具、轴承等领域。
虽然粉末冶金技术具有许多优点,但也存在一些挑战和限制。
首先,粉末冶金技术对原料金属的纯度有较高要求,因此原料的采购和处理工艺比较复杂。
其次,粉末冶金技术的设备和工艺流程较为复杂,对操作人员的技术水平有一定要求。
此外,粉末冶金技术制造出的制品通常会出现一些孔洞和缺陷,需要进一步进行加工和处理。
总的来说,粉末冶金技术作为一种重要的金属加工方法,具有许多优点和广泛的应用领域。
随着工艺和设备的不断改进,粉末冶金技术将会在更多领域发挥重要作用,并为各行业的发展提供更多可能性。
粉末冶金的概念
一、粉末冶金的概念
粉末冶金(Powder Metallurgy;PM)是一种材料加工技术,它将金属粉末作为原料,通过压制、热处理等工艺步骤,加工出特定的功能形状,并可以达到特定性能的加工方法。
通常,粉末冶金工艺的原料以金属为主,但也可以是非金属,如碳素或碳/硅酸盐组成的特殊粉末,或者金属与碳素、碳/硅酸盐混合而成的特殊粉末。
粉末冶金工艺的主要特点是:
1、可以制备出具有复杂形状的零件,复杂的压力型件经常用于此项工艺;
2、材料可以以节约能源的方式加工,常见的工艺步骤是压制和热处理,其中压制过程中并没有使用任何溶剂或润滑剂;
3、可以制备出较低的材料强度,特别是在微型压力零件中,这些零件可以以较低的体积加工出来,而且具有较高的强度;
4、有利于机械性能的增强;
5、可以制备出复合材料,这些材料具有良好的塑性性能以及抗磨损和抗腐蚀性能;
6、可以制备出高熔点的材料,如钨、铌、钛、银等高熔点材料。
此外,粉末冶金工艺还可以通过添加各种金属粉末,碳素粉末,碳素/硅酸盐粉末和其他材料的组合来获得复合材料,这些复合材料可以提高材料的强度,E值和抗磨损性能。
在热处理过程中,粉末冶金工艺也可以提高材料的强度和耐高温性能,以及提升材料的热加工
性能。
总之,粉末冶金工艺是目前非常重要的加工方法,可以获得具有多种功能功能和性能的零件。
粉末冶金原理
粉末冶金是一种通过粉末冶金工艺制备金属、合金、陶瓷和复合材料的方法。
它是一种高效的材料制备技术,具有原料利用率高、产品尺寸精度高、材料组织均匀等优点,因此在航空航天、汽车、电子、机械等领域得到广泛应用。
粉末冶金的基本原理是将金属粉末或合金粉末按一定的成型方法制备成所需形
状的坯料,然后通过烧结或热压等方法将其致密化,最终得到所需的产品。
这种方法可以制备复杂形状的产品,且可以调控产品的性能,因此在一些特殊领域有着独特的优势。
粉末冶金的工艺包括粉末制备、成型和烧结等步骤。
首先是粉末的制备,通常
采用机械球磨、化学法、电化学法等方法制备金属或合金粉末。
然后是成型,通过压制、注射成型等手段将粉末压制成所需形状的坯料。
最后是烧结,将压制好的坯料在一定的温度下进行热处理,使粉末颗粒之间发生扩散与结合,最终形成致密的产品。
粉末冶金的优点之一是可以制备高性能的材料。
由于粉末冶金可以制备复杂形
状的产品,因此可以设计出更加符合工程需求的材料,提高材料的使用性能。
另外,由于粉末冶金可以控制材料的成分和微观结构,因此可以调控材料的力学性能、导热性能、磁性能等,满足不同领域的需求。
除此之外,粉末冶金还可以实现材料的资源化利用。
由于粉末冶金可以利用废料、废料料等再生资源进行材料制备,因此可以减少对原材料的依赖,实现资源的再利用,降低生产成本,减少对环境的影响。
总的来说,粉末冶金是一种高效的材料制备技术,具有制备高性能材料、实现
资源化利用等优点,因此在现代工业中得到了广泛的应用。
随着科技的发展,相信粉末冶金技术会不断完善,为人类社会的发展做出更大的贡献。
粉末冶金的工艺流程及应用场合下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!粉末冶金是一种重要的材料制备技术,它利用金属粉末或金属粉末与非金属粉末的混合物,通过压制和烧结等工艺制备出所需的材料和产品。
粉末冶金工艺流程粉末冶金是一种通过将金属粉末进行各种处理和成形制品的工艺。
这种工艺具有高效、节能、材料利用率高等显著优点,广泛应用于各个领域的生产中。
粉末冶金工艺流程主要包括原料准备、粉末配制、成型、烧结和后处理等步骤。
首先,原料准备是粉末冶金的第一步。
通常通过矿石的开采、选矿、冶炼等方式,将金属转化为金属粉末。
这些粉末通常是由各种原料经过粉碎、研磨等处理得到的,具有一定的颗粒大小和形状。
第二步是粉末配制。
根据要求的成品特性,将金属粉末进行配比和混合。
这个过程通常需要将不同种类的金属粉末按照一定比例进行混合,以达到所需的理化性能。
接下来是成型。
成型是将粉末配制好的金属粉末制成所需形状的工件。
成型通常采用压制的方式进行,通过一定的压力将金属粉末填充到模具中,并在模具中施加压力,使其充分压实。
然后是烧结。
烧结是粉末冶金中最关键的一个步骤。
将成型好的工件放入烧结炉中,通过加热使其达到一定的温度,金属粉末颗粒之间发生相互作用,形成完整的结构。
烧结过程中,金属粉末颗粒会发生相互扩散和结合,同时还会发生一些化学反应,从而得到一定强度和密度的工件。
最后是后处理。
烧结后的工件还需要进行一些后处理工艺,以达到最终的产品要求。
例如,对工件进行机加工,以获得所需的精度和表面光洁度;对工件进行热处理,改变其内部组织结构和性能等。
后处理工艺多种多样,根据产品的不同需求进行选择。
总之,粉末冶金工艺流程是一个复杂而严谨的过程。
从原料准备到最终成品的加工,涉及到多个步骤和工艺。
粉末冶金工艺以其高效、节能的优点,在当今工业生产中得到了广泛的应用。
通过不断的工艺改进和技术创新,粉末冶金工艺将为各种行业的生产提供更多的可能性。
粉末冶金工艺流程粉末冶金是一种利用金属粉末或者金属粉末与非金属粉末混合后,再经过成形和烧结等工艺制备金属材料的工艺方法。
粉末冶金工艺流程包括原料制备、混合、成型、烧结和后处理等几个主要步骤。
首先,原料制备是粉末冶金工艺流程的第一步。
在原料制备过程中,需要选择合适的金属粉末和非金属粉末作为原料,并对原料进行粉碎、筛分和混合等处理,以保证原料的均匀性和适应性。
接下来是混合步骤。
在混合过程中,将金属粉末和非金属粉末按一定的配比混合均匀,以确保成品的化学成分和性能达到要求。
混合过程中需要注意控制混合时间和混合方式,以避免原料的分层和堆积现象。
成型是粉末冶金工艺流程的第三步。
在成型过程中,将混合后的粉末通过压制或注射成型等方式,制备成所需形状的坯料。
成型过程中需要注意控制成型压力、温度和速度等参数,以保证坯料的密度和形状的精度。
烧结是粉末冶金工艺流程的第四步。
在烧结过程中,将成型后的坯料在高温条件下进行烧结,使粉末颗粒之间发生扩散和结合,最终形成致密的金属材料。
烧结过程中需要控制烧结温度、气氛和时间等参数,以确保成品的密度和性能达到要求。
最后是后处理步骤。
在后处理过程中,对烧结后的成品进行表面处理、热处理和精密加工等工艺,以提高成品的表面质量和机械性能,最终得到符合要求的粉末冶金制品。
总的来说,粉末冶金工艺流程包括原料制备、混合、成型、烧结和后处理等几个主要步骤。
通过精心控制每个步骤的工艺参数,可以制备出具有优异性能和复杂形状的金属材料,广泛应用于汽车、航空航天、医疗器械和电子等领域。
粉末冶金工艺的发展将为材料制备和加工领域带来新的机遇和挑战。
粉末冶金材料,其组分及各组分的质量份数为:铁80100份,钛56份,锑23份,钙23份,铝12份,碳35份,二硫化钼12份,润滑剂23份。
本技术提出的粉末冶金材料,采用了多种金属原料和碳、二硫化钼、润滑剂等添加剂按照特定配比制成,融合性好。
采用该粉末冶金材料制得的毛坯容易脱模,表面质量好,质量均匀细腻。
权利要求书1.粉末冶金材料,其特征在于其组分及各组分的质量份数为:铁80-100份,钛5-6份,锑2-3份,钙2-3份,铝1-2份,碳3-5份,二硫化钼1-2份,润滑剂2-3份。
2.根据权利要求1所述的粉末冶金材料,其特征在于其组分及各组分的质量份数为:铁90-100份,钛5-6份,锑2-3份,钙2-3份,铝1-2份,碳3-5份,二硫化钼1-2份,润滑剂2-3份。
技术说明书粉末冶金材料技术领域本技术属于冶金材料技术领域,特别涉及一种粉末冶金材料。
背景技术粉末冶金是一种以金属粉末为原料,经压制和烧结制成各种制品的加工方法。
粉末冶金零件生产工艺的本质性优势是,具有复杂零件的快速成形能力和材料高利用率。
粉末冶金的原材料为金属粉末,金属粉末主要是由各种金属原料分解成细小颗粒而混合组成的粉末。
由于粉末冶金材料和铸造的工艺不同,金属粉末往往难以很好的融合,甚至压坯后脱模困难,特别是在生产部份复杂结构性零件时,成品率低,需要进行配方改良。
技术内容本技术的目的在于提出一种融合性好的粉末冶金材料。
本技术的目的是采用以下技术方案来实现。
依据本技术提出的粉末冶金材料,其组分及各组分的质量份数为:铁80-100份,钛5-6份,锑2-3份,钙2-3份,铝1-2份,碳3-5份,二硫化钼1-2份,润滑剂2-3份。
本技术的目的还采用以下技术措施来进一步实现。
前述的粉末冶金材料,其组分及各组分的质量份数为:铁90-100份,钛5-6份,锑2-3份,钙2-3份,铝1-2份,碳3-5份,二硫化钼1-2份,润滑剂2-3份。
本技术提出的粉末冶金材料,采用了多种金属原料和碳、二硫化钼、润滑剂等添加剂按照特定配比制成,融合性好。
粉末冶金工艺及材料粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。
但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。
粉末冶金材料和工艺与传统材料工艺相比,具有以下特点:1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。
2.提高材料性能。
用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。
3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。
提高材料利用率,降低成本。
粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni 等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。
随着粉末冶金生产技术的发展,粉末冶金及其制品将在更加广泛的应用。
1粉末冶金基础知识⒈1粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
图7.1.1描绘了由若干一次颗粒聚集成二次颗粒的情形。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
1.2粉末冶金的机理1.压制的机理压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。
钢模冷压成形过程如图7.1.2所示。
粉末装入阴模,通过上下模冲对其施压。
在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。
2.等静压制压力直接作用在粉末体或弹性模套上,使粉末体在同一时间内各个方向上均衡受压而获得密度分布均匀和强度较高的压坯的过程。
按其特性分为冷等静压制和热等静压制两大类。
⑴冷等静压制即在室温下等静压制,液体为压力传递媒介。
将粉末体装入弹性模具内,置于钢体密封容器内,用高压泵将液体压入容器,利用液体均匀传递压力的特性,使弹性模具内的粉末体均匀受压。
因此,冷等静压制压坯密度高,较均匀,力学性能较好,尺寸大且形状复杂,已用于棒材、管材和大型制品的生产。
⑵热等静压制把粉末压坯或装入特制容器内的粉末体置入热等静压机高压容器中,施以高温和高压,使这些粉末体被压制和烧结成致密的零件或材料的过程。
在高温下的等静压制,可以激活扩散和蠕变现象的发生,促进粉末的原子扩散和再结晶及以极缓慢的速率进行塑性变形,气体为压力传递媒介。
粉末体在等静压高压容器内同一时间经受高温和高压的联合作用,强化了压制与烧结过程,制品的压制压力和烧结温度均低于冷等静压制,制品的致密度和强度高,且均匀一致,晶粒细小,力学性能高,消除了材料内部颗粒间的缺陷和孔隙,形状和尺寸不受限制。
但热等静压机价格高,投资大。
热等静压制已用于粉末高速钢、难熔金属、高温合金和金属陶瓷等制品的生产。
3.粉末轧制将粉末通过漏斗喂入一对旋转轧辊之间使其压实成连续带坯的方法。
将金属粉末通过一个特制的漏斗喂入转动的轧辊缝中,可轧出具有一定厚度、长度连续、强度适宜的板带坯料。
这些坯体经预烧结、烧结,再轧制加工及热处理等工序,就可制成具有一定孔隙度的、致密的粉末冶金板带材。
粉末轧制制品的密度比较高,制品的长度原则上不受限制,轧制制品的厚度和宽度会受到轧辊的限制;成材率高为80%~90%,熔铸轧制的仅为60%或更低。
粉末轧制适用于生产多孔材料、摩擦材料、复合材料和硬质合金等的板材及带材。
4.粉浆浇注是金属粉末在不施加外力的情况下成形的,即将粉末加水或其它液体及悬浮剂调制成粉浆,再注入石膏模内,利用石膏模吸取水分使之干燥后成形。
常用的悬浮剂有聚乙烯醇、甘油、藻肮酸钠等,作用是防止成形颗粒聚集,改善润湿条件。
为保证形成稳定的胶态悬浮液,颗粒尺寸不大于5μm~10μm,粉末在悬浮液中的质量含量为40%~70%。
粉浆成形工艺参见本书6.2.2。
5.挤压成形将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(40℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
挤压成形能挤压出壁很薄直经很小的微形小管,如厚度仅0.01mm,直径1m m的粉末冶金制品;可挤压形状复杂、物理力学性能优良的致密粉末材料,如烧结铝合金及高温合金。
挤压制品的横向密度均匀,生产连续性高,因此,多用于截面较简单的条、棒和螺旋形条、棒(如麻花钻等)。
6.松装烧结成形粉末未经压制而直接进行烧结,如将粉末装入模具中振实,再连同模具一起入炉烧结成形,用于多孔材料的生产;或将粉末均匀松装于芯板上,再连同芯板一起入炉烧结成形,再经复压或轧制达到所需密度,用于制动摩擦片及双金属材料的生产。
将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(40℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
7.爆炸成形借助于爆炸波的高能量使粉末固结的成形方法。
爆炸成形的特点是爆炸时产生压力很高,施于粉末体上的压力速度极快。
如炸药爆炸后,在几微秒时间内产生的冲击压力可达106MPa(相当于107个大气压),比压力机上压制粉末的单位压力要高几百倍至几千倍。
爆炸成形压制压坯的相对密度极高,强度极佳。
如用炸药爆炸压制电解铁粉,压坯的密度接近纯铁体的理论密度值。
爆炸成形可加工普通压制和烧结工艺难以成形的材料,如难熔金属、高合金材料等,还可压制普通压力无法压制的大型压坯。
除上述方法外,还有注射成形及热等静压制新技术等新的成形方法。
2.烧结的机理烧结是粉末或压坯在低于其主要组分熔点温度以下的热处理过程,目的是通过颗粒间的冶金结合以提高其强度。
随着温度升高,粉末或压坯中产生一系列的物理、化学变化:水和有机物的蒸发或挥发、吸附气体的排除、应力消除以及粉末颗粒表面氧化物的还原等,接着粉末表层原子间的相互扩散和塑性流动。
随着颗粒间接触面的增大,会产生再结晶和晶粒长大,有时出现固相的熔化和重结晶。
以上各过程常常会相互重叠,相互影响,使烧结过程变得十分复杂。
烧结过程中制品显微组织的变化如图7.1.3所示。
2粉末冶金工艺2.1粉末制备金属粉末的制备方法分为两大类:机械法和物理化学法。
还有新研制的机械合金化法,汞齐法、蒸发法、超声粉碎法等超微粉末制造技术。
制备方法决定着粉末的颗粒大小、形状、松装密度、化学成分、压制性、烧结性等。
2.2粉末的预处理粉末的预处理包括粉末退火、分级、混合、制粒、加润滑剂等。
1.退火粉末的预先退火可以使氧化物还原,降低碳和其它杂质的含量,提高粉末的纯度;同时,还能消除粉末的加工硬化、稳定粉末的晶体结构。
退火温度根据金属粉末的种类而不同,通常为金属熔点的0.5~0.6K。
通常,电解铜粉的退火温度约为300,电解铁粉或电解镍粉的约为700℃,不能超过900℃。
退火一般用还原性气氛,有时也用真空或惰性气氛。
2.分级将粉末按粒度大小分成若干级的过程。
分级使配料时易于控制粉末的粒度和粒度分布,以适应成形工艺要求,常用标准筛网筛分进行分级。
3.混合指将两种或两种以上不同成分的粉末均匀化的过程。
混合基本上有两种方法:机械法和化学法,广泛应用的是机械法,将粉末或混合料机械的掺和均匀而不发生化学反应。
机械法混料又可分为干混和湿混,铁基等制品生产中广泛采用干混;制备硬质合金混合料则常使用湿混。
湿混时常用的液体介质为酒精、汽油、丙酮、水等。
化学法混料是将金属或化合物粉末与添加金属的盐溶液均匀混合;或者是各组元全部以某种盐的溶液形式混合,然后经沉淀、干燥和还原等处理而得到均匀分布的混合物。
常需加入的添加剂,用于提高压坯强度或防止粉末成分偏析的增塑剂(汽油、橡胶溶液、石蜡等),用于减少颗粒间及压坯与模壁间摩擦的润滑剂(硬质酸锌、二硫化钼等)。
4.制粒将小颗粒的粉末制成大颗粒或团粒的工序,常用来改善粉末的流动性。
常用的制粒设备有振动筛、滚筒制粒机、圆盘制粒机等。
2.3成形成形是将粉末转变成具有所需形状的凝聚体的过程。
常用的成形方法有模压、轧制、挤压、等静压、松装烧结成形、粉浆浇注和爆炸成形等。
1.模压即粉末料在压模内压制。
室温压制时一般需要约1吨/厘米2以上的压力,压制压力过大时,影响加压工具;并且有时坯体发生层状裂纹、伤痕和缺陷等。
压制压力的最大限度为12—15吨/厘米2。
超过极限强度后,粉末颗粒发生粉碎性破坏。
图7.2.1常用的模压方法1、8—固定模冲2、6—固定阴模3—粉末4、5、7、10—运动模冲9—浮动阴模常用的模压方法有单向压制、双向压制、浮动模压制等。