2020年北京市中考数学模拟试题(含答案)
- 格式:doc
- 大小:759.00 KB
- 文档页数:11
北京市丰台区2020年中考数学综合练习(一)一.选择题(共8小题)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数将不少于16000000次.将16000000科学记数法表示应为()A.16×106B.1.6×107C.0.16×108D.1.6×1083.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°5.若一个多边形的每个内角均为120°,则该多边形是()A.四边形B.五边形C.六边形D.七边形6.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物重量x(kg)0.5 1.0 1.5 2.0 2.5当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A.22.5B.25C.27.5D.308.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围为.10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.11.能说明命题“若a>b,则ac>bc”是假命题的一个c值是.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.14.如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是.15.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为元.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为.三.解答题(共8小题)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).18.计算:()﹣1﹣6tan30°﹣(﹣1)0+.19.解不等式组:.20.关于x的一元二次方程x2+(m﹣3)x﹣3m=0.(1)求证:方程总有两个实数根;(2)若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.21.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.22.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.23.在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.24.某年级共有400学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为分;(3)请你估计该年级采用公共交通方式上学共有人,其中单程不少于60分钟的有人.25.在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD 和线段EF都没有公共点,请直接写出m的取值范围.26.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.27.在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是E、F;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为(﹣3,3);(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.参考答案与试题解析一.选择题(共8小题)1.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项正确;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:A.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数将不少于16000000次.将16000000科学记数法表示应为()A.16×106B.1.6×107C.0.16×108D.1.6×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将16000000用科学记数法表示为:1.6×107.故选:B.3.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°【分析】利用平行线的性质解决问题即可.【解答】解:∵a∥b,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=(180°﹣80°)=50°,故选:A.5.若一个多边形的每个内角均为120°,则该多边形是()A.四边形B.五边形C.六边形D.七边形【分析】首先可求得每个外角为60°,然后根据外角和为360°即可求得多边形的边数.【解答】解:180°﹣120°=60°,360°÷60°=6.故选:C.6.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=,由a2+3a﹣2=0,得到a2+3a=2,则原式=,故选:B.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物重量x(kg)0.5 1.0 1.5 2.0 2.5当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A.22.5B.25C.27.5D.30【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=5时,代入函数解析式求值即可.【解答】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,将(0.5,16)、(1.0,17)代入,得:,解得:,∴L与x之间的函数关系式为:L=2x+15;当x=5时,L=2×5+15=25(cm)故重物为5kg时弹簧总长L是25cm,故选:B.8.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③【分析】根据题意在坐标系中画出对应的图象即可.【解答】解:如图所示:①中,与x=6的交点大于75,故错误②中,乙与x=6的交点大于甲与x=6的交点,所以期末总评成绩乙大于甲,正确③中,由图象可知,期末总评成绩占60%,故错误故选:C.二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围为x≥2.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.10.有一个质地均匀的正方体,六个面上分别标有1~6这六个整数,投掷这个正方体一次,则向上一面的数字是偶数的概率为.【分析】由质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的有3种情况,∴投掷这个骰子一次,则向上一面的数字是偶数的概率为:=.故答案为:.11.能说明命题“若a>b,则ac>bc”是假命题的一个c值是0(答案不唯一).【分析】举出一个能使得ac=bc或ac<bc的一个c的值即可.【解答】解:若a>b,当c=0时ac=bc=0,故答案为:0(答案不唯一).12.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是60°.【分析】根据垂径定理求出=,求出、、的度数,即可求出答案.【解答】解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵=,∴==,即、、的度数是=120°,∴∠ACD=°=60°,故答案为:60°.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得:y﹣x =4.5;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:;组成方程组即可.【解答】解:根据题意得:;故答案为:.14.如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是.【分析】由△EDF∽△CBF,可得=,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC.AD=BC,设AD=3a,则AE=a,∵DE∥BC,∴△EDF∽△CBF,∴===故答案为.15.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为80元.【分析】分5种方案计算费用比较即可.【解答】解:连续6天不限次数乘坐地铁有5种方案方案①:买一日票6张,费用20×6=120(元)方案②:买二日票3张:30×3=90(元)方案③:买三日票2张:40×2=80(元)方案④:买一日票1张,五日票1张:20+70=90(元)方案⑤:买七日票1张:90元故方案③费用最低:40×2=80(元)故答案为80.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D 是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为4.【分析】连接CD.根据直角三角形斜边中线的性质求出CD=A′B′=2,利用三角形的三边关系即可解决问题.【解答】解:连接CD,在Rt△ABC中,∵∠ACB=90°,BC=2,∠ABC=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵DB′=DA′,∴CD=A′B′=2,∴BD≤CD+CB=4,∴BD的最大值为4,故答案为4.三.解答题(共8小题)17.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行)(填推理依据).【分析】(1)根据要求作图即可;(2)根据等腰三角形的性质和平行线的判定及角平分线的定义求解可得.【解答】解:(1)如图所示:直线PE即为所求.(2)证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=∠PEA,∴∠PEA=∠CAD,∴PE∥BC.(内错角相等两直线平行).故答案为:∠PEA,∠CAD,内错角相等两直线平行.18.计算:()﹣1﹣6tan30°﹣(﹣1)0+.【分析】原式利用零指数幂、负整式指数幂法则,特殊角的三角函数值计算即可求出值.【解答】解:原式=2﹣6×﹣1+2=1.19.解不等式组:.【分析】分别求得各不等式的解集,然后求得公共部分即可.【解答】解:由①得x≤2;由②得x>﹣1;故不等式组的解集为﹣1<x≤2.20.关于x的一元二次方程x2+(m﹣3)x﹣3m=0.(1)求证:方程总有两个实数根;(2)若方程的两个根都是整数,请写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先求出判别式△的值,再根据“△”的意义证明即可;(2)根据求根公式得出x1=3,x2=﹣m,即可求出m的值和方程的根.【解答】(1)证明:△=(m﹣3)2﹣4×1×(﹣3m),=m2﹣6m+9+12m,=(m+3)2,无论m取任何实数,(m+3)2≥0,即△≥0,∴原方程总有两个实数根.(2)解:∵△=(m+3)2,由求根公式,得,,原方程的根为:x1=3,x2=﹣m,∵方程的两个根都是整数,∴取m=1,方程的两根为x1=3,x2=﹣1.21.如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,ED=6,求BG的长.【分析】(1)由角平分线的性质和垂直平分线的性质可证∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,由菱形的判定可证结论;(2)过点D作DH⊥BC,由菱形的性质可得DE=DG=6,DG∥EC,由直角三角形的性质可得BH=DH=3,HG=DH=3,即可求BG的长.【解答】解:(1)∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC∴∠EDC=∠DCG=∠ACD=∠GDC∴CE∥DG,DE∥GC∴四边形DECG是平行四边形,且DE=EC∴四边形DGCE是菱形;(2)如图,过点D作DH⊥BC,∵四边形DGCE是菱形,∴DE=DG=6,DG∥EC∴∠ACB=∠DGB=30°,且DH⊥BC∴DH=3,HG=DH=3∵∠B=45°,DH⊥BC∴∠B=∠BDH=45°∴BH=DH=3∴BG=BH+HG=3+322.如图,AB与⊙O相切于点A,P为OB上一点,且BP=BA,连接AP并延长交⊙O于点C,连接OC.(1)求证:OC⊥OB;(2)若⊙O的半径为4,AB=3,求AP的长.【分析】(1)由等腰三角形的性质可得∠BAP=∠BP A,可证∠BAP+∠P AO=90°,∠C+∠CPO=90°,结论得证;(2)作BD⊥AP于点D,先求出OB,OP的长,再求出CP长,根据△BPD∽△CPO,得出比例线段,求PD的长,则AP可求.【解答】(1)证明:∵AB=BP,∴∠BAP=∠BP A,∵AB与⊙O相切于点A,∴OA⊥BA,∴∠BAO=90°,即∠BAP+∠P AO=90°,∵OA=OC,∴∠P AO=∠C,∵∠BP A=∠CPO,∴∠C+∠CPO=90°,∴∠COP=90°,即CO⊥BO;(2)解:如图,作BD⊥AP于点D,在Rt△ABO中,AB=3,OA=4,则BO=5,OP=2,在Rt△CPO中,PO=2,CO=4,则CP=2,∵BA=BP,∴AD=PD,由(1)知∠COP=90°,∵∠BDP=90°,∠BPD=∠CPO,∴△BPD∽△CPO,∴,即,∴PD=,∴AP=2PD=.23.在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y=(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.【分析】(1)由点A的横坐标利用反比例函数图象上点的坐标特征可求出n值,进而可得出点A的坐标,由点A的坐标利用待定系数法可求出k值;(2)分AB=AO,OA=OB,BO=BA三种情况考虑:①当AB=AO时,利用等腰三角形的性质可求出CB1的长度,结合点C的坐标可得出点B1的坐标;②当OA=OB时,由点A的坐标利用勾股定理可求出OA的长度,利用等腰三角形的性质可得出OB2的长度,进而可得出点B2的坐标;③当BO=BA时,设OB3=m,则CB3=4﹣m,AB3=m,在Rt△ACB3中利用勾股定理可得出关于m的方程,解之即可得出点B3的坐标.综上,此题得解.【解答】解:(1)∵点A(2,n)在双曲线y=上,∴n==4,∴点A的坐标为(2,4).将A(2,4)代入y=kx,得:4=2k,解得:k=2.(2)分三种情况考虑,过点A作AC⊥y轴于点C,如图所示.①当AB=AO时,CO=CB1=4,∴点B1的坐标为(0,8);②当OA=OB时,∵点A的坐标为(2,4),∴OC=4,AC=2,∴OA==2,∴OB2=2,∴点B2的坐标为(0,2);③当BO=BA时,设OB3=m,则CB3=4﹣m,AB3=m,在Rt△ACB3中,AB32=CB32+AC2,即m2=(4﹣m)2+22,解得:m=,∴点B3的坐标为(0,).综上所述:点B的坐标为(0,8),(0,2),(0,).24.某年级共有400学生,为了解该年级学生上学的交通方式,从中随机抽取100名学生进行问卷调查,并对调查数据进行整理、描述和分析,下面给出了部分信息.a.不同交通方式学生人数分布统计图如图1所示:b.采用公共交通方式单程所花费时间(分)的频数分布直方图如图2所示(数据分成6组:10≤x<20,20≤x<30,30≤x<40,40≤x<50,50≤x<60,60≤x≤70):c.采用公共交通方式单程所花费时间在30≤x<40这一组的是:30 30 31 31 32 33 33 34 35 35 36 37 38 39根据以上信息,回答下列问题:(1)补全频数分布直方图;(2)采用公共交通方式单程所花费时间的中位数为31分;(3)请你估计该年级采用公共交通方式上学共有200人,其中单程不少于60分钟的有8人.【分析】(1)用被抽查总人数乘以乘公共交通对应的百分比可得其人数,再减去其它分组的人数求出40≤x<50的人数,从而补全图形;(2)根据中位数的概念计算可得;(3)利用样本估计总体思想计算可得.【解答】解:(1)∵选择公共交通的人数为100×50%=50(人),∴40≤x<50的人数为50﹣(5+17+14+4+2)=8(人),补全直方图如下:(2)采用公共交通方式单程所花费时间共50个数据,其中位数是第25、26个数据的平均数,所以采用公共交通方式单程所花费时间的中位数是=31(分),故答案为:31;(3)估计该年级采用公共交通方式上学共有400×50%=200(人),其中单程不少于60分钟的有200×=8(人),故答案为:200、8.25.在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD 和线段EF都没有公共点,请直接写出m的取值范围.【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点.【专题】535:二次函数图象及其性质.【分析】(1)利用配方法得y═m(x﹣3)2+1,由此即可得出顶点坐标;(2)根据抛物线的对称轴以及AB=4,即可得到A、B两点的坐标,代入抛物线即可求出m的值;(3)结合图象即可得出当抛物线与线段CD和线段EF都没有公共点时m的取值范围.【解答】解:(1)∵y=mx2﹣6mx+9m+1=m(x﹣3)2+1,∴抛物线的顶点坐标为(3,1);(2)∵对称轴为直线x=3,且AB=4,∴A(1,0),B(5,0),将点A的坐标代入抛物线,可得:m=﹣;(3)如图:①当m>0时满足,解得:m>;②当m<时满足0,解得:m<﹣1;]综上,m<﹣1或m>.26.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△P AP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【解答】解:(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=∠ADC=45°;(2)结论:BP+DP=AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠P AP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=AC•C'G,Rt△ABC中,AB=BC=,∴AC==2,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD=C'D=,OD=AC=1,∴C'G=﹣1,∴S△AC'C=AC•C'G==﹣1.27.在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是E、F;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为(﹣3,3);(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.【考点】MR:圆的综合题.【专题】21:阅读型;23:新定义.【分析】(1)①找到x、y轴距离最大为3的点即可;②先分析出直线上的点到x、y轴距离中有3的点,再根据“等距点”概念进行选择即可;(2)先求出C、D点坐标以及CD长度,分析出N点到坐标轴距离中最小距离为,从而确定r的最小值,根据CD长度确定r的最大值.【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②点B在直线y=x+6上,当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)∵T1(﹣1,t1)、T2(4,t2)是直线l上的两点,∴t1=﹣k﹣3,t=4k﹣3.∵k>0,∴|﹣k﹣3|=k+3>3,4k﹣3>﹣3.依据“等距点”定义可得:当﹣3<4k﹣3<4时,k+3=4,解得k=1;当4k﹣3≥4时,k+3=4k﹣3,解得k=2.综上所述,k的值为1或2.②∵k=1,∴y=x﹣3与坐标轴交点C(0,﹣3)、D(3,0),线段CD=3.N点在CD上,则N点到x、y轴的距离最大值中最小数为,若半径为r的⊙O上存在一点M与N是“等距点”,则r最小值为,r的最大值为CD长度3.所以r的取值范围为≤r≤3.故答案为E、F;(﹣3,3)。
2023年北京市中考数学模拟试题一.选择题(共8小题,满分16分,每小题2分)1.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7 2.(2分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a+b>0B.ab>0C.|a|>|b|D.a>b3.(2分)下列计算正确的是()A.3a2+4a2=7a4B.C.D.4.(2分)如图,在科学《光的反射》活动课中,小麦同学将支架平面镜放置在水平桌面MN上,镜面AB的调节角(∠ABM)的调节范围为12°~69°,激光笔发出的光束DG 射到平面镜上,若激光笔与水平天花板(直线EF)的夹角∠EPG=30°,则反射光束GH与天花板所形成的角(∠PHG)不可能取到的度数为()A.129°B.72°C.51°D.18°5.(2分)从甲、乙、丙、丁四名青年骨干教师中随机选取两名去参加“同心向党”演讲比赛,则恰好抽到甲、丙两人的概率是()A.B.C.D.6.(2分)若反比例函数y=的图象位于第二、第四象限,则k的取值范围是()A.k>B.k<C.k=D.不存在7.(2分)如图,▱ABCD的三个顶点A、B、D均在⊙O上,且对角线AC过圆心O,BC与⊙O相切于点B,若⊙O的半径为6,则▱ABCD的面积为()A.35B.C.D.8.(2分)已知A地、B地、医院在同一直线上,甲从A地、乙从B地同时出发骑车去医院注射新冠疫苗,甲和乙出发2分钟后第一次相遇,第一次相遇后不久甲的自行车出现故障,甲立即改为步行(中间耽搁时间忽略不计),甲比乙晚2分钟到达该医院,设甲、乙两人与A地的距离为y米,甲行驶的时间为x分钟,y与x之间的函数关系如图所示,则下列说法中错误的是()A.甲骑车速度为250米/分,甲步行速度为100米/分B.A,B两地之间的距离为200米C.甲和乙第二次相遇时,离医院还有600米的路程D.甲和乙第二次相遇的时间是出发后13分钟二.填空题(共8小题,满分16分,每小题2分)9.(2分)若m=﹣+2,则a m=.10.(2分)因式分解:3mn2﹣12mn+12m=.11.(2分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.则∠A′OB=.12.(2分)“两个无理数的和为无理数”是命题,举反例:.13.(2分)若方程x2﹣kx+2k﹣1=0的两根分别为x1,x2,且x1<0<x2<1,则k的取值范围是.14.(2分)已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.15.(2分)已知如图,在△ABC中,∠BAE=∠CAE,BE⊥AE于点E,若∠ABC=3∠ACB,则AB,AC,BE之间的数量关系.16.(2分)在如图所示的运算程序中,若输出的数y=30,则输入的数x=.三.解答题(共12小题,满分68分)17.(5分)计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.18.(5分)已知关于x的不等式组无解,求:a的取值范围.19.(5分)已知a2+2a﹣1=0,求代数式(a﹣1)(a+1)+2(a﹣1)的值.20.(5分)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=∠BAC()(填推理的依据).∴∠ABP=∠BAC.21.(5分)如图,在△ABC中,AB=AC,D、E、F分别是AB、BC、AC边的中点.(1)求证:四边形ADEF是菱形;(2)若AB=8cm,求菱形ADEF的周长.22.(5分)如图,反比例函数y=的图象与一次函数y=kx﹣b的图象交于点M,N,已点M的坐标为(1,3),点N的纵坐标为﹣1,根据图象信息:(1)求关于x的方程=kx﹣b的解;(2)直接写出满足>kx﹣b的x的范围.23.(6分)原定2020年东京奥运会受新冠病毒疫情影响将延期至2021年举行.日本政府为鼓励更多大学生参与到志愿服务中来,面向全球招募志愿者.甲、乙两所大学组织参与了志愿者服务团队选拔活动.经过初选,两所大学各有500名志愿者进入综合素质展示环节.为了解两所大学志愿者的整体情况,从两所大学进入综合素质展示环节的志愿者中,分别随机抽取了50名志愿者的综合素质展示成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.甲校志愿者成绩的频数分布直方图如下,(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.甲校志愿者成绩在80≤x<90这一组的是:8080818182838384858686.5878888.58989 C.甲乙两校志愿者成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:平均数中位数众数方差优秀率甲83.3m7832.2n%乙83.383.57832.148%根据以上信息,回答下列问题:(1)m,n=,甲校志愿者A,乙校志愿者B综合素质展示成绩同为82分,这两人在本校志愿者中的综合素质展示排名更靠前的是(填A或B);(2)根据上述信息,推断(填甲或乙)学校志愿者综合素质展示的水平更高,理由为(一条理由即可);(3)请估计在甲乙两所学校进入综合素质展示环节的1000名学生中,成绩在85分及以上共有多少名学生?24.(6分)如图,AB是⊙O的直径,CD与⊙O相切于D,作CH⊥AB于H,交⊙O于E,交AD于F,若AE∥CD.(1)求证:AE=EF;(2)若cos C=,AB=,求AF的长.25.(5分)某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?26.(7分)在平面直角坐标系中,记函数y=的图象为G,正方形ABCD的对称中心与原点重合,顶点A的坐标为(2,2),点B在第四象限.(1)当n=1时.①求G的最低点的纵坐标;②求图象G上所有到x轴的距离为2的点的横坐标之和.(2)当图象G与正方形ABCD的边恰好有两个公共点时,直接写出n的取值范围.27.(7分)如图,在△ABC中,点D在BC上,点E在AD上,已知∠ABE=∠ACE,∠BED=∠CED.试说明BE=CE的理由.28.(7分)已知:如图1,△ABC中,AB=AC=10cm,BC=16cm,动点P从点C出发沿线段CB以2cm/s的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的圆Q与射线BA,线段BC分别交于点D,E.(1)当△APC是等腰三角形时,求t的值;(2)设BE=y,求BE与t的函数解析式,且写出t的取值范围;(3)如图2,连接DP,当t为何值时,线段DP与⊙Q相切?(4)如图2,若⊙Q与线段DP只有一个公共点,求t的取值范围.参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.2.(2分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a+b>0B.ab>0C.|a|>|b|D.a>b【考点】实数与数轴;绝对值.【分析】根据数轴上点与原点的位置,确定各数符号及绝对值大小即可得到答案.【解答】解:由图可得:a<0<b,且|a|<|b|,∴a+b>0,A符合题意;ab<0,B不符合题意;|a|<|b|,C不符合题意;a<b,D不符合题意;故选:A.3.(2分)下列计算正确的是()A.3a2+4a2=7a4B.C.D.【考点】二次根式的加减法;合并同类项;分式的加减法;二次根式的性质与化简.【分析】根据整式的加减、二次根式的乘法法则、二次根式的减法法则、分式的加减运算法则对每一项判断即可得到正确选项.【解答】解:A.∵3a2+2a2=5a2,∴3a2+4a2=7a4错误,故A项不符合题意;B.∵,当a>0时,;当a<0时,,∴错误,故B项不符合题意;C.∵,∴错误,故C项不符合题意;D.∵,∴正确,故D项符合题意.故选:D.4.(2分)如图,在科学《光的反射》活动课中,小麦同学将支架平面镜放置在水平桌面MN上,镜面AB的调节角(∠ABM)的调节范围为12°~69°,激光笔发出的光束DG 射到平面镜上,若激光笔与水平天花板(直线EF)的夹角∠EPG=30°,则反射光束GH与天花板所形成的角(∠PHG)不可能取到的度数为()A.129°B.72°C.51°D.18°【考点】平行线的性质.【分析】当调节角为60°时,PG⊥AB,所以当调节角在12°~60°时,GH射到EP上,根据角的关系确定∠PHG的范围;当调节角在60°~69°时,GH射到PF上,根据角的关系确定∠PHG的范围,最后根据∠PHG的范围确定∠PHG不可能取到的度数.【解答】解:因为镜面AB的调节角(∠ABM)的调节范围为12°~69°,当调节角为60°时,PG⊥AB,所以当调节角在12°~60°时,GH射到EP上,且∠PGH=2×(60°﹣∠ABM),则∠PHG=180°﹣30°﹣∠PHG,那么54°≤∠PHG<150°;当调节角在60°~69°时,GH射到PF上,∠PGH=2×(∠ABM﹣60°),∠PHG=180°﹣150°﹣∠PHG,则此时12°≤∠PHG<30°,当调节角为60°时,H与P重叠.故选:C.5.(2分)从甲、乙、丙、丁四名青年骨干教师中随机选取两名去参加“同心向党”演讲比赛,则恰好抽到甲、丙两人的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图,共有12种等可能的结果,恰好抽到甲、丙两人的结果有2种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,恰好抽到甲、丙两人的结果有2种,∴恰好抽到甲、丙两人的概率为=,故选:B.6.(2分)若反比例函数y=的图象位于第二、第四象限,则k的取值范围是()A.k>B.k<C.k=D.不存在【考点】反比例函数的性质;反比例函数的图象.【分析】利用反比例函数的图象和反比例系数的关系求出k的取值范围.【解答】解:∵反比例函数y=的图象位于第二、第四象限,∴3k﹣1<0,∴k<,故选:B.7.(2分)如图,▱ABCD的三个顶点A、B、D均在⊙O上,且对角线AC过圆心O,BC与⊙O相切于点B,若⊙O的半径为6,则▱ABCD的面积为()A.35B.C.D.【考点】切线的性质;平行四边形的性质;圆周角定理.【分析】连接OB,延长BO交AD于E,如图,先根据切线的性质得OB⊥BC,再利用平行四边形的性质得AD∥BC,AD=BC,所以BE⊥AD,接着根据垂径定理得到AE=DE,然后证明△AOE∽△COB,利用相似比求出OE=3,OC=12,则根据勾股定理可计算出BC,然后利用平行四边形的面积公式求解.【解答】解:连接OB,延长BO交AD于E,如图,∵BC与⊙O相切于点B,∴OB⊥BC,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴BE⊥AD,∴AE=DE=AD=BC,∵AD∥BC,∴AE∥BC∴△AOE∽△COB,∴,∴OE=OB=3,OC=2OA=12,在Rt△OCB中,BC=,∴▱ABCD的面积=BE•BC=(3+6)×6.故选B.8.(2分)已知A地、B地、医院在同一直线上,甲从A地、乙从B地同时出发骑车去医院注射新冠疫苗,甲和乙出发2分钟后第一次相遇,第一次相遇后不久甲的自行车出现故障,甲立即改为步行(中间耽搁时间忽略不计),甲比乙晚2分钟到达该医院,设甲、乙两人与A地的距离为y米,甲行驶的时间为x分钟,y与x之间的函数关系如图所示,则下列说法中错误的是()A.甲骑车速度为250米/分,甲步行速度为100米/分B.A,B两地之间的距离为200米C.甲和乙第二次相遇时,离医院还有600米的路程D.甲和乙第二次相遇的时间是出发后13分钟【考点】一次函数的应用.【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确.【解答】解:由图象可得,乙骑车的速度为:(2900﹣200)÷18=150(米/分),甲骑车速度为:(200+150×2)÷2=250(米/分),甲步行速度为:(2900﹣250×6)÷(18+2﹣6)=100(米/分),故选项A不符合题意;A、B两地的距离为200米,故选项B不符合题意;甲和乙第二次相遇的时间为x分钟,250×6+(x﹣6)×100=200+150x,解得x=14,故选项D符合题意,∴甲和乙第二次相遇时,离医院的路程是:150×(18﹣14)=600(米),故选项C不符合题意;故选:D.二.填空题(共8小题,满分16分,每小题2分)9.(2分)若m=﹣+2,则a m=81.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,求出a、m,根据有理数的乘方法则计算,得到答案.【解答】解:若和有意义,则9﹣a≥0,a﹣9≥0,解得,a=9,则m=2,∴a m=92=81,故答案为:81.10.(2分)因式分解:3mn2﹣12mn+12m=3m(n﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=3m(n2﹣4n+4)=3m(n﹣2)2,故答案为:3m(n﹣2)211.(2分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.则∠A′OB=60°.【考点】旋转的性质.【分析】根据旋转的性质可得∠A′OA=45°,∠AOB=∠A′OB′=15°,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA+∠A′OB′=45°+15°=60°,故答案是:60°.12.(2分)“两个无理数的和为无理数”是假命题,举反例:,﹣.【考点】命题与定理.【分析】判断一个命题是假命题时举出一个反例即可.【解答】解:两个无理数的和为无理数是假命题,如,﹣,故答案为:假;,﹣.13.(2分)若方程x2﹣kx+2k﹣1=0的两根分别为x1,x2,且x1<0<x2<1,则k的取值范围是0<k<.【考点】根的判别式.【分析】把题意转化为抛物线y=x2﹣kx+2k﹣1=0与x轴的两交点的横坐标分别为x1,x2,利用二次函数的性质得到2k﹣1<0且x=1时,y>0,即1﹣k+2k﹣1>0,然后解不等式组即可.【解答】解:∵方程x2﹣kx+2k﹣1=0的两根分别为x1,x2,∴抛物线y=x2﹣kx+2k﹣1=0与x轴的两交点的横坐标分别为x1,x2,∵抛物线开口向上,x1<0<x2<1,∴2k﹣1<0且x=1时,y>0,即1﹣k+2k﹣1>0,∴0<k<.故答案为0<k<.14.(2分)已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是﹣1<x<5.【考点】二次函数与不等式(组).【分析】观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即可求解.【解答】解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.15.(2分)已知如图,在△ABC中,∠BAE=∠CAE,BE⊥AE于点E,若∠ABC=3∠ACB,则AB,AC,BE之间的数量关系BE=(AC﹣CD).【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由“ASA”可证△AEB≌△AED,可得AD=AB,BE=ED,∠ABD=∠ADB,由角的数量关系可求∠DBC=∠ACB,可得BD=CD,可得BE=(AC﹣CD).【解答】解:在△AEB和△AED中,,∴△AEB≌△AED(ASA),∴AD=AB,BE=ED,∠ABD=∠ADB,∴CD=AC﹣AD,∵∠ADB=∠ACB+∠DBC,∴∠ABD=∠ACB+∠DBC,∵∠ABC=3∠ACB,∴∠ABD+∠DBC=∠ACB+2∠DBC=3∠ACB,∴∠DBC=∠ACB,∴BD=CD,∴BE=(AC﹣CD),故答案为:BE=(AC﹣CD).16.(2分)在如图所示的运算程序中,若输出的数y=30,则输入的数x=60或61.【考点】有理数的混合运算.【分析】分x为偶数与奇数两种情况,利用计算程序即可得出x的值.【解答】解:若x为偶数,30×2=60;若x为奇数,30×2+1=61.则x=60或61.故答案为:60或61.三.解答题(共12小题,满分68分)17.(5分)计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】分别计算出(3.14﹣π)0=1,|﹣1|=﹣1,2cos45°=2×=,+(﹣1)2019=1即可求解;【解答】解:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019=1+﹣1﹣2×﹣1=﹣1;18.(5分)已知关于x的不等式组无解,求:a的取值范围.【考点】解一元一次不等式组.【分析】根据不等式组中不等式的解集和已知得出即可.【解答】解:∵关于x的不等式组无解,∴a的取值范围为a≥2.19.(5分)已知a2+2a﹣1=0,求代数式(a﹣1)(a+1)+2(a﹣1)的值.【考点】整式的混合运算—化简求值;一元二次方程的解.【分析】根据整式的运算法则进行化简,然后将a2+2a=1整体代入即可求出答案.【解答】解:原式=a2﹣1+2a﹣2=a2+2a﹣3,当a2+2a=1时,原式=1﹣3=﹣2.20.(5分)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=∠BAC(同弧所对的圆周角等于该弧所对的圆心角的一半)(填推理的依据).∴∠ABP=∠BAC.【考点】作图—复杂作图;等腰三角形的性质;圆周角定理.【分析】(1)根据作法即可补全图形;(2)根据等腰三角形的性质和同弧所对圆周角等于该弧所对的圆心角的一半即可完成下面的证明.【解答】解:(1)如图,即为补全的图形;(2)证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=∠BAC(同弧所对的圆周角等于该弧所对的圆心角的一半),∴∠ABP=∠BAC.故答案为:∠BPC,同弧所对的圆周角等于该弧所对的圆心角的一半.21.(5分)如图,在△ABC中,AB=AC,D、E、F分别是AB、BC、AC边的中点.(1)求证:四边形ADEF是菱形;(2)若AB=8cm,求菱形ADEF的周长.【考点】菱形的判定与性质;等腰三角形的性质;三角形中位线定理.【分析】(1)由三角形中位线定理得DE=AC=AF,EF=AB=AD,再证AD=DE =EF=AF,即可得出结论;(2)由(1)可知,AD=DE=EF=AF=AB=4(cm),即可得出结论.【解答】(1)证明:∵D、E、F分别是AB、BC、AC边的中点,∴DE、EF都是△ABC的中位线,∴DE=AC=AF,EF=AB=AD,∵AB=AC,∴AD=DE=EF=AF,∴四边形ADEF是菱形;(2)解:由(1)可知,AD=DE=EF=AF=AB=4(cm),∴菱形ADEF的周长为4×4=16(cm).22.(5分)如图,反比例函数y=的图象与一次函数y=kx﹣b的图象交于点M,N,已点M的坐标为(1,3),点N的纵坐标为﹣1,根据图象信息:(1)求关于x的方程=kx﹣b的解;(2)直接写出满足>kx﹣b的x的范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)用待定系数法求出两个函数的表达式,进而求出点N的坐标,进而求解;(2)观察函数图象即可求解.【解答】解:(1)由图可知,M(1,3)在的图象上,∴,即m=3,∴,令N(x,﹣1),∵N(x,﹣1)在的图象上,∴,即x=﹣3,∴N(﹣3,﹣1),又∵方程的解即为两个函数图象交点的横坐标,∴方程的解为:x1=﹣3,x2=1;(2)由图象可知满足的x的范围为x<﹣3或0<x<1.23.(6分)原定2020年东京奥运会受新冠病毒疫情影响将延期至2021年举行.日本政府为鼓励更多大学生参与到志愿服务中来,面向全球招募志愿者.甲、乙两所大学组织参与了志愿者服务团队选拔活动.经过初选,两所大学各有500名志愿者进入综合素质展示环节.为了解两所大学志愿者的整体情况,从两所大学进入综合素质展示环节的志愿者中,分别随机抽取了50名志愿者的综合素质展示成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.甲校志愿者成绩的频数分布直方图如下,(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.甲校志愿者成绩在80≤x<90这一组的是:8080818182838384858686.5878888.58989 C.甲乙两校志愿者成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:平均数中位数众数方差优秀率甲83.3m7832.2n%乙83.383.57832.148%根据以上信息,回答下列问题:(1)m81,n=40,甲校志愿者A,乙校志愿者B综合素质展示成绩同为82分,这两人在本校志愿者中的综合素质展示排名更靠前的是A(填A或B);(2)根据上述信息,推断乙(填甲或乙)学校志愿者综合素质展示的水平更高,理由为乙校的中位数、优秀率较甲校高(一条理由即可);(3)请估计在甲乙两所学校进入综合素质展示环节的1000名学生中,成绩在85分及以上共有多少名学生?【考点】频数(率)分布直方图;加权平均数;中位数;众数;方差;用样本估计总体.【分析】(1)根据中位数的意义,从甲校50名志愿者中找出成绩从小到大排列处于第25、26位的两个数,求其平均数即为甲校的中位数,计算甲校优秀率即可得出n的值,根据各自成绩与中位数的关系得出结论;(2)从中位数、优秀率进行判断即可;(3)样本估计总体,先求出样本中甲乙两校总体优秀率,进而求出优秀人数.【解答】解:(1)甲校50名志愿者的成绩从小到大排列后,处在第25、26位的两个数都在80≤x<90组内,前几组的频数和,2+3+7+10=22,因此80≤x<90这组的81、81处在中间位置,因此中位数是81,即m=81,由=40%可得n=40,甲校的志愿者A的得分82分,处在甲校中位数之上,而82分,处在乙校的中位数之下,因此排名在前是A,故答案为:81,40,A;(2)故答案为:乙,理由:乙校的中位数、优秀率较甲校高;(3)1000×=440(人),答:甲乙两所学校进入综合素质展示环节的1000名学生中,成绩在85分及以上共有440名学生.24.(6分)如图,AB是⊙O的直径,CD与⊙O相切于D,作CH⊥AB于H,交⊙O于E,交AD于F,若AE∥CD.(1)求证:AE=EF;(2)若cos C=,AB=,求AF的长.【考点】切线的性质;解直角三角形;圆周角定理.【分析】(1)连接OD,由切线的性质得出∠ODA+∠ADC=90°,由等腰三角形的性质得出∠ODA=∠OAD,得出∠OAD+∠ADC=90°,证得∠EAF=∠AFH,则可得出结论;(2)设EH=4x,AE=5x,则AH=3x,连接OE,由勾股定理得出,求出HF=1,则可得出答案.【解答】(1)证明:连接OD,如图1,∵CD与⊙O相切于D,∴OD⊥DC,∴∠ODA+∠ADC=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠ADC=90°,又∵CH⊥AB,∴∠AHC=90°,∴∠OAD+∠AFH=90°,∴∠ADC=∠AFH,∵AE∥CD,∴∠ADC=∠EAF,∴∠EAF=∠AFH,∴AE=EF;(2)解:∵AE∥CD,∴∠C=∠E,∴cos∠C=cos∠E=,设EH=4x,AE=5x,则AH=3x,连接OE,如图2,∵AB=,∴OA=OE=,∵EH2+OH2=OE2,∴,解得x=1,∴AE=EF=5,EH=4,AH=3,∴HF=1,∴AF==.25.(5分)某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?【考点】二次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)先表示出每天的获利,进而利用配方法结合二次函数增减性得出答案.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(20,250),(25,200)代入得:,解得:,∴y与x的函数关系式为:y=﹣10x+450;(2)设每天获利W元,W=(x﹣15)(﹣10x+450)=﹣10x2+600x﹣6750=﹣10(x﹣30)2+2250,∵a=﹣10<0,∴开口向下,∵对称轴为x=30,∴在x≤28时,W随x的增大而增大,∴x=28时,W=13×170=2210(元),最大值答:售价为28元时,每天获利最大为2210元.26.(7分)在平面直角坐标系中,记函数y=的图象为G,正方形ABCD的对称中心与原点重合,顶点A的坐标为(2,2),点B在第四象限.(1)当n=1时.①求G的最低点的纵坐标;②求图象G上所有到x轴的距离为2的点的横坐标之和.(2)当图象G与正方形ABCD的边恰好有两个公共点时,直接写出n的取值范围.【考点】二次函数综合题.【分析】(1)①画出函数图象,利用图象法解决问题即可.②求出图象G上所有到x轴的距离为2的横坐标即可解决问题.(2)求出经过特殊位置n的值结合图象判断即可.【解答】解:(1)①y=,函数图象如图所示:函数最低点的坐标(3,﹣9),∴图象G的最低点的纵坐标为﹣9.②当y=2时,x2+2x+2=2,解得x=﹣2或0(舍弃)x2﹣6x=2时,解得x=3+或3﹣(舍弃),当y=﹣2时,x2﹣6x=﹣2,解得x=3+或3﹣,∴图象G上所有到x轴的距离为2的横坐标之和=﹣2+3++3++3﹣=7+.(2)当y=x2+2nx+2n2的顶点落在AD边上时,n2=2,解得n=或﹣(舍弃)当n=时,y=x2+2nx+2n2(x<0)与边AD有一个交点,y=x2﹣6nx与边BC有一个交点,符合题意.当2n2≤2,解得n≤1或n≥﹣1,当y=x2﹣6nx经过(2,﹣2)时,n=,观察图象可知当<n≤1时,满足条件,当y=x2﹣6nx的顶点在BC边上时,﹣9n2=﹣2,解得n=或﹣(舍弃),当n=﹣1时,y=x2+2nx+2n2(x<0)与正方形的边没有交点,观察图象可知当﹣1<n<时,满足条件,综上所述,满足条件的n的值为﹣1<n<或<n≤1或n=.27.(7分)如图,在△ABC中,点D在BC上,点E在AD上,已知∠ABE=∠ACE,∠BED=∠CED.试说明BE=CE的理由.【考点】全等三角形的判定与性质.【分析】证明△AEB≌△AEC(AAS),可得结论.【解答】证明:∵∠AEB=180°﹣∠BED,∠AEC=180°﹣∠CED,∴∠AEB=∠AEC,在△AEB和△AEC中,,∴△AEB≌△AEC(AAS),∴BE=CE.28.(7分)已知:如图1,△ABC中,AB=AC=10cm,BC=16cm,动点P从点C出发沿线段CB以2cm/s的速度向点B运动,同时动点Q从点B出发沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止,设运动时间为t(单位:s),以点Q为圆心,BQ长为半径的圆Q与射线BA,线段BC分别交于点D,E.(1)当△APC是等腰三角形时,求t的值;(2)设BE=y,求BE与t的函数解析式,且写出t的取值范围;(3)如图2,连接DP,当t为何值时,线段DP与⊙Q相切?(4)如图2,若⊙Q与线段DP只有一个公共点,求t的取值范围.【考点】圆的综合题.【分析】(1)分类讨论当AP=CP或AC=CP或当点P到达点B时,分别求出t的值;(2)过点A作AN⊥BC与点N,连接DE,利用三角形相似得出比例式即可得出结论;(3)利用圆的切线的性质可得DP⊥BD,再利用直角三角形的边角关系列出等式即可得出结论;(4)分类讨论:①出发后到DP与圆相切时,②当点P与点E重合后,分别求出对应的t的取值范围即可.【解答】解:(1)①当AP=CP时,由题意:CP=2tcm,过点A作AN⊥BC与点N,过点P作PM⊥AC与点M,如图,∵AB=AC=10cm,BC=16cm,AN⊥BC,∴BN=NC=BC=8cm.∵AP=CP,PM⊥AC,∴CM=AC=5cm.∵∠CMP=∠CNA=90°,∠C=∠C,∴△CMP∽△CNA.∴.∴.∴t=;②当AC=CP时,如图,则2t=10,∴t=5;③当点P到达点B时,此时CP=CB,∴2t=16.∴t=8.综上,当△APC是等腰三角形时,t的值为或5或8;(2)由题意得:BQ=tcm,则BD=2tcm.过点A作AN⊥BC与点N,连接DE,如图,∵AB=AC,BC=16cm,AN⊥BC,∴BN=BC=8cm.∵BD是⊙Q的直径,∴DE⊥BE.∴DE∥AN,∴.∴.∴y=t,即BE=t(0≤t≤8).(3)由题意得:CP=2tcm,BD=2tcm,则BP=(16﹣2t)cm.过点A作AN⊥BC与点N,则BN=BC=8cm.∵线段DP与⊙Q相切,∴PD⊥BD.∴∠BDP=∠BNA=90°,∵∠B=∠B,∴△BDP∽△BNA,∴.∴.解得:t=,∴当t=s时,线段DP与⊙Q相切;(4)①出发后到DP与圆相切时,⊙Q与线段DP只有一个公共点,∴0<t≤.②当点P与点E重合后,点P在⊙Q内,此时⊙Q与线段DP只有一个公共点,∵点P与点E重合时,t+2t=16,解得:t=.∴<t<8.综上,当0<t≤或<t<8时,⊙Q与线段DP只有一个公共点.。
2020年北京市中考数学试题一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( ) A.B.C.D.3.如图,AB 和CD 相交于点O ,则下列结论正确是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠54.下列图形中,既是中心对称图形也是轴对称图形的是( )A. B.C. D.5.正五边形外角和为( ) A. 180°B. 360°C. 540°D. 720°6.实数在数轴上的对应点的位置如图所示.若实数满足,则的值可以是( )的的50.3610⨯53.610⨯43.610⨯43610⨯a b a b a -<<bA. 2B. -1C. -2D. -37.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A.B.C.D.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系二、填空题9.若代数式有意义,则实数的取值范围是_____. 10.已知关于的方程有两个相等的实数根,则的值是______. 11.______. 12.方程组的解为________.13.在平面直角坐标系中,直线与双曲线交于A ,B 两点.若点A ,B 的纵坐标分别为,则的值为_______.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD≌ACD ,这个条件可以是________(写出一个即可)1413122317x -x x 220x x k ++=k 137x y x y -=⎧⎨+=⎩xOy y x =my x=12,y y 12y y +15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:______(填“>”,“=”或“<”)16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:18.解不等式组:19.已知,求代数式的值. 20.已知:如图,ABC 为锐角三角形,AB=BC ,CD∥AB. 求作:线段BP ,使得点P 在直线CD上,且∠ABP=. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.ABC S ABD S 11(|2|6sin 453-+--︒5322132x x x x ->⎧⎪-⎨<⎪⎩2510x x --=(32)(32)(2)x x x x +-+- 12BAC ∠(1)使用直尺和圆规,依作法补全图形(保留作图痕迹) (2)完成下面的证明. 证明:∵CD∥AB, ∴∠ABP= . ∵AB=AC, ∴点B 在⊙A 上. 又∵∠BPC=∠BAC( )(填推理依据)∴∠ABP=∠BAC21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG 是矩形; (2)若AD=10,EF=4,求OE 和BG 的长.22.在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF⊥AD 于点E ,交CD 于点F . (1)求证:∠ADC=∠AOF;1212xOy (0)y kx b k =+≠y x =1x >x (0)y mx m =≠y kx b =+m(2)若sinC=,BD=8,求EF 的长.24.小云在学习过程中遇到一个函数.下面是小云对其探究过程,请补充完整:(1)当时,对于函数,即,当时,随的增大而 ,且;对于函数,当时,随的增大而 ,且;结合上述分析,进一步探究发现,对于函数,当时,随的增大而 .(2)当时,对于函数,当时,与的几组对应值如下表:1231综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当时的函数的图象.的1321||(1)(2)6y x x x x =-+≥-20x -≤<1||y x =1y x =-20x -≤<1y x 10y >221y x x =-+20x -≤<2y x 20y >y 20x -≤<y x 0x ≥y 0x ≥y x x 123252 y 116167169548720x ≥y x xOy 0x ≥y(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数的图象有两个交点,则的最大值是 . 25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日厨余垃圾分出量统计图:.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段 1日至10日 11日至20日 21日至30日平均数 100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)的0m >x l l 21||(1)(2)6y x x x x =-+≥-m a b(2)已知该小区4月厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.26.在平面直角坐标系中,为抛物线上任意两点,其中.(1)若抛物线的对称轴为,当为何值时,(2)设抛物线的对称轴为.若对于,都有,求的取值范围. 27.在中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF⊥DE,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,求EF 的长(用含的式子表示);(2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.28.在平面直角坐标系中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦(分别为点A ,B 的对应点),线段长度的最小值称为线段AB 到⊙O 的“平移距离”.的21,s 22s 23s 222123,,s s s xOy 1122(,),(,)M x y N x y 2(0)y ax bx c a =++>12x x <1x =12,x x 12;y y c ==x t =123x x +>12y y <t ABC ,AE a BF b ==,a b xOy A B '',A B ''AA '(1)如图,平移线段AB 到⊙O 的长度为1的弦和,则这两条弦的位置关系是 ;在点中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线上,记线段AB 到⊙O 的“平移距离”为,求的最小值;(3)若点A 的坐标为,记线段AB 到⊙O 的“平移距离”为,直接写出的取值范围数学参考答案与解析一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体【答案】D 【解析】 【分析】根据三视图都是长方形即可判断该几何体为长方体. 【详解】解:长方体的三视图都是长方形, 故选D .【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几12PP 34P P 1234,,,P P PP y =+1d 1d 32,2⎛⎫⎪⎝⎭2d 2d何体.2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( ) A.B.C.D.【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值大于1时,n 是正数;当原数绝对值小于1时,n 是负数. 【详解】解: 36000=, 故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示形式是解题的关键.3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A 【解析】 【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案. 【详解】解:由两直线相交,对顶角相等可知A 正确; 由三角形的一个外角等于它不相邻的两个内角的和可知 B 选项为∠2>∠3, C 选项为∠1=∠4+∠5, D 选项为∠2>∠5.50.3610⨯53.610⨯43.610⨯43610⨯43.610⨯故选:A .【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.4.下列图形中,既是中心对称图形也是轴对称图形的是( )A. B.C. D.【答案】D 【解析】 【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【详解】解:A 、是轴对称图形,不是中心对称图形,故选项错误; B 、不是轴对称图形,也不是中心对称图形,故选项错误; C 、不轴对称图形,是中心对称图形,故选项错误; D 、既是轴对称图形,又是中心对称图形,故选项正确. 故选:D .【点睛】本题主要考查了中心对称图形和轴对称图形定义,正确理解定义是关键. 5.正五边形的外角和为( ) A. 180° B. 360° C. 540° D. 720°【答案】B 【解析】 【分析】根据多边形的外角和定理即可得.【详解】任意多边形的外角和都为,与边数无关 故选:B .【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键. 6.实数在数轴上的对应点的位置如图所示.若实数满足,则的值可以是是的360︒a b a b a -<<b( )A. 2B. -1C. -2D. -3【答案】B【解析】【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:又到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A. B. C. D. 【答案】C【解析】【分析】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:12a <<21a ∴-<-<-2a ∴<a b a -<< b ∴14131223所以共4种情况:其中满足题意的有两种,所以两次记录的数字之和为3的概率是 故选C .【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】【分析】 设水面高度为 注水时间为分钟,根据题意写出与的函数关系式,从而可得答案.【详解】解:设水面高度为 注水时间为分钟,则由题意得:所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.21.42=,hcm t h t ,hcm t 0.210,h t =+二、填空题9.若代数式有意义,则实数的取值范围是_____. 【答案】【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】∵代数式有意义,分母不能为0,可得,即, 故答案为:.【点睛】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10.已知关于的方程有两个相等的实数根,则的值是______.【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式,∴,解得:.故答案为:【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.11.______.【答案】2(或3)【解析】【分析】<2,34,2或3.17x -x 7x ≠17x -70x -≠7x ≠7x ≠x 220x x k ++=k 0= 440k -=1k =1.故答案为:2(或3)【点睛】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与12.方程组的解为________. 【答案】 【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:两个方程相加可得,∴,将代入,可得, 故答案为:. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键.13.在平面直角坐标系中,直线与双曲线交于A ,B 两点.若点A ,B 的纵坐标分别为,则的值为_______. 【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,137x y x y -=⎧⎨+=⎩21x y =⎧⎨=⎩48x =2x =2x =1x y -=1y =21x y =⎧⎨=⎩xOy y x =m y x=12,y y 12y y +120y y +=故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD≌ACD ,这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD(或BD=CD )【解析】【分析】证明ABD≌ACD ,已经具备 根据选择的判定三角形全等的判定方法可得答案.详解】解:要使则可以添加:∠BAD=∠CAD,此时利用边角边判定:或可以添加:此时利用边边边判定:故答案为:∠BAD=∠CAD 或()【点睛】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键.15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:______(填“>”,“=”或“<”)【 ,,AB AC AD AD ==,,AB AC AD AD == ∴,ABD ACD ≌,ABD ACD ≌,BD CD =,ABD ACD ≌.BD CD = ABC S ABD S【答案】=【解析】【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.【详解】解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得个平方单位, , 故有=.故答案为:“=”【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到△ABD 的面积.16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.14242ABC S =⨯⨯= 123111=52101513224222⨯---=-⨯⨯-⨯⨯-⨯⨯= ABD S S S S ABC S ABD S【答案】丙,丁,甲,乙【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.11(|2|6sin 453-+--︒326++-32=++-5.=18.解不等式组: 【答案】【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:解不等式①得:,解不等式②得:,∴此不等式组的解集为.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.19.已知,求代数式的值.【答案】,-2【解析】【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把变形后,整体代入求值即可.【详解】解:原式=∵,∴,∴,∴原式=.【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.5322132x x x x ->⎧⎪-⎨<⎪⎩12x <<5322132x x x x ->⎧⎪⎨-<⎪⎩①②1x >2x <12x <<2510x x --=(32)(32)(2)x x x x +-+-21024x x --2510x x --=22942x x x -+-2102 4.x x =--2510x x --=251x x -=21022x x -=242-=-20.已知:如图,ABC 为锐角三角形,AB=BC ,CD∥AB.求作:线段BP ,使得点P 在直线CD上,且∠ABP=. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP= .∵AB=AC,∴点B 在⊙A 上.又∵∠BPC=∠BAC( )(填推理依据) ∴∠ABP=∠BAC【答案】(1)见解析;(2)∠BPC,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半【解析】【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明: 再利用圆的性质得到:∠BPC=∠BAC,从而可得答案.【详解】解:(1)依据作图提示作图如下:(2)证明:∵CD∥AB,∴∠ABP= .12BAC ∠1212,ABP BPC ∠=∠12BPC ∠∵AB=AC,∴点B 在⊙A 上.又∵∠BPC=∠BAC(在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据)∴∠ABP=∠BAC 故答案为:∠BPC;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.【答案】(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO 是△DAB 的中位线,再结合已知条件OG ∥EF ,得到四边形OEFG 是平行四边形,再由条件EF ⊥AB ,得到四边形OEFG 是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=AB=AD=5,得到FG=5,最后BG=AB-AF-FG=2.【详解】解:(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点,∵点E 为AD 中点,∴OE 为△ABD 的中位线,∴OE ∥FG ,12121212∵OG ∥EF ,∴四边形OEFG 为平行四边形∵EF ⊥AB ,∴平行四边形OEFG 为矩形.(2)∵点E 为AD 的中点,AD=10,∴AE= ∵∠EFA=90°,EF=4,∴在Rt△AEF 中,.∵四边形ABCD 为菱形,∴AB=AD=10,∴OE=AB=5, ∵四边形OEFG 为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.22.在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.【答案】(1);(2)【解析】【分析】(1)根据一次函数由平移得到可得出k 值,然后将点(1,2)代入可得b 值即可求出解析式;(2)由题意可得临界值为当时,两条直线都过点(1,2),即可得出当时,都大于,根据,可得可取值2,可得出m 的取值范围.152AD =3===AF 12xOy (0)y kx b k =+≠y x =1x >x (0)y mx m =≠y kx b =+m 1y x =+2m ≥(0)y kx b k =+≠y x =y x b =+1x =12x m >>,(0)y mx m =≠1y x =+1x >m【详解】(1)∵一次函数由平移得到,∴,将点(1,2)代入可得,∴一次函数的解析式为;(2)当时,函数的函数值都大于,即图象在上方,由下图可知:临界值为当时,两条直线都过点(1,2),∴当时,都大于,又∵,∴可取值2,即,∴的取值范围为.【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF;(2)若sinC=,BD=8,求EF 的长.【答案】(1)见解析;(2)2.【解析】【分析】(0)y kx b k =+≠y x =1k =y x b =+1b =1y x =+1x >(0)y mx m =≠1y x =+1y x =+1x =12x m >>,(0)y mx m =≠1y x =+1x >m 2m =m 2m ≥13(1)连接OD ,根据CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据OF⊥AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO,即可证明;(2)设半径为r ,根据在Rt△OCD 中,,可得,AC=2r ,由AB 为⊙O 的直径,得出∠ADB=90°,再根据推出OF⊥AD,OF∥BD,然后由平行线分线段成比例定理可得,求出OE ,,求出OF ,即可求出EF . 【详解】(1)证明:连接OD ,∵CD 是⊙O 的切线,∴OD⊥CD,∴∠ADC+∠ODA=90°,∵OF⊥AD,∴∠AOF+∠DAO=90°,∵OD=OA,∴∠ODA=∠DAO,∴∠ADC=∠AOF;(2)设半径r ,在Rt△OCD 中,,∴,∴,∵OA=r,为sin 13C =3OD r OC r ==,12OE OA BD AB ==34OF OC BD BC ==1sin 3C =13ODOC =3OD r OC r ==,∴AC=OC-OA=2r,∵AB 为⊙O 的直径,∴∠ADB=90°,又∵OF⊥AD,∴OF∥BD, ∴, ∴OE=4, ∵, ∴,∴.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24.小云在学习过程中遇到一个函数.下面是小云对其探究的过程,请补充完整: (1)当时,对于函数,即,当时,随的增大而 ,且;对于函数,当时,随的增大而 ,且;结合上述分析,进一步探究发现,对于函数,当时,随的增大而 .(2)当时,对于函数,当时,与的几组对应值如下表:0 1 2 30 1综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当时的函数的图象.12OE OA BD AB ==34OF OC BD BC ==6OF =2EF OF OE =-=21||(1)(2)6y x x x x =-+≥-20x -≤<1||y x =1y x =-20x -≤<1y x 10y >221y x x =-+20x -≤<2y x 20y >y 20x -≤<y x 0x ≥y 0x ≥y x x 123252 y 116167169548720x ≥y x xOy 0x ≥y(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数的图象有两个交点,则的最大值是 . 【答案】(1)减小,减小,减小;(2)见解析;(3) 【解析】【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案;(2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当时,函数有最大值,代入计算即可得到答案.【详解】解:(1)根据题意,在函数中,∵,∴函数在中,随的增大而减小; ∵, ∴对称轴为:,∴在中,随的增大而减小; 综合上述,在中,随的增大而减小; 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:0m >x l l 21||(1)(2)6y x x x x =-+≥-m 732x =-1y x =-10k =-<1y x =-20x -≤<1y x 222131()24y x x x =-+=-+1x =221y x x =-+20x -≤<2y x 21||(1)6y x x x =-+20x -≤<y x(3)由(2)可知,当时,随的增大而增大,无最大值;由(1)可知在中,随的增大而减小; ∴中,有 当时,, ∴m的最大值为; 故答案为:. 【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日的厨余垃圾分出量统计图:.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日 11日至20日 21日至30日 平均数100 170 250在0x ≥y x 21||(1)6y x x x =-+20x -≤<y x 20x -≤<2x =-73y =7373a b(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.【答案】(1)173;(2)2.9倍;(3)【解析】【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案;(2)利用5月份的平均数除以4月份的平均数,即可得到答案;(3)直接利用点状图和方差的意义进行分析,即可得到答案.【详解】解:(1)平均数:(千克); 故答案为:173;(2)倍;故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:;【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.26.在平面直角坐标系中,为抛物线上任意两点,其中.(1)若抛物线的对称轴为,当为何值时,(2)设抛物线的对称轴为.若对于,都有,求的取值范围.【答案】(1);(2) 21,s 22s 23s 222123,,s s s 222123s s s >>1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=17360 2.9÷=222123s s s >>xOy 1122(,),(,)M x y N x y 2(0)y ax bx c a =++>12x x <1x =12,x x 12;y y c ==x t =123x x +>12y y <t 120,2x x ==32t ≤【解析】【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为,抛物线的对称轴为,可得点M ,N 关于对称,从而得到的值;(2)根据题意知,抛物线开口向上,对称轴为,分3种情况讨论,情况1:当都位于对称轴右侧时,情况2:当都位于对称轴左侧时,情况3:当位于对称轴两侧时,分别求出对应的t 值,再进行总结即可.【详解】解:(1)当x=0时,y=c ,即抛物线必过(0,c ),∵,抛物线的对称轴为,∴点M ,N 关于对称,又∵,∴,;(2)由题意知,a >0,∴抛物线开口向上∵抛物线的对称轴为,∴情况1:当都位于对称轴右侧时,即当时,恒成立情况2:当都位于对称轴左侧时,即<时,恒不成立情况3:当位于对称轴两侧时,即当时,要使,必有,即解得,∴3≥2t,∴ 综上所述,. 【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思12y y c ==1x =1x =12,x x x t =12,x x 12,x x 12,x x 12y y c ==1x =1x =12x x <10x =22x =x t =12x x <12,x x 1x t ≥12y y <12,x x 1x 2,t x t ≤12y y <12,x x 1x <2,t x t >12y y <12x t x t -<-()()2212x t x t -<-122x x t +>32t ≤32t ≤想.27.在中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF⊥DE,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,求EF 的长(用含的式子表示);(2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(1;(2)图见解析,,证明见解析.【解析】【分析】(1)先根据中位线定理和线段中点定义可得,,,再根据平行四边形的性质、矩形的判定与性质可得,从而可得,然后利用勾股定理即可得;(2)如图(见解析),先根据平行线的性质可得,,再根据三角形全等的判定定理与性质可得,,然后根据垂直平分线的判定与性质可得,最后在中,利用勾股定理、等量代换即可得证.【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点∴DE 为的中位线,且∴, ∵∴ABC ,AE a BF b ==,a b 222EF AE BF =+//DE BC 12DE BC =CE AE a ==DE CF =CF BF b ==EAD GBD ∠=∠DEA DGB ∠=∠ED GD =AE BG =EF FG =Rt BGF ABC CE AE a ==//DE BC 12DE BC =90C ∠=︒18090DEC C ∠=︒-∠=︒。
2020年北京市西城区中考数学二模试卷一.选择题(共8小题)1.下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是()A.B.C.D.2.中国国家航天局2020年4月24日在“中国航天日”之际宣布,将中国行星探测任务命名为“天问”,将中国首次火星探测任务命名为“天问一号”.火星具有与地球十分相近的环境,与地球最近的时候距离约5500万千米,将5500用科学记数法表示为()A.0.55×104B.5.5×103C.5.5×102D.55×1023.如图是某个几何体的平面展开图,该几何体是()A.B.C.D.4.下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4 5.如图,实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>3B.﹣1<﹣b<0C.a<﹣b D.a+b>06.如图,△ABC内接于⊙O,若∠A=45°,OC=2,则BC的长为()A.B.2C.2D.47.某人开车从家出发去植物园游玩,设汽车行驶的路程为S(千米),所用时间为t(分),s与t之间的函数关系如图所示.若他早上8点从家出发,汽车在途中停车加油一次,则下列描述中,不正确的是()A.汽车行驶到一半路程时,停车加油用时10分钟B.汽车一共行驶了60千米的路程,上午9点5分到达植物园C.加油后汽车行驶的速度为60千米/时D.加油后汽车行驶的速度比加油前汽车行驶的速度快8.张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如表:①2019年10月至2020年3月通话时长统计表时间10月11月12月1月2月3月时长(单位:分钟)520530550610650660②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为()A.550B.580C.610D.630二.填空题(共8小题)9.若分式在实数范围内有意义,则x的取值范围是.10.因式分解:a3﹣a=.11.如图,D,E分别是△ABC的边AB,AC的中点,若△ADE的面积为1,则△ABC的面积等于.12.如图,∠A=∠ABC=∠C=∠D=∠E,点F在AB的延长线上,则∠CBF的度数是.13.如图,双曲线y=与直线y=mx交于A,B两点,若点A的坐标为(2,3),则点B 的坐标为.14.如图,用10个大小、形状完全相同的小矩形,拼成一个宽为50cm的大矩形,设每个小矩形的长为xcm,宽为ycm,则可以列出的方程组是.15.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:对于以下四种说法,你认为正确的是(写出全部正确说法的序号).①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少16.一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中.(1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是.(2)若乙盒中最终有5个红球,则袋中原来最少有个球.三.解答题(共12小题)17.计算:+(π﹣2020)0﹣3tan30°+|﹣1|.18.解方程:+1=.19.已知关于x的一元二次方程x2﹣(2k+1)x+2k=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根大于2,求k的取值范围.20.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:已知:△ABC.求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.作法:如图,作∠BAC的平分线,交BC于点D.则点D即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:作DE⊥AB于点E,作DF⊥AC于点F,∵AD平分∠BAC,∴=()(括号里填推理的依据).21.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥DC,CE∥DA.(1)求证:四边形ADCE是菱形;(2)连接DE,若AC=2,BC=2,求证:△ADE是等边三角形.22.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x,y,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如图:根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y低于0.4的有人;②将20名患者的指标x的平均数记作,方差记作S12,20名非患者的指标x的平均数记作,方差记作S22,则,S12S22(填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x低于0.3的大约有人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率是.23.如图,AB是⊙O的直径,C,D是⊙O上两点,且=,连接OC,BD,OD.(1)求证:OC垂直平分BD;(2)过点C作⊙O的切线交AB的延长线于点E,连接AD,CD.①依题意补全图形;②若AD=6,sin∠AEC=,求CD的长.24.如图,在△ABC中,AE平分∠BAC交BC于点E,D是AB边上一动点,连接CD交AE于点P,连接BP.已知AB=6cm,设B,D两点间的距离为xcm,B,P两点间的距离为y1cm,A,P两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y2,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0123456y1/cm 2.49 2.64 2.88 3.25 3.80 4.65 6.00y2/cm 4.59 4.24 3.80 3.25 2.510.00(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象:(3)结合函数图象,回答下列问题:①当AP=2BD时,AP的长度约为cm;②当BP平分∠ABC时,BD的长度为cm.25.在平面直角坐标系xOy中,函数y=(x>0)的图象G与直线l:y=kx﹣4k+1交于点A(4,1),点B(1,n)(n≥4,n为整数)在直线l上.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G与直线l围成的区域(不含边界)为W.①当n=5时,求k的值,并写出区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,求k的取值范围.26.在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A,B(A在B的左侧),抛物线的对称轴与x轴交于点D,且OB=2OD.(1)当b=2时,①写出抛物线的对称轴;②求抛物线的表达式;(2)存在垂直于x轴的直线分别与直线l:y=x+和拋物线交于点P,Q,且点P,Q 均在x轴下方,结合函数图象,求b的取值范围.27.在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.28.对于平面直角坐标系xOy中的定点P和图形F,给出如下定义:若在图形F上存在一点N,使得点Q,点P关于直线ON对称,则称点Q是点P关于图形F的定向对称点.(1)如图,A(1,0),B(1,1),P(0,2),①点P关于点B的定向对称点的坐标是;②在点C(0,﹣2),D(1,﹣),E(2,﹣1)中,是点P关于线段AB的定向对称点.(2)直线l:y=x+b分别与x轴,y轴交于点G,H,⊙M是以点M(2,0)为圆心,r(r>0)为半径的圆.①当r=1时,若⊙M上存在点K,使得它关于线段GH的定向对称点在线段GH上,求b的取值范围;②对于b>0,当r=3时,若线段GH上存在点J,使得它关于⊙M的定向对称点在⊙M上,直接写出b的取值范围.参考答案与试题解析一.选择题(共8小题)1.下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是()A.B.C.D.【分析】根据平移的性质,结合图形,对选项进行一一分析,选出正确答案.【解答】解:各组图形中,选项A中的图形是一个图形经过平移能得到另一个图形,故选:A.2.中国国家航天局2020年4月24日在“中国航天日”之际宣布,将中国行星探测任务命名为“天问”,将中国首次火星探测任务命名为“天问一号”.火星具有与地球十分相近的环境,与地球最近的时候距离约5500万千米,将5500用科学记数法表示为()A.0.55×104B.5.5×103C.5.5×102D.55×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500=5.5×103,故选:B.3.如图是某个几何体的平面展开图,该几何体是()A.B.C.D.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:D.4.下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.5.如图,实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>3B.﹣1<﹣b<0C.a<﹣b D.a+b>0【分析】根据数轴的性质以及有理数的运算法则进行解答即可.【解答】解:选项A,从数轴上看出,a在﹣3与﹣2之间,∴|a|<3,故选项A不合题意;选项B,从数轴上看出,b在在原点右侧,∴b>0,故选项B不合题意;选项C,从数轴上看出,a在﹣3与﹣2之间,b在1和2之间,∴﹣b在﹣1和﹣2之间,∴a<b,故选项C符合题意;选项D,从数轴上看出,a在﹣3与﹣2之间,b在1与2之间,∴﹣3<a<﹣2,1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b<0,故选项D不合题意.故选:C.6.如图,△ABC内接于⊙O,若∠A=45°,OC=2,则BC的长为()A.B.2C.2D.4【分析】根据圆周角定理得到∠BOC=2∠A=90°,根据等腰直角三角形的性质即可得到结论.【解答】解:由圆周角定理得,∠BOC=2∠A=90°,∴BC=OC=2,故选:B.7.某人开车从家出发去植物园游玩,设汽车行驶的路程为S(千米),所用时间为t(分),s与t之间的函数关系如图所示.若他早上8点从家出发,汽车在途中停车加油一次,则下列描述中,不正确的是()A.汽车行驶到一半路程时,停车加油用时10分钟B.汽车一共行驶了60千米的路程,上午9点5分到达植物园C.加油后汽车行驶的速度为60千米/时D.加油后汽车行驶的速度比加油前汽车行驶的速度快【分析】根据函数的图象可知,横坐标表示时间,纵坐标表示距离,由于函数图象不是平滑曲线,故应分段考虑.【解答】解:A、车行驶到一半路程时,加油时间为25至35分钟,共10分钟,故本选项正确,不符合题意;B、汽车一共行驶了60千米的路程,上午9点05分到达植物园,故本选项正确,不符合题意;C、汽车加油后的速度为30÷=60千米/时,故本选项正确,不符合题意;D、汽车加油前的速度为30÷=72千米/时,60<72,加油后汽车行驶的速度比加油前汽车行驶的速度慢;故本选项不正确,符合题意.故选:D.8.张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如表:①2019年10月至2020年3月通话时长统计表时间10月11月12月1月2月3月时长(单位:分钟)520530550610650660②2020年4月与2020年5月,这两个月通话时长的总和为1100分钟根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为()A.550B.580C.610D.630【分析】由于2020年4月与2020年5月,这两个月通话时长的总和为1100分钟,可知550分钟一定排在这八个月的通话时长的第4位,找到第5位的最大值,从而可求张老师这八个月的通话时长的中位数可能的最大值.【解答】解:∵2020年4月与2020年5月,这两个月通话时长的总和为1100分钟,∴550分钟一定排在这八个月的通话时长的第4位,观察数据可知,第5位的最大值为610分钟,∴张老师这八个月的通话时长的中位数可能的最大值为(550+610)÷2=580(分钟).故选:B.二.填空题(共8小题)9.若分式在实数范围内有意义,则x的取值范围是x≠2.【分析】直接利用分式有意义的条件为分母不为零,进而得出答案.【解答】解:∵分式在实数范围内有意义,∴x的取值范围是:x≠2.故答案为:x≠2.10.因式分解:a3﹣a=a(a+1)(a﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)11.如图,D,E分别是△ABC的边AB,AC的中点,若△ADE的面积为1,则△ABC的面积等于4.【分析】根据三角形中位线定理得到DE∥BC,DE=BC,证明△ADE∽△ABC,根据相似三角形的性质计算,得到答案.【解答】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∵△ADE的面积为1,∴△ABC的面积为4,故答案为:4.12.如图,∠A=∠ABC=∠C=∠D=∠E,点F在AB的延长线上,则∠CBF的度数是72°.【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以多边形的边数,就得到外角的度数.【解答】解:∵∠A=∠ABC=∠C=∠D=∠E,∴五边形ABCDE是正多边形,∵正多边形的外角和是360°,∴∠CBF=360°÷5=72°.故答案为:72°.13.如图,双曲线y=与直线y=mx交于A,B两点,若点A的坐标为(2,3),则点B 的坐标为(﹣2,﹣3).【分析】利用正比例函数和反比例函数的性质可判断点A与点B关于原点对称,然后根据关于原点对称的点的坐标特征写出B点坐标.【解答】解:∵双曲线y=与直线y=mx交于A,B两点,∴点A与点B关于原点对称,而点A的坐标为(2,3),∴点B的坐标为(﹣2,﹣3).故答案为(﹣2,﹣3).14.如图,用10个大小、形状完全相同的小矩形,拼成一个宽为50cm的大矩形,设每个小矩形的长为xcm,宽为ycm,则可以列出的方程组是.【分析】根据矩形的对边相等及大矩形的宽为50cm,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:依题意,得:.故答案为:.15.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:对于以下四种说法,你认为正确的是①③(写出全部正确说法的序号).①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少【分析】根据扇形统计图可以得出各个年龄段的人数占调查总人数的百分比,再根据条形统计图可以得出90后从事互联网行业岗位的百分比,进而求出90后从事互联网行业岗位占调查总人数的百分比,就可以比较,做出判断.【解答】解:对于选项①,互联网行业从业人员中90后占调查人数的56%,占一半以上,所以该选项正确;对于选项②,在当地互联网行业从业人员中,80前人数占调查总人数的3%,所以该选项错误;对于选项③,互联网行业中从事技术岗位的人数90后占总人数的56%×41%=23%,所以该选项正确;对于选项④,互联网行业中,从事设计岗位的90后人数占调查人数的56%×8%=4.48%,而80前从事互联网行业的只占1﹣56%﹣41%=3%,因此该选项不正确;因此正确的有:①③,故答案为:①③.16.一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中.(1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是红色.(2)若乙盒中最终有5个红球,则袋中原来最少有30个球.【分析】(1)根据放球规则,可知若取出的球都没有放入丙盒,则放入了乙盒,由此得出先放入甲盒的球的颜色是红色;(2)由题意可知取两个球共有四种情况:①红+红,②黑+黑,③红+黑,④黑+红.那么,每次乙盒中得一个红球,甲盒可得到2个红球,以及红球数=黑球数,即可求解.【解答】解:(1)∵某次从袋中任意取出两个球,若取出的球都没有放入丙盒,∴放入了乙盒,∴先放入甲盒的球的颜色是红色.(2)由题意,可知取两个球共有四种情况:①红+红,则乙盒中红球数加1,②黑+黑,则丙盒中黑球数加1,③红+黑(红球放入甲盒),则乙盒中黑球数加1,④黑+红(黑球放入甲盒),则丙盒中红球数加1.那么,每次乙盒中得一个红球,甲盒可得到2个红球,∴乙盒中最终有5个红球时,甲盒有10个红球,∵红球数=黑球数,∴袋中原来最少有2(5+10)=30个球.故答案为:红色;30.三.解答题(共12小题)17.计算:+(π﹣2020)0﹣3tan30°+|﹣1|.【分析】根据二次根式的性质、零指数幂、特殊角的三角函数值、绝对值的性质计算即可.【解答】解:原式=2+1﹣3×+﹣1=2+1﹣+﹣1=2.18.解方程:+1=.【分析】根据解分式方程的步骤解答即可.【解答】解:+1=,方程的两边同乘3(x﹣1)得:3x+3x﹣3=2x,解这个方程得:,经检验,是原方程的解.19.已知关于x的一元二次方程x2﹣(2k+1)x+2k=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根大于2,求k的取值范围.【分析】(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;(2)设方程的两个根分别是x1,x2,利用公式法求方程的解,然后根据一元二次方程根与系数的关系求得k的取值范围.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×2k=(2k﹣1)2≥0,∴无论k为何值,方程总有两个实数根;(2)设方程的两个根分别是x1,x2,解方程得x=,∴x1=2k,x2=1.由题意可知2k>2,即k>1.∴k的取值范围为k>1.20.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:已知:△ABC.求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.作法:如图,作∠BAC的平分线,交BC于点D.则点D即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:作DE⊥AB于点E,作DF⊥AC于点F,∵AD平分∠BAC,∴DE=DF(角平分线的性质)(括号里填推理的依据).【分析】(1)根据题意补全图形即可;(2)作DE⊥AB于点E,作DF⊥AC于点F,根据角平分线的性质即可得到结论.【解答】解:(1)补全图形如图所示;(2)证明:作DE⊥AB于点E,作DF⊥AC于点F,∵AD平分∠BAC,∴DE=DF(角平分线的性质),故答案为:DE,DF,角平分线的性质.21.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥DC,CE∥DA.(1)求证:四边形ADCE是菱形;(2)连接DE,若AC=2,BC=2,求证:△ADE是等边三角形.【分析】(1)先证明四边形ADCE是平行四边形,再证出一组邻边相等,即可得出结论;(2)根据三角函数的定义得到∠CAB=30°,根据菱形的性质得到∠EAD=2∠CAB=60°,AE=AD,于是得到结论.【解答】(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=AB=BD=AD,∴平行四边形ADCE是菱形;(2)解:∵在Rt△ABC中,∠ACB=90°,AC=2,BC=2,∴tan∠CAB==,∴∠CAB=30°,∵四边形ADCE是菱形,∴∠EAD=2∠CAB=60°,AE=AD,∴△ADE是等边三角形.22.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x,y,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如图:根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y低于0.4的有9人;②将20名患者的指标x的平均数记作,方差记作S12,20名非患者的指标x的平均数记作,方差记作S22,则<,S12>S22(填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x低于0.3的大约有100人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率是.【分析】(1)①根据图象,数出直线y=0.4下方的人数即可;②根据图象,可知20名患者的指标x的取值范围是0≤x<0.5,且有16名患者的指标x<0.3;20名非患者的指标x的取值范围是0.2≤x<0.6,且位置相对比较集中,因此即可求解;(2)利用样本估计总体,用500乘样本中非患者指标x低于0.3所占的百分比即可;(3)先求出样本中“指标x低于0.3,且指标y低于0.8”的人患病的概率,再用1减去这个概率即可求解.【解答】解:(1)①根据图象,可得指标y低于0.4的有9人.故答案为:9;②将20名患者的指标x的平均数记作,方差记作S 12,20名非患者的指标x的平均数记作,方差记作S22,则<,S12>S22.故答案为:<,>;(2)500×=100(人).故答案为:100;(3)根据图象,可知“指标x低于0.3,且指标y低于0.8”的有15人,而患者有20人,则发生漏判的概率是:1﹣=.故答案为.23.如图,AB是⊙O的直径,C,D是⊙O上两点,且=,连接OC,BD,OD.(1)求证:OC垂直平分BD;(2)过点C作⊙O的切线交AB的延长线于点E,连接AD,CD.①依题意补全图形;②若AD=6,sin∠AEC=,求CD的长.【分析】(1)由同弧所对的圆心角相等可得∠COD=∠COB,再由等腰三角形的“三线合一“性质可得OD=OB,从而问题得证;(2)①依照题意补全图形即可;②由切线的性质可得OC⊥CE;由同位角相等可证DB ∥CE;由等角的正弦值相等可得sin∠ABD=sin∠AEC=,从而可求得BD、AB、OA、OB和OC的值,由OC垂直平分BD,可得BF及DF的值;由三角形的中位线定理可得OF的值,进而求得CF的值,最后在Rt△CFD中,由勾股定理可得CD的长.【解答】解:(1)证明:∵=,∴∠COD=∠COB.∵OD=OB,∴OC垂直平分BD;(2)①补全图形,如图所示:;②∵CE是⊙O的切线,切点为C,∴OC⊥CE于点C.记OC与BD交于点F,由(1)知OC⊥BD,∴∠OCE=∠OFB=90°.∴DB∥CE,∴∠AEC=∠ABD.∵在Rt△ABD中,AD=6,sin∠ABD=sin∠AEC=,∴BD=8,AB=10.∴OA=OB=OC=5.由(1)可知OC平分BD,即DF=BF,∴BF=DF=4,OF为△ABD的中位线,∴OF=AD=3,∴CF=2.∴在Rt△CFD中,CD==2.∴CD的长为2.24.如图,在△ABC中,AE平分∠BAC交BC于点E,D是AB边上一动点,连接CD交AE于点P,连接BP.已知AB=6cm,设B,D两点间的距离为xcm,B,P两点间的距离为y1cm,A,P两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y2,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0123456y1/cm 2.49 2.64 2.88 3.25 3.80 4.65 6.00y2/cm 4.59 4.24 3.80 3.25 2.51 1.350.00(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象:(3)结合函数图象,回答下列问题:①当AP=2BD时,AP的长度约为 2.88cm;②当BP平分∠ABC时,BD的长度为3cm.【分析】(1)用光滑的曲线连接y2图象现有的点,在图象上,测量出x=5时,y的值即可;(2)描点连线即可绘出函数图象;(3)①当AP=2BD时,即y2=2x,在图象上画出直线y=2x,该图象与y2的交点即为所求;②从表格数据看,当x=3时,y1=y2=3.25,故当BP平分∠ABC时,此时点P是△ABC 的内心,故点D在AB的中点,即可求解.【解答】解:(1)用光滑的曲线连接y2图象现有的点,在图象上,测量出x=5时,y=1.35(答案不唯一);故答案为:1.35,注:y=1.35是估计的数值,故答案不唯一;(2)绘制后y1、y2图象如下:(3)①当AP=2BD时,即y2=2x,在图象上画出直线y=2x,该图象与y2的交点即为所求,即图中空心点所示,空心点的纵坐标为2.88,故答案为2.88;②从表格数据看,当x=3时,y1=y2=3.25,即点D在AB中点时,y1=y2,即此时点P在AB的中垂线上,则点C在AB的中垂线上,则△ABC为等腰三角形,故当BP平分∠ABC时,此时点P是△ABC的内心,故点D在AB的中点,∴BD=AB=3,故答案为3.25.在平面直角坐标系xOy中,函数y=(x>0)的图象G与直线l:y=kx﹣4k+1交于点A(4,1),点B(1,n)(n≥4,n为整数)在直线l上.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G与直线l围成的区域(不含边界)为W.①当n=5时,求k的值,并写出区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,求k的取值范围.【分析】(1)把A(4,1)代入y=(x>0)中可得m的值;(2)①当n=5时,B(1,5),将B(1,5)代入y=kx﹣4k+1,求得k即可,画图可得整点的个数;②分两种情况:直线l:y=kx﹣4k+1过(1,6),直线l:y=kx﹣4k+1过(1,7),画图根据区域W内恰有5个整点,确定k的取值范围.【解答】解:(1)把A(4,1)代入y=(x>0)得m=4×1=4;(2)①当n=5时,把B(1,5)代入直线l:y=kx﹣4k+1得,5=k﹣4k+1,解得k=﹣,如图1所示,区域W内的整点有(2,3),(3,2),有2个;②如图2,直线l:y=kx﹣4k+1过(1,6)时,k=﹣,区域W内恰有4个整点,直线l:y=kx﹣4k+1过(1,7)时,k=﹣2,区域W内恰有5个整点,∴区域W内恰有5个整点,k的取值范围是﹣2≤k<﹣.26.在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A,B(A在B的左侧),抛物线的对称轴与x轴交于点D,且OB=2OD.(1)当b=2时,①写出抛物线的对称轴;②求抛物线的表达式;(2)存在垂直于x轴的直线分别与直线l:y=x+和拋物线交于点P,Q,且点P,Q 均在x轴下方,结合函数图象,求b的取值范围.【分析】(1)①由二次函数的对称轴方程可得出答案;②根据题意求出B点坐标为(2,0),代入抛物线解析式y=x2+2x+c可得出答案;(2)求出E(﹣,0),点D的坐标为(﹣,0).①当b>0时,得出点A的坐标为(﹣2b,0),点B的坐标为(b,0),则﹣2b<﹣,解不等式即可;②当b<0时,点A的坐标为(0,0),点B的坐标为(﹣b,0),则0<﹣,解出b<﹣2.【解答】解:(1)当b=2时,抛物线y=x2+bx+c化为y=x2+2x+c.①抛物线的对称轴x=﹣=﹣1.②∵抛物线的对称轴为直线x=﹣1,∴点D的坐标为(﹣1,0),OD=1.∵OB=2OD,∴OB=2.∵点A,点B关于直线x=﹣1对称,∴点B在点D的右侧.∴点B的坐标为(2,0).∵抛物线y=x2+2x+c与x轴交于点B(2,0),∴4+4+c=0.解得c=﹣8.∴抛物线的表达式为y=x2+2x﹣8.(2)设直线y=x+与x轴交点为点E,∵y=0时,x=﹣,∴E(﹣,0).∵抛物线的对称轴为x=﹣,∴点D的坐标为(﹣,0),①当b>0时,OD=,∵OB=2OD,∴OB=b.∴点A的坐标为(﹣2b,0),点B的坐标为(b,0).如图1,当﹣2b<﹣时,存在垂直于x轴的直线分别与直线l:y=x+和抛物线交于点P,Q,且点P,Q均在x轴下方,解得b>.②当b<0时,﹣b>0.∴OD=﹣,∵OB=2OD,∴OB=﹣b.∵抛物线y=x2+bx+c与x轴交于点A,B,且A在B的左侧,∴点A的坐标为(0,0),点B的坐标为(﹣b,0).如图2,当0<﹣时,存在垂直于x轴的直线分别与直线l:y=x+和抛物线交于点P,Q,且点P,Q均在x轴下方,解得b<﹣2.综合以上可得,b的取值范围是b<﹣2或b>.27.在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.【分析】(1)由平行线的性质可得出∠AGH=∠GHC.证得∠EAB=∠AGH.则结论得证;(2)①依题意补全图形即可;②连接AN,连接EN并延长,交AB边于点Q.证得NA=NE.得出∠ANE=∠ANQ=90°.则可得出AE=CN.。
2020年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y23.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A. B. C. D.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣39.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.810.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=______.12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是______.13.已知一个多边形的每个外角都是72°,这个多边形是______边形.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是______.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为______.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确______;这位同学作图的依据是______.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.18.解不等式组,并把它的解集表示在数轴上.19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是______;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.28.如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.29.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若存在过点P的直线l交⊙C于异于点P的A,B两点,在P,A,B三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P为⊙C 的相邻点,直线l为⊙C关于点P的相邻线.(1)当⊙O的半径为1时,①分别判断在点D(,),E(0,﹣),F(4,0)中,是⊙O的相邻点有______;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O关于它的一条相邻线,并说明你的作图过程;③点P在直线y=﹣x+3上,若点P为⊙O的相邻点,求点P横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣与x轴,y轴分别交于点M,N,若线段MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.2020年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2020年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减;差的平方等于平方和减积的二倍;可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A. B. C. D.【考点】概率公式.【分析】根据有五张质地、大小、反面完全相同的不透明卡片,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴抽出的数字是奇数的概率是.故选C.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示选手甲乙丙丁方差0.030 0.019 0.121 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.022<0.030<0.121,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米【考点】全等三角形的应用.【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:B.7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故选D.8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣3【考点】配方法的应用.【分析】利用完全平方公式进行变形即可.【解答】解:2a2﹣4a﹣1,=2(a2﹣2a+1)﹣3,=2(a﹣1)2﹣3.故选:D.9.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.8【考点】一元一次不等式组的应用.【分析】设小张同学应该买的球拍的个数为x个,利用购买金额不超过200元得到20×1.5+25x≤200,然后解不等式后求出不等式的最大整数解即可.【解答】解:设小张同学应该买的球拍的个数为x个,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1.故选A.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=a(b+c)(b﹣c).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣c2)=a(b+c)(b﹣c),故答案为:a(b+c)(b﹣c)12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是y=x﹣1(答案不唯一)..【考点】一次函数图象与系数的关系.【分析】首先根据函数经过的象限确定比例系数的符号,然后根据其与y轴的交点确定答案即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,∴设一次函数的解析式为y=x+b,∵经过点(0,﹣1),∴b=﹣1,∴解析式为y=x﹣1,故答案为:y=x﹣1(答案不唯一).13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是70千米/时.【考点】众数;条形统计图.【分析】根据众数是出现次数最多的数直接写出答案即可;【解答】解:70千米/时是出现次数最多的,故众数是70千米/时,故答案为:70千米/时.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设甲持钱为x,乙持钱为y,根据题意可得,甲的钱+乙的钱的一半=50元,乙的钱+甲所有钱的=50元,据此可列方程组.【解答】解:设甲持钱为x,乙持钱为y,根据题意,可列方程组:,故答案为:.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确丁同学;这位同学作图的依据是垂直平分线上的点到线段两端的距离相等;等量代换.【考点】作图—复杂作图.【分析】分别利用线段垂直平分线的性质结合圆的性质分析得出答案.【解答】解:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点,可得:AP=BP,则PA+PC=BC.故答案为:丁;垂直平分线上的点到线段两端的距离相等;等量代换.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、绝对值、零指数幂、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1=+2﹣﹣1﹣2=﹣1.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2(x﹣2)≤3(x﹣1),得:x≥﹣1,解不等式,得:x<3,∴不等式组的解集为﹣1≤x<3,不等式组的解集在数轴上的表示如下:19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x2﹣x=﹣x2+x+1,由x2﹣x﹣3=0,得到x2﹣x=3,则原式=﹣3+1=﹣2.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=120,经检验:x=120是原方程的解,答:第二批鲜花每盒的进价是120元.22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【考点】菱形的判定与性质;平行四边形的性质;作图—基本作图.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入反比例函数解析式中,得出关于k2的一元一次方程,解方程即可得出结论;(2)分两种情况考虑:①直线y=k1x+b经过第一、三、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式;②直线y=k1x+b经过第一、二、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式.【解答】解:(1)将点A(3,1)代入到y=中,得1=,解得:k2=3.故反比例函数的解析式为y=.(2)符合题意有两种情况:①直线y=k1x+b经过第一、三、四象限,如图1所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,﹣2).则有,解得:.∴直线的解析式为y=x﹣2.②直线y=k1x+b经过第一、二、四象限,如图2所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,2).则有,解得:.∴直线的解析式为y=﹣x+2.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本) 1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据题意当3≤n<5时为“一般”可知一般档次人数为6+7,结合其所占百分比为26%,相除可得总人数;(2)由良好档次的百分比及总人数可得良好档次的人数,减去阅读本数为5、7的人数可得x的值,将总人数减去其余各项人数可得y的值;(3)根据样本中优秀档次所占百分比乘以九年级总人数可得.【解答】解:(1)由表知被调查学生中“一般”档次的有13人,所占比例是26%,故被调查的学生数是13÷26%=50(人);(2)被调查的学生中“良好”档次的人数为50×60%=30(人),∴x=30﹣(12+7)=11(人),y=50﹣(1+2+6+7+12+11+7+1)=3(人);(3)由样本数据可知:“优秀”档次所占的百分比为×100%=8%,∴估计九年级400名学生中优秀档次的人数为:400×8%=32(人).25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.【考点】切线的判定与性质.【分析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,然后通过相似三角形的性质即可得到结论.【解答】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)解:在Rt△PBD中,PB=3,DB=4,根据勾股定理得:PD==5,∵PD与PB都为圆的切线,∴PC=PB=3,∴DC=PD﹣PC=5﹣3=2,在Rt△CDO中,设OC=r,则有DO=4﹣r,根据勾股定理得:(4﹣r)2=r2+22,解得:r=,∴OP==,∵∠E=∠PCO,∠CPO=∠CPO,∴△DEP∽△OBP,∴,∴DE=.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是菱形;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.【考点】四边形综合题.【分析】(1)根据筝形的定义解答即可;(2)根据全等三角形的判定和性质证明;(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.【解答】解:(1)∵菱形的四条边相等,∴菱形是筝形,故答案为:菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.已知:四边形ABCD是筝形,求证:∠B=∠D,证明:如图1,连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠B=∠D;(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,∵∠ABC=120°,∴∠EBC=60°,又BC=2,∴CE=BC×sin∠EBC=,∴S△ABC=AB×CE=2,∵△ABC≌△ADC,∴筝形ABCD的面积=2S△ABC=4.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.。
2020年中考数学一模试卷一、选择题(共8小题)1.在疫情防控的特殊时期,为了满足初三高三学生的复习备考需求,北京市教委联合北京卫视共同推出电视课堂节目《老师请回答特别节目“空中课堂”》,在节目播出期间,全市约有200000名师生收看了节目.将200000用科学记数法表示应为()A.0.2×105B.0.2×106C.2×105D.2×1062.下列图形中,是轴对称图形的是()A.B.C.D.3.在数轴上,表示实数a的点如图所示,则2﹣a的值可以为()A.﹣5.4B.﹣1.4C.0D.1.44.以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出的四边形个数为()A.0B.1C.2D.无限多5.在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米.把一个实心铁块缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y(单位:分米3)与水面上升高度x(单位:分米)之间关系的图象的是()A.B.C .D .6.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣37.在平面直角坐标系xOy中,点A(﹣1,2),B(2,3),y=ax2的图象如图所示,则a的值可以为()A.0.7B.0.9C.2D.2.18.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要的支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A种支付方式和仅使用B种支付方式的学生的支付金额a(元)的分布情况如下:0<a≤10001000<a≤2000a>2000支付金额a(元)支付方式仅使用A18人9人3人仅使用B10人14人1人下面有四个推断:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率大于他使用B支付方式的概率;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有400人;③样本中仅使用A种支付方式的同学,上个月的支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数一定不低于1000元.其中合理的是()A.①③B.②④C.①②③D.①②③④二、填空题(共8道小题,每小题2分,共16分)9.举出一个数字“0”表示正负之间分界点的实际例子,如.10.若某个正多边形的一个内角为108°,则这个正多边形的内角和为.11.若(4m+1)(4n+1)=4K+1,则K可以用含m,n的代数式表示为.12.把图1中长和宽分别为3和2的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中小正方形ABCD的面积为.13.某班甲、乙、丙三名同学20天的体温数据记录如表:甲的体温乙的体温丙的体温温度℃36.136.436.536.8温度℃36.136.436.536.8温度℃36.136.436.536.8频数5555频数6446频数4664则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是.14.如图将一张矩形纸片ABCD沿对角线BD翻折,点C的对应点为C′,AD与BC′交于点E,若∠ABE=30°,BC=3,则DE的长度为.15.一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是元.16.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题每小题5分;第,每小题5分)17.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.18.解不等式组.19.已知:关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根.(1)求m的取值范围;(2)若该方程有两个实数根,取一个m的值,求此时该方程的根.20.已知线段AB,直线l垂直平分AB且交AB于点O,以O为圆心,AO长为半径作弧,交直线l于C,D两点,分别连接AC,AD,BC,BD.(1)根据题意,补全图形;(2)求证:四边形ACBD为正方形.21.国务院发布的《全民科学素质行动计划纲要实施方案(2016﹣2020年)》指出:公民科学素质是实施创新驱动发展战略的基础,是国家综合国力的体现,《方案》明确提出,2020年要将我国公民科学素质的数值提升到10%以上.为了解我国公民科学素质水平及发展状况,中国科协等单位已多次组织了全国范围的调查,以下是根据调查结果整理得到的部分信息.注:科学素质的数值是指具备一定科学素质的公民人数占公民总数的百分比.a.2015和2018年我国各直辖市公民科学素质发展状况统计图如图1.b.2015年和2018年我国公民科学素质发展状况按性别分类统计如下:2015年2018年男9.0%11.1%女 3.4% 6.2%c.2001年以来我国公民科学素质水平发展统计图如图2.根据以上信息,回答下列问题:(1)在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是,公民科学素质水平增速最快的城市是.注:科学素质水平增幅=2018年科学素质的数值﹣2015年科学素质的数值;科学素质水平增速=(2018年科学素质的数值﹣2015年科学素质的数值)÷2015年科学素质的数值.(2)已知在2015年的调查样本中,男女公民的比例约为1:1,则2015年我国公民的科学素质水平为%(结果保留一位小数);由计算可知,在2018年的调查样本中,男性公民人数女性公民人数(填“多于”、“等于”或“少于”).(3)根据截至2018年的调查数据推断,你认为“2020年我国公民科学素质提升到10%以上”的目标能够实现吗?请说明理由.22.已知:△ABC为等边三角形.(1)求作:△ABC的外接圆⊙O.(不写作法,保留作图痕迹)(2)射线AO交BC于点D,交⊙O于点E,过E作⊙O的切线EF,与AB的延长线交于点F.①根据题意,将(1)中图形补全;②求证:EF∥BC;③若DE=2,求EF的长.23.如图,四边形ABCD为矩形,点E为边AB上一点,连接DE并延长,交CB的延长线于点P,连接PA,∠DPA=2∠DPC.求证:DE=2PA.24.已知:在平面直角坐标系xOy中,对于任意的实数a(a≠0),直线y=ax+a﹣2都经过平面内一个定点A.(1)求点A的坐标;(2)反比例函数y=的图象与直线y=ax+a﹣2交于点A和另外一点P(m,n).①求b的值;②当n>﹣2时,求m的取值范围.25.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如表所示:x1=AP012345θ=∠QMPα85°130°180°145°130°小芸同学在读书时,发现了另外一个函数:对于自变量x2在﹣2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1)表格中α的值为.(2)如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.26.在平面直角坐标系xOy中,存在抛物线y=x2+2x+m+1以及两点A(m,m+1)和B(m,m+3).(1)求该抛物线的顶点坐标;(用含m的代数式表示)(2)若该抛物线经过点A(m,m+1),求此抛物线的表达式;(3)若该抛物线与线段AB有公共点,结合图象,求m的取值范围.27.已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M 为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM.若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=,当条件(填入序号)满足时,一定有EM=EA,并证明这个结论.28.如果的两个端点M,N分别在∠AOB的两边上(不与点O重合),并且除端点外的所有点都在∠AOB的内部,则称是∠AOB的“连角弧”.(1)图1中,∠AOB是直角,是以O为圆心,半径为1的“连角弧”.①图中MN的长是,并在图中再作一条以M,N为端点、长度相同的“连角弧”;②以M,N为端点,弧长最长的“连角弧”的长度是.(2)如图2,在平面直角坐标系xOy中,点M(1,),点N(t,0)在x轴正半轴上,若是半圆,也是∠AOB的“连角弧”求t的取值范围.(3)如图3,已知点M,N分别在射线OA,OB上,ON=4,是∠AOB的“连角弧”,且所在圆的半径为1,直接写出∠AOB的取值范围.参考答案一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.在疫情防控的特殊时期,为了满足初三高三学生的复习备考需求,北京市教委联合北京卫视共同推出电视课堂节目《老师请回答特别节目“空中课堂”》,在节目播出期间,全市约有200000名师生收看了节目.将200000用科学记数法表示应为()A.0.2×105B.0.2×106C.2×105D.2×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.解:将200000用科学记数法表示应为2×105,故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在数轴上,表示实数a的点如图所示,则2﹣a的值可以为()A.﹣5.4B.﹣1.4C.0D.1.4【分析】由题意得出2≤a<2.5,根据2﹣a的取值范围,即可得到结果.解:根据表示实数a的点的位置可得,2≤a<2.5,∵﹣0.5<2﹣a≤0,∴2﹣a的值可以为0,故选:C.【点评】本题考查了实数与数轴,正确的理解题意是解题的关键.4.以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出的四边形个数为()A.0B.1C.2D.无限多【分析】根据三角形的三边关系和四边形的不稳定性即可得到结论.解:以AB=2cm,BC=3cm,CD=2cm,DA=4cm为边画出四边形ABCD,可以画出无限多个四边形,故选:D.【点评】本题考查了三角形的三边关系,四边形的性质,熟练掌握四边形的不稳定性是解题的关键.5.在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米.把一个实心铁块缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y(单位:分米3)与水面上升高度x(单位:分米)之间关系的图象的是()A.B.C.D.【分析】依题意,铁块浸入水中的体积(y)随水面上升高度(x)增大而增大,则两者之间是正比例函数.解:把一个实心铁块缓慢浸入这个容器的水中,铁块浸入水中的体积(y)随水面上升高度(x)增大而增大,即y是x的正比例函数.自变量x的取值范围是0≤x≤3.故选:A.【点评】本题考查动点问题的函数图象问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.6.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣3【分析】先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+a=1,整体代入计算可得.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.7.在平面直角坐标系xOy中,点A(﹣1,2),B(2,3),y=ax2的图象如图所示,则a的值可以为()A.0.7B.0.9C.2D.2.1【分析】利用x=﹣1时,y<2和当x=2时,y>3得到a的范围,然后对各选项进行判断.解:∵x=﹣1时,y<2,即a<2;当x=2时,y>3,即4a>3,解得a >,所以<a<2.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.8.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要的支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A种支付方式和仅使用B种支付方式的学生的支付金额a(元)的分布情况如下:0<a≤10001000<a≤2000a>2000支付金额a(元)支付方式仅使用A18人9人3人仅使用B10人14人1人下面有四个推断:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率大于他使用B支付方式的概率;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有400人;③样本中仅使用A种支付方式的同学,上个月的支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数一定不低于1000元.其中合理的是()A.①③B.②④C.①②③D.①②③④【分析】根据概率公式、样本估计总体思想的运用、中位数和平均数的定义逐一判断可得.解:①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A支付方式的概率为=0.3,使用B支付方式的概率为=0.25,此推断合理;②根据样本数据估计,全校1000名学生中,同时使用A,B两种支付方式的大约有1000×=400(人),此推断合理;③样本中仅使用A种支付方式的同学,第15、16个数据均落在0<a≤1000,所以上个月的支付金额的中位数一定不超过1000元,此推断合理;④样本中仅使用B种支付方式的同学,上个月的支付金额的平均数无法估计,此推断不正确.故推断正确的有①②③,故选:C.【点评】本题主要考查概率公式,解题的关键是掌握熟练概率公式、样本估计总体思想的运用、中位数和平均数的定义.二、填空题(共8道小题,每小题2分,共16分)9.举出一个数字“0”表示正负之间分界点的实际例子,如0℃可以表示温度正负分界等(答案不唯一).【分析】根据数学中0表示数的意义解答即可.解:在实际中,数字“0”表示正负之间分界点,如:0℃可以表示温度正负分界等(答案不唯一).故答案为:0℃可以表示温度正负分界等(答案不唯一).【点评】此题考查了正数和负数的意义,熟练掌握既不是正数,也不是负数的0的意义是解本题的关键.0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.10.若某个正多边形的一个内角为108°,则这个正多边形的内角和为540°.【分析】通过内角求出外角,利用多边形外角和360度,用360°除以外角度数即可求出这个正多边形的边数即可解答.解:∵正多边形的每个内角都相等,且为108°,∴其一个外角度数为180°﹣108°=72°,则这个正多边形的边数为360÷72=5,∴这个正多边形的内角和为108°×5=540°.故答案为:540°.【点评】本题主要考查了多边形的内角与外角公式,求正多边形的边数时,内角转化为外角,利用外角和360°知识求解更简单.11.若(4m+1)(4n+1)=4K+1,则K可以用含m,n的代数式表示为4mn+m+n.【分析】直接利用多项式乘以多项式计算进而得出答案.解:∵(4m+1)(4n+1)=4K+1,∴16mn+4m+4n+1=4K+1,则4K=16mn+4m+4n,故K=4mn+m+n.故答案为:4mn+m+n.【点评】此题主要考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.12.把图1中长和宽分别为3和2的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2所示的正方形,则图2中小正方形ABCD的面积为1.【分析】根据线段的和差关系可求图2中小正方形ABCD的边长,再根据正方形面积公式即可求解.解:3﹣2=1,1×1=1.故图2中小正方形ABCD的面积为1.故答案为:1.【点评】考查了勾股定理的证明,全等图形,关键是求出图2中小正方形ABCD的边长.13.某班甲、乙、丙三名同学20天的体温数据记录如表:甲的体温乙的体温丙的体温温度℃36.136.436.536.8温度℃36.136.436.536.8温度℃36.136.436.536.8频数5555频数6446频数4664则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是丙.【分析】分别计算平均数和方差后比较即可得到答案.解:甲的平均数为:(36.1×5+36.4×5+36.5×5+36.8×5)=36.45;乙的平均数为:(36.1×6+36.4×4+36.5×4+36.8×6)=36.45;丙的平均数为:(36.1×4+36.4×6+36.5×6+36.8×4)=36.45;甲的方差为:[5×(36.1﹣36.45)2+5×(36.4﹣36.45)2+5×(36.5﹣36.45)2+5×(36.8﹣36.45)2]=0.0625;乙的方差为:[6×(36.1﹣36.45)2+4×(36.4﹣36.45)2+4×(36.5﹣36.45)2+6×(36.8﹣36.45)2]=0.0745;丙的方差为:[4×(36.1﹣36.45)2+6×(36.4﹣36.45)2+6×(36.5﹣36.45)2+4×(36.8﹣36.45)2]=0.064;∵0.064<0.625<0.0745,∴在这20天中,甲、乙、丙三名同学的体温情况最稳定的是丙,故答案为:丙.【点评】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图将一张矩形纸片ABCD沿对角线BD翻折,点C的对应点为C′,AD与BC′交于点E,若∠ABE=30°,BC=3,则DE的长度为2.【分析】证出BE=2AE,∠CBD=∠C'BD=∠EDB=30°,得出DE=BE=2AE,求出AE=1,得出DE=2即可.解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC=3,AD∥BC,∴∠CBD=∠EDB,由折叠的性质得:∠CBD=∠C'BD,∵∠ABE=30°,∴BE=2AE,∠CBD=∠C'BD=∠EDB=30°,∴DE=BE=2AE,∵AD=AE+DE=3,∴AE+2AE=3,∴AE=1,∴DE=2;故答案为:2.【点评】本题考查了翻折变换的性质、矩形的性质、含30°角的直角三角形的性质、等腰三角形的判定等知识;熟练掌握翻折变换的性质和等腰三角形的判定是解题的关键.15.一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是98或77元.【分析】由a,b,c之间的关系结合a,b,c均为整数,即可得出a,b,c的值,设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,根据奖金的总额为1078元,即可得出关于x的一元一次方程,解之即可得出结论(取其为整数的值).解:∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,∴,,.设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,解得:x=107.8(不合题意,舍去),x=98,x=77.故答案为:98或77.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是①②③④.【分析】连接AC、BD,根据三角形中位线定理得到PQ∥AC,PQ=AC,MN∥AC,MN=AC,根据平行四边形、矩形、菱形、正方形的判定定理判断即可.解:①当AC与BD不平行时,中点四边形MNPQ是平行四边形;故存在无数个中点四边形MNPQ是平行四边形;②当AC与BD相等且不平行时,中点四边形MNPQ是菱形;故存在无数个中点四边形MNPQ是菱形;③当AC与BD互相垂直(B,D不重合)时,中点四边形MNPQ是矩形;故存在无数个中点四边形MNPQ是矩形;④如图所示,当AC与BD相等且互相垂直时,中点四边形MNPQ是正方形.故存在两个中点四边形MNPQ是正方形.故答案为:①②③④.【点评】本题考查的是中点四边形,掌握平行四边形、矩形、菱形、正方形的判定定理、三角形中位线定理是解题的关键.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题每小题5分;第,每小题5分)17.计算:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:|﹣|﹣(4﹣π)0﹣2sin60°+()﹣1=﹣1﹣2×+4=3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.18.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式≥1,得:x≥1,解不等式3(x﹣2)>2﹣x,得:x>2,则不等式组的解集为x>2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.已知:关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根.(1)求m的取值范围;(2)若该方程有两个实数根,取一个m的值,求此时该方程的根.【分析】(1)分m﹣2=0和m﹣2≠0两种情况,其中m﹣2≠0时根据根的判别式求解可得;(2)在所求范围内取一m的值代入方程,再解之即可得.解:(1)∵关于x的方程(m﹣2)x2﹣3x﹣2=0有实数根,∴①当m﹣2=0,即m=2;②当m﹣2≠0,即m≠2时,△=(﹣3)2﹣4×(m﹣2)×(﹣2)≥0,解得m≥且m≠2;综上,m≥;(2)取m=3,此时方程为x2﹣3x﹣2=0,利用公式法求解得:x=(答案不唯一).【点评】本题主要考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.20.已知线段AB,直线l垂直平分AB且交AB于点O,以O为圆心,AO长为半径作弧,交直线l于C,D两点,分别连接AC,AD,BC,BD.(1)根据题意,补全图形;(2)求证:四边形ACBD为正方形.【分析】(1)直接根据题意画出图形即可;(2)直接利用基本作图方法结合正方形的判定方法得出答案.解:(1)如图所示:(2)证明:∵直线l垂直平分AB,∴AC=BC,BD=AD,∠AOC=∠AOD=90°,在△AOC和△AOD中,∴△AOC≌△AOD(SAS),∴AC=BC=BD=AD,∴四边形ACBD是菱形,又∵OA=OB=OC=OD,∴∠CAD=45°+45°=90°,∴菱形ACBD为正方形.【点评】此题主要考查了基本作图以及正方形的判定,正确掌握正方形的判定方法是解题关键.21.国务院发布的《全民科学素质行动计划纲要实施方案(2016﹣2020年)》指出:公民科学素质是实施创新驱动发展战略的基础,是国家综合国力的体现,《方案》明确提出,2020年要将我国公民科学素质的数值提升到10%以上.为了解我国公民科学素质水平及发展状况,中国科协等单位已多次组织了全国范围的调查,以下是根据调查结果整理得到的部分信息.注:科学素质的数值是指具备一定科学素质的公民人数占公民总数的百分比.a.2015和2018年我国各直辖市公民科学素质发展状况统计图如图1.b.2015年和2018年我国公民科学素质发展状况按性别分类统计如下:2015年2018年男9.0%11.1%女 3.4% 6.2%c.2001年以来我国公民科学素质水平发展统计图如图2.根据以上信息,回答下列问题:(1)在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是北京,公民科学素质水平增速最快的城市是重庆.注:科学素质水平增幅=2018年科学素质的数值﹣2015年科学素质的数值;科学素质水平增速=(2018年科学素质的数值﹣2015年科学素质的数值)÷2015年科学素质的数值.(2)已知在2015年的调查样本中,男女公民的比例约为1:1,则2015年我国公民的科学素质水平为 6.2%(结果保留一位小数);由计算可知,在2018年的调查样本中,男性公民人数少于女性公民人数(填“多于”、“等于”或“少于”).(3)根据截至2018年的调查数据推断,你认为“2020年我国公民科学素质提升到10%以上”的目标能够实现吗?请说明理由.【分析】(1)利用统计图1中信息判断即可.(2)利用表格和图2信息,解决问题即可.(3)答案不唯一,说法合理即可.解:(1)由2015和2018年我国各直辖市公民科学素质发展状况统计图如图1得知,上海:22%﹣19%=3%,北京:21.5%﹣17.5%=4%,天津:14%﹣12%=2%,重庆:8%﹣4.5%=3.5%,故在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是北京;上海:3%÷19%≈16%,北京:4%÷21.5%≈19%,天津:2%÷12%≈17%,重庆:3.5%÷4.5%=78%,故公民科学素质水平增速最快的城市是重庆;故答案为:北京,重庆;(2)∵在2015年的调查样本中,男女公民的比例约为1:1,∴2015年我国公民的科学素质水平为(9.0%+3.4%)÷2=6.2%,设男性公民占x%,则有11.1%×x%+6.2%×(1﹣x%)=8.5%,解得x=47,∴男性公民人数少于女性公民人数,故答案为6.2,少于.(3)①能实现.理由如下:2015年我国公民的科学素质水平为6.2%,2018年我国公民的科学素质水平为8.5%,平均每年的增幅平均为0.77%,如果按照匀速增长的速度推断,2020年我国公民的科学素质水平达到10.3%,由此可知,“2020年我国公民科学素质提升到10%以上”的目标能够实现.②条件不足,无法判断.理由如下:一种情形同①,能实现目标.另一种情形,无法判断.因为不知道2018~2020年间我国公民的科学素质水平的增从速度是加快还是减缓,所以无法判断,2020年能否实现目标.。
2020年北京市顺义区中考数学⼆模试卷-解析版2020年北京市顺义区中考数学⼆模试卷⼀、选择题(本⼤题共8⼩题,共16.0分)1. 如图所⽰,l 1//l 2,则平⾏线l 1与l 2间的距离是( )A. 线段AB 的长度B. 线段BC 的长度C. 线段CD 的长度D. 线段DE 的长度2. ?5的倒数是( )A. ?5B. 15C. ?15D. 53. 如图,平⾯直⾓坐标系xOy 中,有A 、B 、C 、D 四点.若有⼀直线l 经过点(?1,3)且与y 轴垂直,则l 也会经过的点是( )A. 点AB. 点BC. 点CD. 点D4. 如果a 2+4a ?4=0,那么代数式(a ?2)2+4(2a ?3)+1的值为( )A. 13B. ?11C. 3D. ?3 5. 如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成两个多边形,若这两个多边形的内⾓和分别为α和β,则α+β的度数是( ) A. 360° B. 540° C. 720° D. 900°6. 《九章算术》是中国古代重要的数学著作,其中“盈不⾜术”记载:今有共买鸡,⼈出九,盈⼗⼀;⼈出六,不⾜⼗六.问⼈数鸡价各⼏何?译⽂:今有⼈合伙买鸡,每⼈出九钱,会多出11钱;每⼈出6钱,⼜差16钱.问⼈数、买鸡的钱数各是多少?设⼈数为x ,买鸡的钱数为y ,可列⽅程组为( )A. {9x +11=y6x +16=yB. {9x ?11=y6x ?16=yC. {9x +11=y6x ?16=yD. {9x ?11=y6x +16=y7.去年某果园随机从甲、⼄、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数?(22甲⼄丙丁x?24242320S2 1.9 2.12 1.9今年准备从四个品种中选出⼀种产量既⾼⼜稳定的葡萄树进⾏种植,应选的品种是()A. 甲B. ⼄C. 丙D. 丁8.正⽅形ABCD的边AB上有⼀动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的⾯积为y,则y与x之间的关系描述正确的是()A. y与x之间是函数关系,且当x增⼤时,y先增⼤再减⼩B. y与x之间是函数关系,且当x增⼤时,y先减⼩再增⼤C. y与x之间是函数关系,且当x增⼤时,y⼀直保持不变D. y与x之间不是函数关系⼆、填空题(本⼤题共8⼩题,共16.0分)9.分解因式:2mn2?2m=______.10.图中的四边形均为矩形,根据图形,写出⼀个正确的等式:______.______0.5.11.⽐较⼤⼩:√5?1212.如图,在每个⼩正⽅形的边长为1cm的⽹格中,画出了⼀个过格点A,B的圆,通过测量、计算,求得该圆的周长是______cm.(结果保留⼀位⼩数)13.如图,∠MAN=30°,点B在射线AM上,且AB=2,则点B到射线AN的距离是______.14.如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=______.15.数学活动课上,⽼师拿来⼀个不透明的袋⼦,告诉学⽣⾥⾯装有4个除颜⾊外均相同的⼩球,并且球的颜⾊为红⾊和⽩⾊,让学⽣通过多次有放回的摸球,统计摸出红球和⽩球的次数,由此估计袋中红球和⽩球的个数.下⾯是全班分成的三个⼩组各摸球20次的结果,请你估计袋中有______个红球.摸到红球的次数摸到⽩球的次数⼀组137⼆组146三组15516.⽅形的内部及边界通过移转(即平移或旋转)的⽅式,⾃由地从横放移转到竖放,求正⽅形边长的最⼩整数n.”甲、⼄、丙作了⾃认为边长最⼩的正⽅形,先求出该边长x,再取最⼩整数n.甲:如图2,思路是当x为矩形对⾓线长时就可移转过去;结果取n=14.⼄:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的√22倍时就可移转过去;结果取n=13.甲、⼄、丙的思路和结果均正确的是______.三、解答题(本⼤题共12⼩题,共68.0分)17.计算:(?2)0+√12cos45°32.18.解不等式:x?13≥x?22+1,并把解集在数轴上表⽰出来.19.已知:关于x的⽅程mx2?4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若⽅程的根为有理数,求正整数m的值.20.下⾯是⼩东设计的“以线段AB为⼀条对⾓线作⼀个菱形”的尺规作图过程.已知:线段AB.求作:菱形ACBD.作法:如图,①以点A为圆⼼,以AB长为半径作⊙A;②以点B为圆⼼,以AB长为半径作⊙B,交⊙A于C,D两点;③连接AC,BC,BD,AD.所以四边形ACBD就是所求作的菱形.根据⼩东设计的尺规作图过程,(1)使⽤直尺和圆规,补全图形(保留作图痕迹);(2)完成下⾯的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(______)(填推理的依据).同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴______═______=______=______.∴四边形ACBD是菱形.(______)(填推理的依据).CD,点E是CD 21.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=12的中点.(1)求证:四边形ABCE是平⾏四边形;(2)若AC=4,AD=4√2,求四边形ABCE的⾯积.22.为了研究⼀种新药的疗效,选100名患者随机分成两组,每组各50名,⼀组服药,另⼀组不服药,12周后,记录了两组患者的⽣理指标x和y的数据,并制成图1,其中“?”表⽰服药者,“+”表⽰未服药者;同时记录了服药患者在4周、8周、12周后的指标z的改善情况,并绘制成条形统计图2.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出⼀⼈,求此⼈指标x的值⼤于1.7的概率;(2)设这100名患者中服药者指标y数据的⽅差为S12,未服药者指标y数据的⽅差为S22,则S12______S22;(填“>”、“=”或“<”)(3)对于指标z的改善情况,下列推断合理的是______.①服药4周后,超过⼀半的患者指标z没有改善,说明此药对指标z没有太⼤作⽤;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.23.已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证;DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.24.如图,在△ABC中,AB=AC=5cm,BC=6cm,点D为BC的中点,点E为AB的中点.点M为AB边上⼀动点,从点B出发,运动到点A停⽌,将射线DM绕点D顺时针旋转α度(其中α=∠BDE),得到射线DN,DN与边AB或AC交于点N.设B、M两点间的距离为xcm,M,N两点间的距离为ycm.⼩涛根据学习函数的经验,对函数y随⾃变量x的变化⽽变化的规律进⾏了探究.下⾯是⼩涛的探究过程,请补充完整.(1)列表:按照下表中⾃变量x的值进⾏取点、画图、测量,分别得到了y与x的⼏组对应值:x00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0/cmy2.5 2.44 2.42 2.47 2.79 2.94 2.52 2.41 2.48 2.66 2.93.08 3.2/cm(2)描点、连线:在平⾯直⾓坐标系xOy中,描出补全后的表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)结合函数图象,解决问题:当MN=BD时,BM的长度⼤约是______cm.(结果保留⼀位⼩数)(x<0)的图象上.25.已知:在平⾯直⾓坐标系xOy中,点A(?1,2)在函数y=mx(1)求m的值;(x<(2)过点A作y轴的平⾏线l,直线y=?2x+b与直线l交于点B,与函数y=mx0)的图象交于点C,与y轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC26.在平⾯直⾓坐标系xOy中,已知抛物线y=mx2?3(m?1)x+2m?1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC只有⼀个公共点,求m的取值范围.27.已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上⼀动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是______;(3)连接AF,⼩昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF的度数始终保持不变,⼩昊把这个猜想与同学们进⾏了交流,经过测量,⼩昊猜想∠DAF=______°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正⽅形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG//AF,交直线FC于点G,构造?ABGF,然后可证△AFE≌△BGC…请你参考上⾯的想法,帮助⼩昊完成证明(⼀种⽅法即可).28.已知:如图,⊙O的半径为r,在射线OM上任取⼀点P(不与点O重合),如果射线OM上的点P′,满⾜OP?OP′=r2,则称点P′为点P关于⊙O的反演点.在平⾯直⾓坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A′的坐标;(2)若点B关于⊙O的反演点B′恰好为直线y=√3x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=√3x上⼀动点,且点C关于⊙O的反演点C′在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上⼀动点,直接写出点D关于⊙O的反演点D′的横坐标t的范围.答案和解析1.【答案】B【解析】解:如图所⽰,l1//l2,则平⾏线l1与l2间的距离是线段BC的长度.故选:B.利⽤平⾏线间距离的定义判断即可.此题考查了平⾏线的性质,熟练掌握平⾏线的性质是解本题的关键.2.【答案】C【解析】解:?5的倒数是?1;5故选:C.根据倒数的定义即可得出答案.此题主要考查了倒数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.【答案】D 【解析】解:如图所⽰:有⼀直线L通过点(?1,3)且与y轴垂直,故L也会通过D点.故选:D.直接利⽤点的坐标,正确结合坐标系分析即可.此题主要考查了点的坐标,正确结合平⾯直⾓坐标系分析是解题关键.4.【答案】D【解析】解:原式=a2?4a+4+8a?12+1=a2+4a?7,由a2+4a?4=0,得到a2+4a=4,则原式=4?7=?3.故选:D.原式利⽤完全平⽅公式化简,去括号合并得到最简结果,把已知等式变形后代⼊计算即可求出值.此题考查了整式的混合运算?化简求值,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:如图:四边形ABCE 的内⾓和为:(4?2)×180°=360°,△ADE 的内⾓和为180°,∴α+β=360°+180°=540°.故选:B .根据多边形的内⾓和公式计算即可.本题主要考查了多边形的内⾓和,熟记多边形的内⾓和公式是解答本题的关键. 6.【答案】D【解析】解:设⼈数为x ,买鸡的钱数为y ,可列⽅程组为: {9x ?11=y 6x +16=y.故选:D .直接利⽤每⼈出九钱,会多出11钱;每⼈出6钱,⼜差16钱,分别得出⽅程求出答案.此题主要考查了由实际问题抽象出⼆元⼀次⽅程组,正确得出等量关系是解题关键. 7.【答案】A【解析】解:因为甲品种的葡萄树、⼄品种的葡萄树的平均数丙品种的葡萄树⽐丁品种的葡萄树⼤,⽽甲品种的葡萄树的⽅差⽐⼄品种的葡萄树的⼩,所以甲品种的葡萄树的产量⽐较稳定,所以甲品种的葡萄树的产量既⾼⼜稳定.故选:A .先⽐较平均数得到甲品种的葡萄树和⼄品种的葡萄树产量较好,然后⽐较⽅差得到甲品种的葡萄树的状态稳定,从⽽求解.本题考查了⽅差:⼀组数据中各数据与它们的平均数的差的平⽅的平均数,叫做这组数据的⽅差.⽅差是反映⼀组数据的波动⼤⼩的⼀个量.⽅差越⼤,则平均值的离散程度越⼤,稳定性也越⼩;反之,则它与其平均值的离散程度越⼩,稳定性越好.也考查了平均数的意义. 8.【答案】C【解析】解:连接DE ,∵S △CDE =12×CE ×GE =12S 矩形ECFG ,同理S△CDE=12S正⽅形ABCD,故y=S矩形ECFG=S正⽅形ABCD,为常数,故选:C.连接DE,△CDE的⾯积是矩形CFGE的⼀半,也是正⽅形ABCD的⼀半,则矩形与正⽅形⾯积相等.此题考查了正⽅形的性质、矩形的性质,连接DE由⾯积关系进⾏转化是解题的关键.9.【答案】2m(n+1(n?1)【解析】解:2mn2?2m=2m(n2?1)=2m(n+1)(n?1).故答案为:2m(n+1(n?1).⾸先提取公因式2m,再利⽤平⽅差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确运⽤乘法公式是解题关键.10.【答案】(x+p)(x+q)=x2+px+qx+pq【解析】解:矩形的⾯积可看作(x+p)(x+q),也可看作四个⼩矩形的⾯积和,即x2+ px+qx+pq,所以可得等式为:(x+p)(x+q)=x2+px+qx+pq,故答案为:(x+p)(x+q)=x2+px+qx+pq.根据多项式的乘法展开解答即可.此题考查多项式的乘法,关键是根据图形的⾯积公式解答.11.【答案】>【解析】解:∵0.5=12,2<√5<3,∴√5?1>1,∴√5?12>0.5故答案为:>.⾸先把0.5变为12,然后估算√5的整数部分,再根据⽐较实数⼤⼩的⽅法进⾏⽐较即可.此题主要考查了实数的⼤⼩⽐较.此题应把0.5变形为分数,然后根据⽆理数的整数部分再来⽐较即可解决问题.12.【答案】8.9【解析】解:由垂径定理可知,圆的圆⼼在点O处,连接OA,由勾股定理得,OA=√12+12=√2,∴圆的周长=2√2π≈8.9,故答案为:8.9.根据垂径定理确定圆的圆⼼,根据勾股定理求出圆的半径,根据圆的周长公式计算,得到答案.本题考查的是垂径定理、勾股定理的应⽤,掌握弦的垂直平分线经过圆⼼是解题的关键.13.【答案】1【解析】解:如图,过点B作BC⊥AN于点C,∵在直⾓△ABC中,∠A=30°,AB=2,∴BC=12AB=12×2=1.即点B到射线AN的距离是1.故答案是:1.如图,过点B作BC⊥AN于点C,则BC线段的长度即为所求,根据“在直⾓三⾓形中,30°⾓所对的直⾓边等于斜边的⼀半”解答.本题主要考查了点到直线的距离,含30度⾓的直⾓三⾓形,解题的关键是找到符合条件的线段BC.14.【答案】5【解析】解:∵∠C=90°,∴∠B+∠BAC=90°,∵α+β=∠B,∴α+β+∠BAC=90°,即∠DAE=90°,∵AD=AB=4,AE=AC=3,∴DE=√AD2+AE2=5,故答案为:5.根据直⾓三⾓形的性质得到∠DAE=90°,根据勾股定理计算,得到答案.本题考查的是勾股定理,如果直⾓三⾓形的两条直⾓边长分别是a,b,斜边长为c,那么a2+b2=c2.15.【答案】3【解析】解:∵三个⼩组摸到红球的次数为13+14+15=42(次),∴摸到红球的概率为4220×3=710,∴估计袋中有4×710≈3个红球.故答案为:3.由三个⼩组摸到红球的次数为13+14+15=42次得出袋⼦中红⾊球的概率,进⽽求出红球个数即可.此题主要考查了利⽤频率估计概率,根据⼤量反复试验下频率稳定值(即概率)是解本题的关键.16.【答案】甲【解析】解:∵矩形长为12宽为6,∴矩形的对⾓线长为:√62+122=6√5,∵矩形在该正⽅形的内部及边界通过平移或旋转的⽅式,⾃由地从横放变换到竖放,∴该正⽅形的边长不⼩于6√5,∵13<6√5<15,∴该正⽅形边长的最⼩正数n为14.故甲的思路正确,长⽅形对⾓线最长,只要对⾓线能通过就可以,n=14;故答案为:甲.根据矩形长为12宽为6,可得矩形的对⾓线长为6√5,由矩形在该正⽅形的内部及边界通过平移或旋转的⽅式,⾃由地从横放变换到竖放,可得该正⽅形的边长不⼩于6√5,进⽽可得正⽅形边长的最⼩整数n的值.本题考查了矩形的性质与旋转的性质,熟练运⽤矩形的性质是解题的关键.17.【答案】解:原式=1+√22?√2219=89.【解析】直接利⽤零指数幂的性质以及特殊⾓的三⾓函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:去分母得:2(x?1)≥3(x?2)+6,去括号得:2x?2≥3x?6+6,移项并合并同类项得:?x≥2,系数化为1得:x≤?2,解集在数轴上表⽰为:.【解析】直接利⽤⼀元⼀次不等式的解法分析得出答案.此题主要考查了解⼀元⼀次不等式,正确掌握解题⽅法是解题关键.19.【答案】解:(1)∵m≠0,∴关于x的⽅程mx2?4x+1=0为⼀元⼆次⽅程,∵关于x的⼀元⼆次⽅程mx2?4x+1=0有实数根,∴△=b2?4ac=(?4)2?4×m×1=16?4m≥0,解得:m≤4.∴m的取值范围是m≤4且m≠0.(2)∵m为正整数,∴m可取1,2,3,4.当m=1时,△=16?4m=12;当m=2时,△=16?4m=8;当m=3时,△=16?4m=4;当m=4时,△=16?4m=0.∵⽅程为有理根,∴m=3或m=4.【解析】(1)根据⽅程的系数结合根的判别式△≥0,即可得出关于m的⼀元⼀次不等式,解之即可得出m的取值范围;(2)由m为正整数可得出m的可能值,将其分别代⼊△=16?4m中求出△的值,再结合⽅程的根为有理数即可得出结论.本题考查了根的判别式以及⼀元⼆次⽅程的解,解题的关键是:(1)牢记“当△≥0时,⽅程有实数根”;(2)根据⽅程的根为有理数,确定m的值.20.【答案】圆的半径AD AC BC BD四边相等的四边形为菱形【解析】解:(1)如图,四边形ACBD为所作;(2)完成下⾯的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(圆的半径相等),同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AD=AC=BC=AD,∴四边形ACBD是菱形.(四边相等的四边形为菱形).故答案为:圆的半径相等;AD、AC、BC、AD;四边相等的四边形为菱形.(1)根据作法画出⼏何图形;(2)利⽤圆的半径相等得到四边形ACBD的边长都等于AB,然后根据菱形的判定可判断四边形ACBD就是所求作的菱形.本题考查了作图?复杂作图:复杂作图是在五种基本作图的基础上进⾏作图,⼀般是结合了⼏何图形的性质和基本作图⽅法.解决此类题⽬的关键是熟悉基本⼏何图形的性质,结合⼏何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.21.【答案】(1)证明:∵∠BAC=∠ACD=90°,∴AB//EC,∵点E是CD的中点,CD,∴EC=12∵AB=1CD,2∴AB=EC,∴四边形ABCE是平⾏四边形;(2)解:∵∠ACD=90°,AC=4,AD=4√2,∴CD=√AD2?AC2=4,CD,∵AB=12∴AB=2,=AB?AC=2×4=8.∴S平⾏四边形ABCE【解析】(1)根据平⾏线的判定定理得到AB//EC,推出AB=EC,于是得到结论;(2)根据勾股定理得到CD=√AD2?AC2=4,求得AB=2,根据平⾏四边形的⾯积公式即可得到结论.本题考查了平⾏四边形的判定,勾股定理,平⾏四边形的⾯积的计算,正确的识别图形是解题的关键.22.【答案】>②【解析】解:(1)指标x的值⼤于1.7的概率为:3÷50=350=0.06;(2)由图1可知,S12>S22,故答案为:>;(3)由图2可知,推断合理的是②,故答案为:②.(1)根据图1,可以的打指标x的值⼤于1.7的概率;(2)根据图1,可以得到S12和S22的⼤⼩情况;(3)根据图2,可以判断哪个推断合理.本题考查条形统计图、其他统计图、⽅差、概率,解题本题的关键是明确题意,利⽤数形结合的思想解答,这道题⽬属于中考常考题型.23.【答案】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∴∠ODF=90°.∵AD平分∠CAB,∴∠CAD=∠DAB.⼜∵OA=OD,∴∠DAB=∠ADO.∴∠CAD=∠ADO.∴AF//OD.∴∠F+∠ODF=180°.∴∠F=180°?∠ODF=90°.∴DF⊥AF.(2)解:连接DB.∵AB是直径,⊙O的半径是5,AD=8,∴∠ADB=90°,AB=10.∴BD=6.∵∠F=∠ADB=90°,∠FAD=∠DAB,∴△FAD∽△DAB.∴DFBD =ADAB.∴DF=AD?BDAB =8×610=245.【解析】(1)连接OD,根据切线的性质得到∠ODF=90°,根据⾓平分线的定义得到∠CAD=∠DAB,由等腰三⾓形的性质得到∠DAB=∠ADO,等量代换得到∠CAD=∠ADO,推出AF//OD,根据平⾏线的性质即可得到结论;(2)连接DB,根据圆周⾓定理得到∠ADB=90°,根据勾股定理得到BD=6,再根据相似三⾓形的判定与性质即可求解.本题考查了切线的性质,相似三⾓形的判定与性质,⾓平分线的定义,勾股定理,正确的作出辅助线是解题的关键.24.【答案】1.7,1.9,4.7【解析】解:(1)x=BM=1.8,在△MBD中,BD=3,cos∠B =35,设cosB =cosβ,tanβ=43,过点M 作MH ⊥BD 于点H ,则BH =BMcosβ=1.8×35=1.08,同理MH =1.44, HD =BD ?BH =3?1.08=1.92, MD =√MH 2+HD 2=2.4, MD 2=HD 2+MH 2=9,则BD 2=BM2+MD 2,故∠BMD =90°,则y =MN =MDtanβ=(DBsinβ)tanβ=2.4×43=3.2,补全的表格数据如下: x/cm 00.3 0.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0y/cm 2.5 2.44 2.42 2.47 2.79 3.2 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2(3)当MN =BD 时,即y =3,从图象看x 即BM 的长度⼤约是1.7,1.9,4.7;故答案为:1.7,1.9,4.7(填的数值上下差0.1都算对).(1)证明∠BMD =90°,则y =MN =MDtanβ=(DBsinβ)tanβ=2.4×43=3.2; (2)描点、连线得函数图象;(3)当MN =BD 时,即y =3,从图象看x 的值即可.本题为动点问题的函数图象,涉及到解直⾓三⾓形、函数作图等,此类题⽬难点于弄懂x 、y 代表的意义,估计或计算解出表格空出的数据.25.【答案】解:(1)把A(?1,2)代⼊函数y =mx (x <0)中,∴m =?2;(2)①过点C 作EF ⊥y 轴于F ,交直线l 于E ,∵直线l//y 轴,∴EF ⊥直线l .∴∠BEC =∠DFC =90°.∵点A 到y 轴的距离为 1,∴EF =1.∵直线 l//y 轴,∴∠EBC =∠FDC .∵点C 是BD 的中点,∴CB =CD .∴△EBC≌△FDC(AAS),∴EC =CF ,即CE =CF =12.∴点C 的横坐标为?12.把x =?12代⼊函数y =?2x 中,得y =4.∴点C 的坐标为(?12,4),把点C 的坐标为(?12,4)代⼊函数y =?2x +b 中,得b =3;②当C 在下⽅时,C(12,?4),把C(12,?4)代⼊函数y =?2x +b 中得:?4=?2×12+b ,得b =?3,则BC ?3,故b 的取值范围为b >?3.【解析】(1)根据待定系数法求得即可;(2)①根据题意求得C 点的坐标,然后根据待定系数法即可求得b 的值;②根据①结合图象即可求得.本题考查了反⽐例函数综合运⽤,主要考查的是⼀次函数和反⽐例函数的交点问题,待定系数法求反⽐例的解析式,求得C点的坐标是解题的关键.26.【答案】解:(1)把m=3代⼊y=mx2?3(m?1)x+2m?1中,得y=3x2?6x+ 5=3(x?1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m?3(m?1)+2m?1=m?3m+3+2m?1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有⼀个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代⼊抛物线表达式,得2m?1=2.>0.∴m=32此时抛物线开⼝向上(如图1).∴当0时,抛物线与线段BC只有⼀个公共点.2③当抛物线过点C(3,2)时,将点C(3,2)代⼊抛物线表达式,得9m?9(m?1)+2m?1=2.∴m=?3<0.此时抛物线开⼝向下(如图2).∴当?3综上,m的取值范围是m=3或0或?32【解析】(1)求出抛物线的解析式,由配⽅法可得出答案;(2)把x=1,y=2代⼊y=mx2?3(m?1)x+2m?1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有⼀个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代⼊抛物线表达式,得2m?1=2.解得m=3,2则当0时,抛物线与线段BC只有⼀个公共点.2③当抛物线过点C(3,2)时,将点C(3,2)代⼊抛物线表达式,得m=?3<0.则当?3<m<0时,抛物线与线段BC只有⼀个公共点.本题是⼆次函数综合题,考查了⼆次函数的图象及其性质,⼆次函数图象上点的坐标特征,平移的性质等知识,熟练利⽤数形结合的解题⽅法是解决本题的关键.27.【答案】AE⊥DF45【解析】解:(1)补全图形如图1:(2)AE与DF的位置关系是:AE⊥DF,理由是:∵点B关于直线AD的对称点为E,∴AB=AE,BD=DE,∵AD=AD,∴△ABD≌△AED(SSS),∴∠AED=∠B=90°,∴AE⊥DF;故答案为:AE⊥DF;(3)猜想∠DAF=45°;想法1:证明如下:如图2,过点A做AG⊥CF于点G,依题意可知:∠B=∠BCG=∠CGA=90°,。
2020年北京市海淀区部分学校中考数学二模试卷一、选择题(本大题共8小题,共16.0分)1.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是A. 6B.C. 3D.2.如图,在中,BC边上的高是A. AFB. BHC. CDD. EC3.如图是某个几何体的侧面展开图,则该几何体是A. 三棱锥B. 四棱锥C. 三棱柱D. 四棱柱4.任意掷一枚骰子,下列情况出现的可能性比较大的是A. 面朝上的点数是6B. 面朝上的点数是偶数C. 面朝上的点数大于2D. 面朝上的点数小于25.下列是一组l o go设计的图片不考虑颜色,其中不是中心对称图形的是A. B. C. D.6.一个正方形的面积是12,估计它的边长大小在A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间7.月份月123456789101112销售额万元8710则这组数据的众数和中位数分别是A. 10,8B. ,C. ,D. ,8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程单位:米与所用时间单位:秒之间的函数图象分别为线段OA和折线则下列说法正确的是A. 两人从起跑线同时出发,同时到达终点B. 跑步过程中,两人相遇一次C. 起跑后160秒时,甲、乙两人相距最远D. 乙在跑前300米时,速度最慢二、填空题(本大题共8小题,共16.0分)9.分解因式:______.10.若分式的值为0,则______.11.已知,一次函数的图象经过点,且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:______.12.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为______.13.若,则代数式的值为______.14.如图,在平面直角坐标系xOy中,点A、B的坐标分别为、,在经过两次变化平移、轴对称、旋转得到对应点、的坐标分别为、,则由线段AB得到线段的过程是:______,由线段得到线段的过程是:______.15.如图,的半径为2,切线AB的长为,点P是上的动点,则AP的长的取值范围是______.16.在平面直角坐标系xOy中,点绕坐标原点O顺时针旋转后,恰好落在图中阴影区域包括边界内,则m的取值范围是______.三、计算题(本大题共1小题,共8.0分)17.解不等式,并把它的解集在数轴上表示出来.四、解答题(本大题共7小题,共60.0分)18.计算:.19.已知关于x的一元二次方程.当m为何非负整数时,方程有两个不相等的实数根;在的条件下,求方程的根.20.在平面直角坐标系xOy中,直线:与x轴,y轴分别交于点,B,与反比例函数图象的一个交点为.求反比例函数的表达式;设直线:与x轴,y轴分别交于点C,D,且,直接写出m的值______.21.如图,在中,,点D是AB边上一点,以BD为直径的与边AC相切于点E,与边BC交于点F,过点E作于点H,连接BE.求证:;若,,求AD的长.22.在平面直角坐标系xOy中,抛物线经过点和.求抛物线的表达式和顶点坐标;将抛物线在A、B之间的部分记为图象含A、B两点将图象M沿直线翻折,得到图象若过点的直线与图象M、图象N都相交,且只有两个交点,求b 的取值范围.23.在中,,,点M是线段BC的中点,点N在射线MB上,连接AN,平移,使点N移动到点M,得到点D与点A对应,点E与点B对应,DM交AC于点P.若点N是线段MB的中点,如图1.依题意补全图1;求DP的长;若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若,求CE的长.24.对某一个函数给出如下定义:若存在实数k,对于函数图象上横坐标之差为1的任意两点,,都成立,则称这个函数是限减函数,在所有满足条件的k中,其最大值称为这个函数的限减系数.例如,函数,当x取值a和时,函数值分别为,,故,因此函数是限减函数,它的限减系数为.写出函数的限减系数;,已知是限减函数,且限减系数,求m的取值范围.已知函数的图象上一点P,过点P作直线l垂直于y轴,将函数的图象在点P右侧的部分关于直线l翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数,直接写出P点横坐标n的取值范围.-------- 答案与解析 --------1.答案:D解析:解:由题意可得:B点对应的数是:,点A和点B表示的数恰好互为相反数,,解得:.故选:D.根据题意表示出B点对应的数,再利用互为相反数的性质分析得出答案.此题主要考查了数轴以及相反数,正确表示出B点对应的数是解题关键.2.答案:A解析:解:根据高的定义,AF为中BC边上的高.故选:A.根据三角形的高线的定义解答.本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.答案:B解析:解:观察图形可知,这个几何体是四棱锥.故选:B.侧面为4个三角形,底边为正方形,故原几何体为四棱锥.本题考查的是四棱锥的展开图,考法较新颖,需要对四棱锥有充分的理解.4.答案:C解析:解:抛掷一枚骰子共有1、2、3、4、5、6这6种等可能结果,面朝上的点数是6的概率为;B.面朝上的点数是偶数的概率为;C.面朝上的点数大于2的概率为;D.面朝上的点数小于2的概率为.故选C.根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率.5.答案:A解析:解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:A.根据把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.6.答案:B解析:解:设正方形的边长等于a,正方形的面积是12,,,,即.故选:B.先设正方形的边长等于a,再根据其面积公式求出a的值,估算出a的取值范围即可.本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7.答案:C解析:解:从小到大排列此数据为:、、7、、、、8、、、、、10,数据出现了4次最多为众数,处在第6、7位的是、8,中位数为.故选:C.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.答案:C解析:解:A、两人从起跑线同时出发,甲先到达终点,错误;B、跑步过程中,两人相遇两次,错误;C、起跑后160秒时,甲、乙两人相距最远,正确;D、乙在跑后200米时,速度最慢,错误;故选:C.根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9.答案:解析:解:.故答案为:.首先提取公因式x,进而利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.10.答案:2解析:解:,,当时,,当时,.当时,分式的值是0.故答案为:2.分式的值是0的条件是,分子为0,分母不为0.分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.11.答案:答案不唯一如:解析:解:随x的增大而减小可选取,那么一次函数的解析式可表示为:把点代入得:要求的函数解析式为:.根据题意可知,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将代入函数式,求得b,那么符合条件的函数式也就求出.本题需注意应先确定x的系数,然后把适合的点代入求得常数项.12.答案:解析:解:设到植物园的人数为x人,则到野生动物园的人数为人,根据题意得:.故答案为:.设到植物园的人数为x人,则到野生动物园的人数为人,根据到野生动物园和植物园开展社会实践活动的总人数为600人,即可得出关于x的一元一次方程.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.13.答案:13解析:解:,,把代入,故答案为:13由代数式,得出,整体代入代数式求得数值即可.此题考查代数式求值,注意整体代入,渗透整体思想.14.答案:向右平移4个单位长度绕原点顺时针旋转解析:解:如图所示,点A、B的坐标分别为、,点、的坐标分别为、,由线段AB得到线段的过程是向右平移4个单位长度;连接“,“,作这两条线段的垂直平分线,交于点O,“,则由线段得到线段的过程是:绕原点O顺时针旋转;故答案为:向右平移4个单位长度;绕原点顺时针旋转.依据对应点的坐标,即可得到平移的方向和距离;依据对应点的位置,即可得到旋转中心和旋转角度.本题主要考查了坐标与图形变换,在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行共线且相等.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.15.答案:解析:解:连接OB,是的切线,,,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,的长的取值范围是,故答案为:.连接OB,根据切线的性质得到,根据勾股定理求出OA,根据题意计算即可.本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.16.答案:解析:解:如图,将阴影区域绕着点O逆时针旋转,与直线交于C,D两点,则点在线段CD上,又点D的纵坐标为,点C的纵坐标为3,的取值范围是,故答案为:.将阴影区域绕着点O逆时针旋转,与直线交于C,D两点,则点A在线段CD上,据此可得m的取值范围.本题主要考查了旋转的性质,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.17.答案:解:去分母,得,去括号,得,移项,合并同类项:,系数化为1:,把解集表示在数轴上:解析:先去分母、去括号,再移项、合并同类项,最后系数化为1即可.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.答案:解:原式.解析:直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.答案:解:方程有两个不相等的实数根,,解得又m为非负整数,;当时,方程变形为,解得,.解析:判别式的意义得到,再解不等式得到m的范围,然后在此范围内找出非负整数即可;利用中m的值得到,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的两个实数根;当时,方程有两个相等的两个实数根;当时,方程无实数根.20.答案:解:一次函数的图象过点,.解得,.一次函数的表达式为.一次函数的图象与反比例函数图象交于点,,解得,.由反比例函数图象过点,得,反比例函数的表达式为..解析:解答:见答案;由一次函数的表达式为,可得,即,直线:与直线:互相平行,∽,又,,即,又,,的值为.故答案为:.【分析】依据一次函数的图象过点,即可得到一次函数的表达式为再根据一次函数的图象与反比例函数图象交于点,即可得出a的值,由反比例函数图象过点,可得反比例函数的表达式为.由一次函数的表达式为,可得,依据直线:与直线:互相平行,即可得出∽,依据,即可得到,进而得出m的值为.本题主要考查一次函数与反比例函数的交点问题,解题的关键是利用待定系数法求函数解析式,利用相似三角形的性质建立方程.21.答案:证明:连接OE,与边AC相切,,,,,,,又,,;解:在中,,,,,,即,解得,,.解析:连接OE,根据切线的性质得到,根据平行线的性质、角平分线的性质证明结论;根据正弦的定义求出AB,根据相似三角形的性质求出OB,计算即可.本题考查的是切线的性质、解直角三角形、圆周角定理,掌握相关的判定定理和性质定理是解题的关键.22.答案:解:抛物线经过点和,可得:解得:抛物线的表达式为.,顶点坐标为;设点关于的对称点为,则点.若直线经过点和,可得.若直线经过点和,可得.直线平行x轴时,.综上,或.解析:把点A、B的坐标代入抛物线解析式,列出关于a、c的方程组,通过解该方程可以求得它们的值.由函数解析式求得顶点坐标;根据题意作出函数图象,由图象直接回答问题.本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式.解题时,注意数形结合,使抽象的问题变得具体化,降低了解题的难度.23.答案:解:如图1,补全图形连接AD,如图1.在中,,,,线段AN平移得到线段DM,,,,∽.连接NQ,由平移知:,且.,.,且.四边形ANQP是平行四边形...又,.,.又是BC的中点,且,.负数舍去..解析:利用平移的性质画出图形,再利用相似得出比例,即可求出线段DP的长.根据条件,利用平行四边形的性质和相似三角形的性质,求出BN的长即可解决.本题考察的是等腰三角形的性质与相似三角形的综合应用,利用相似比求线段长是重难点,按题意画出图形是解决本题的关键.24.答案:解:当x取值a和时,函数值分别为,,故,因此函数是限减函数,它的限减系数为2.若,则,和是函数图象上两点,,与函数的限减系数不符,.若,和是函数图象上横坐标之差为1的任意两点,则,,,且,,与函数的限减系数不符..若,和是函数图象上横坐标之差为1的任意两点,则,,,且,,当时,等号成立,故函数的限减系数.的取值范围是.设,则翻折后的抛物线的解析式为,对于抛物线,,是抛物线图象上两点,由题意:,解得,对于抛物线,,是抛物线图象上两点,由题意:解得,满足条件的P点横坐标n的取值范围:.解析:根据限减函数的定义即可判断;根据限减函数分,,,分别构建不等式即可解决问题;设,则翻折后的抛物线的解析式为,对于抛物线,,是抛物线图象上两点,由题意:,解得,对于抛物线,,是抛物线图象上两点,由题意:解得,由此即可解决问题;本题考查二次函数综合题、限减函数的定义、不等式等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会利用参数解决问题,学会用分类讨论的思想解决问题,属于中考压轴题.。
2023年北京市中考数学模拟试卷答案2023年北京市中考数学模拟试题一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是( )A.2B.﹣2C.±2D.162.2023年某省人口数超过105 000 000,将这个数用科学记数法表示为( )A.0.105某109B.1.05某109C.1.05某108D.105某1063.下列运算正确的有( )A.5ab﹣ab=4B.3 ﹣=3C.a6÷a3=a3D. + =4.下列图形中是轴对称图形,但不是中心对称图形的是( )A. B. C. D.5.,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于( )A.2B.3C.4D.56.所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是( )A. B. C. D.7.,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于( )A.20B.15C.10D.58.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )A. B. C. D.9.,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于( )A.80B.60C.50D.4010.,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在某轴、y轴的正半轴上,反比例函数y= (某>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=( )A. B.9 C. D.3二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2某2﹣8分解因式得:.12.在函数y= 中,自变量某的取值范围是.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为.14.如果关于某的方程某2﹣2某+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.15.不等式组的解集是.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.三、解答题(本题共8小题,共86分)17.计算:(﹣ )﹣1﹣| ﹣1|+2sin60°+(π﹣4)0.18.先化简﹣÷ ,再求代数式的值,其中a= ﹣3.19.,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于某轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值: )21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2023名学生,请估计该校喜爱电视剧节目的人数.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?23.,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2 ,∠CAD=30°时,求劣弧AD的长.24.已知在平面直角坐标系中,抛物线y=﹣ +b某+c与某轴相交于点A,B,与y轴相交于点C,直线y=某+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=某+4上,且△ABC与△COM相似,求点M的坐标.2023年北京市中考数学模拟试题答案一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是( )A.2B.﹣2C.±2D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数某,使得某2=a,则某就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.2023年某省人口数超过105 000 000,将这个数用科学记数法表示为( )A.0.105某109B.1.05某109C.1.05某108D.105某106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a某10n的形式,其中1≤|a|1时,n 是正数;当原数的绝对值0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=( )A. B.9 C. D.3【考点】反比例函数系数k的几何意义.【分析】设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m, ),由此即可得出BD=3m、BE= n,再利用分割图形求面积法结合反比例函数系数k的几何意义即可得出S△ODE= k=9,解之即可得出k值.【解答】解:设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m, ),∴BD=AB﹣AD=3m,BE=BC﹣CE= n.∵点D在反比例函数y= 的图象上,∴k=mn,∴S△ODE=S矩形OABC﹣S△OAD﹣S△OCE﹣S△B DE=4k﹣ k﹣ k﹣ k= k=9,∴k= .故选C.二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2某2﹣8分解因式得:2(某+2)(某﹣2) .【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式分解.【解答】解:2某2﹣8=2(某2﹣4)=2(某+2)(某﹣2).故答案是:2(某+2)(某﹣2).12.在函数y= 中,自变量某的取值范围是某≠﹣2 .【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,某+2≠0,解得某≠﹣2.故答案为:某≠﹣2.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为10% .【考点】一元二次方程的应用.【分析】等量关系为:原售价某(1﹣降低率)2=降低后的售价,依此列出方程求解即可.【解答】解:设平均每月降价的百分率为某,依题意得:1000(1﹣某)2=810,化简得:(1﹣某)2=0.81,解得某1=0.1,某2=﹣1.9(舍).所以平均每月降价的百分率为10%.故答案为10%.14.如果关于某的方程某2﹣2某+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k0,即(﹣2)2﹣4某1某k>0,然后解不等式即可.2-1-c-n-j-y【解答】解:∵关于某的方程某2﹣2某+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4某1某k>0,解得k>下一页更多“2023年北京市中考数学模拟试题答案”【解答】解:设AE=某,由折叠可知,EC=某,BE=4﹣某,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣某)2=某2,解得:某=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF= ,∴S△AEF= 某AF某AB= 某某3= .故答案为: .三、解答题(本题共8小题,共86分)17.计算:(﹣ )﹣1﹣| ﹣1|+2sin60°+(π﹣4)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.2•1•c•n•j•y【解答】解:原式=2﹣ +1+2某 +1=2﹣ +1+ +1=4.18.先化简﹣÷ ,再求代数式的值,其中a= ﹣3.【考点】分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷=== ,当a= ﹣3时,原式= .19.,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于某轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.www-2-1-cnjy-com【考点】作图﹣旋转变换;作图﹣轴对称变换.【分析】(1)根据网格特点,找出点A、B、C关于某轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.【解答】解:(1),△A1B1C1即为所求.(2),△A2B2C2即为所求.点B旋转到点B2所经过的路径长为:= π.故点B旋转到点B2所经过的路径长是π.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值: )【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC中,利用三角函数即可求解.【解答】解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62某=31 ≈31某1.7=52.7≈53(米).答:小岛的高度约为53米.21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2023名学生,请估计该校喜爱电视剧节目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%某300=60(人),补全;∵360°某12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2023某23%=460(人),∴估计该校有460人喜爱电视剧节目.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设B树苗的单价为某元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.【解答】解:设B树苗的单价为某元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.23.,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2 ,∠CAD=30°时,求劣弧AD的长.【考点】圆的综合题.【分析】(1)作AD的垂直平分线交AC于O,以AO为半径画圆O分别交AB、AC于点E、F,则⊙O即为所求;(2)连结OD,得到OD=OA,根据等腰三角形的性质得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,根据平行线的判定定理得到OD∥AC,根据平行线的性质即可得到结论;(3)连接DE,根据圆周角定理得到∠ADE=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到AE= =4,根据弧长个公式即可得到结论.【解答】(1)解:所示,(2)证明:连结OD,则OD=OA,∴∠OAD=∠ODA,∵∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,即BC⊥OD,∴BC与⊙O相切;(3)解:连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠ODA=30°,∴∠AOD=120°,在Rt△ADE中,AE= = =4,∴⊙O的半径=2,∴劣弧AD的长= = π.24.已知在平面直角坐标系中,抛物线y=﹣ +b某+c与某轴相交于点A,B,与y轴相交于点C,直线y=某+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=某+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于某轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线某=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当某=0时,y=4,即C(0,4),当y=0时,某+4=0,解得某=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y= ﹣某+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴某=﹣1对称,PQ=8,﹣1﹣4=﹣5,当某=﹣5时,y= 某(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣ );﹣1+4=3,即Q(3,﹣ );P点坐标(﹣5,﹣ ),Q点坐标(3,﹣ );(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时, = ,即 = ,CM= .1 ,过M作MH⊥y轴于H,MH=CH= CM= ,当某=﹣时,y=﹣ +4= ,∴M(﹣, );当△OCM∽△CAB时, = ,即 = ,解得CM=3 ,2 ,过M作MH⊥y轴于H,MH=CH= CM=3,当某=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣, ),(﹣3,1).第 11 页共 11 页。
2019-2020年北京市中考数学各地区模拟试题分类(北京专版)(一)——二次函数一.选择题1.(2020•海淀区一模)将抛物线y=2x2向下平移3个单位长度所得到的抛物线是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x﹣3)2D.y=2(x+3)2 2.(2019•房山区二模)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是()A.小球的飞行高度不能达到15mB.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4sD.小球飞出1s时的飞行高度为10m3.(2019•通州区三模)四位同学在研究二次函数y=ax2+bx+3(a≠0)时,甲同学发现函数图象的对称轴是直线x=1;乙同学发现3是一元二次方程ax2+bx+3=0(a≠0)的一个根;丙同学发现函数的最大值为4;丁同学发现当x=2时,y=5,已知这四位同学中只有一位同学发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁4.(2019•怀柔区二模)在平面直角坐标系xOy中,四条抛物线如图所示,其表达式中的二次项系数绝对值最小的是()A.y1B.y2C.y3D.y4 5.(2019•道外区二模)将抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,则得到的抛物线解析式为()A.y=(x﹣1)2﹣1 B.y=(x﹣1)2+1 C.y=(x+1)2+1 D.y=(x+1)2﹣1 6.(2019•大兴区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(1,2),(5,3),则下列说法正确的是()①抛物线与y轴有交点②若抛物线经过点(2,2),则抛物线的开口向上③抛物线的对称轴不可能是x=3④若抛物线的对称轴是x=4,则抛物线与x轴有交点A.①②③④B.①②③C.①③④D.②④7.(2019•丰台区模拟)如图,排球运动员站在点O处练习发球,将球从O点正上方2m 的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定二.填空题8.(2020•朝阳区校级模拟)如图,在平面直角坐标系xOy中,点A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是关于x的二次函数,抛物线y1经过点A、B、C,抛物线y2经过点B、C、D,抛物线y3经过点A、B、D,抛物线y4经过点A、C、D.下列判断:①四条抛物线的开口方向均向下;②当x<0时,至少有一条抛物线表达式中的y均随x的增大而减小;③抛物线y1的顶点在抛物线y2顶点的上方;④抛物线y4与y轴的交点在点B的上方.所有正确结论的序号为.9.(2020•朝阳区校级模拟)已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作正方形ABCD.则正方形的边长AB的最小值是.10.(2020•西城区校级模拟)已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:.11.(2020•海淀区校级一模)计算机可以帮助我们又快又准地画出函数的图象.用“几何画板”软件画出的函数y=x2(x﹣3)和y=x﹣3的图象如图所示.根据图象可知方程x2(x﹣3)=x﹣3的解的个数为;若m,n分别为方程x2(x﹣3)=1和x﹣3=1的解,则m,n的大小关系是.12.(2020•西城区校级模拟)如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为.13.(2019•朝阳区模拟)在平面直角坐标系中xOy中,横、纵坐标都是整数的点叫做整点,记函数y=﹣x2+a(a>0)的图象在x轴上方的部分与x轴围成的区域(不含边界)为W.当a=2时,区域W内的整点个数为,若区域W内恰有7个整点,则a 的取值范围是.14.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.15.(2019•朝阳区模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,则关于x的方程ax2+bx+c=0(a≠0)的解为.16.(2019•朝阳区模拟)请写出一个开口向下,并且与y轴交于点(0,2)的抛物线的解析式,y=.17.(2019•石景山区二模)如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取A点为坐标原点时的抛物线的表达式为y=﹣,则选取点D为坐标原点时的抛物线表达式为,水管AB的长为m.三.解答题18.(2020•北京二模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax(a≠0)与x轴交于点A,B(A在B的左侧).(1)求点A,B的坐标及抛物线的对称轴;(2)已知点P(2,2),Q(2+2a,5a),若抛物线与线段PQ有公共点,请结合函数图象,求a的取值范围.19.(2020•东城区二模)在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4).抛物线y=x2﹣5x+a﹣2的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2﹣5x+a﹣2≤0的x的最大值为3.直接写出实数a的值.20.(2020•海淀区二模)在平面直角坐标系xOy中,已知二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.(1)求点B的坐标及该函数的表达式;(2)若二次函数y=x2+2x+a的图象与F只有一个公共点,结合函数图象,求a的取值范围.21.(2020•门头沟区一模)在平面直角坐标系xOy中,一次函数y=﹣ax+3的图象与y 轴交于点A,与抛物线y=ax2﹣2ax﹣3a(a≠0)的对称轴交于点B,将点A向右平移5个单位得到点C,连接AB,AC得到的折线段记为图形G.(1)求出抛物线的对称轴和点C坐标;(2)①当a=﹣1时,直接写出抛物线y=ax2﹣2ax﹣3a与图形G的公共点个数.②如果抛物线y=ax2﹣2ax﹣3a与图形G有且只有一个公共点,求出a的取值范围.22.(2020•丰台区一模)已知二次函数y=ax2﹣2ax.(1)二次函数图象的对称轴是直线x=;(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.23.(2020•大兴区一模)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,﹣3).(1)求m的值;(2)若一次函数y=kx+5(k≠0)的图象经过点A,求k的值;(3)将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+5(k≠0)向上平移n个单位,当平移后的直线与图象G有公共点时,请结合图象直接写出n的取值范围.24.(2020•朝阳区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(﹣2,﹣a﹣2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.25.(2020•西城区校级模拟)定义:点Q到图形W上每一个点的距离的最小值称为点Q 到图形W的距离.例如,如图,正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.(1)如果点G(0,b)(b<0)到抛物线y=x2的距离为3,请直接写出b的值.(2)求点M(3,0)到直线y=x+3的距离.(3)如果点N在直线x=2上运动,并且到直线y=x+4的距离为4,求N的坐标.参考答案一.选择题1.解:依题意,得平移后抛物线顶点坐标为(0,﹣3),由平移不改变二次项系数,故得到的抛物线解析式为:y=2x2﹣3.故选:B.2.解:A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选:C.3.解:对称轴是直线x=1时,b=﹣2a①;3是一元二次方程ax2+bx+3=0(a≠0)的一个根时,3a+b+1=0 ②;函数的最大值为4时,b2=﹣4a③;当x=2时,y=5时,2a+b﹣1=0 ④;当甲不对时,由②和④联立a=﹣2,b=5,不满足③,故不成立;当乙不对时,由①和③联立a=﹣1,b=2,不满足④,故不成立;当丙不对时,由②和④联立a=﹣2,b=5,不满足①,故不成立;当丁不对时,由①和③联立a=﹣1,b=2,成立;故选:D.4.解:由图象可知:抛物线y1的顶点为(1,0),与y轴的交点为(0,4),根据待定系数法求得y1=2(x ﹣1)2;抛物线y2的顶点为(1,0),与y轴的一个交点为(0,2),根据待定系数法求得y2=(x﹣1)2;抛物线y3的顶点为(1,0),与y轴的交点为(0,1),根据待定系数法求得y3=(x ﹣1)2;抛物线y4的顶点为(1,0),与y轴的交点为(0,﹣b)且﹣b<﹣4,根据待定系数法求得y4=﹣(x﹣1)2;综上,二次项系数绝对值最小的是y3故选:C.5.解:抛物线y=x2沿着x轴向左平移1个单位,再沿y轴向下平移1个单位,那么所得新抛物线的表达式是y=(x+1)2﹣1.故选:D.6.解:①当x=0时,y=c,∴与y轴有交点;①正确;②抛物线经过(1,2),(2,2),(5,3),∴,∴a=,∴抛物线开口向上;∴②正确;③如果抛物线的对称轴x=3,(1,2)关于对称轴对称的点为(5,2),与经过点(5,3)矛盾,∴对称轴不能是x=3,∴③正确;④对称轴是x=4,∴﹣=4,∴b=﹣8a,将点(1,2),(5,3)代入得,,∴24a+4b=1,∴﹣8a=1,∴a=﹣,∴b=1,c=△=b2﹣4ac=64a2﹣4ac>0,∴抛物线与x轴有交点,∴④正确;故选:A.7.解:∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x﹣6)2+2.6过点,∵抛物线y=a(x﹣6)2+2.6过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,﹣(x﹣6)2+2.6=0,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界.故选:C.二.填空题(共10小题)8.解:将点A、B、C的坐标代入抛物线表达式得:,解得:,故抛物线y1的表达式为:y1=﹣x2+x+3,顶点(,);同理可得:y2=﹣x2+x+3,顶点坐标为:(,);y3=﹣x2+x+3,顶点坐标为(1,);y4=﹣x2+2x+6,与y轴的交点为:(0,6);①由函数表达式知,四条抛物线的开口方向均向下,故正确,符合题意;②当x<0时,y3随x的增大而增大,故错误,不符合题意;③由顶点坐标知,抛物线y1的顶点在抛物线y2顶点的下方,错误,不符合题意;④抛物线y4与y轴的交点(0,6)在B的上方,正确,符合题意.故答案为:①④.9.解:∵四边形ABCD是正方形,∴AB=AC,∵y=x2﹣4x+6=(x﹣2)2+2,∴当x=2时,AC有最小值2,即正方形的边长AB的最小值是.故答案为:.10.解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意,故答案为:4(答案不唯一).11.解:函数y=x2(x﹣3)的图象与函数y=x﹣3的图象有3个交点,则方程x2(x﹣3)=x﹣3的解有3个;方程x2(x﹣3)=1的解为函数图象与直线y=1的交点的横坐标,x﹣3=1的解为一次函数y=x﹣3与直线y=1的交点的横坐标,如图,由图象得m<n.故答案为3,m<n.12.解:由图可知,x2<x<x3时,0<<ax2+bx+c,所以,不等式组0<<ax2+bx+c的解集是x2<x<x3.故答案为:x2<x<x3.13.解:(1)当a=2时,函数y=﹣x2+2,函数与坐标轴的交点坐标分别为(0,2),(﹣,0),(,0),函数y=﹣x2+2的图象在x轴上方的部分与x轴围成的区域中,整数点有(﹣1,1),(1,1),(0,2)在边界上,不符合题意,点(0,1)在W区域内.所以此时在区域W内的整数点有1个.(2)由(1)发现,当(0,2)是顶点时,在W区域内只有1个整数点,边界上有3个整数点;当a=3时,在W区域内有4个整数点(﹣1,1),(1,1),(0,2),(0,1),边界上有3个整数点(0,3),(﹣1,2),(1,2);当a=4时,在W区域内有7个整数点(﹣1,1),(1,1),(0,2),(0,1),(0,3),(﹣1,2),(1,2);所以区域W内恰有7个整点,3<a≤4.故本题答案是1;3<a≤4.14.解:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.15.解:抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(1,0),所以抛物线与x轴的一个交点坐标为(﹣3,0),即x=1或﹣3时,函数值y=0,所以关于x的方程ax2+bx+c=0(a≠0)的解为x1=﹣3,x2=1.故答案为x1=﹣3,x2=1.16.解:函数解析式为y=﹣x2+2(答案不唯一).故答案为:﹣x2+2(答案不唯一).17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为:y=﹣(x﹣1)2+3,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:y=﹣(x+2)2+3(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3(﹣3≤x≤0);2.25.三.解答题(共8小题)18.解:(1)∵y=ax2﹣4ax=ax(x﹣4),∴y=0时,ax(x﹣4)=0,∴x=0或x=4,∴抛物线与x轴交于点A(0,0),B(4,0).∴抛物线y=ax2﹣4ax的对称轴为直线:.(2)y=ax2﹣4ax=a(x2﹣4x)=a(x﹣2)2﹣4a,∴抛物线的顶点坐标为(2,﹣4a).令y=5a,得ax2﹣4ax=5a,a(x﹣5)(x+1)=0,解得x=﹣1或x=5,∴当y=5a时,抛物线上两点M(﹣1,5a),N(5,5a).①当a>0时,抛物线开口向上,顶点位于x轴下方,且Q(2+2a,5a)位于点P的右侧,如图1,当点N位于点Q左侧时,抛物线与线段PQ有公共点,此时2+2a≥5,解得a.②当a<0时,抛物线开口向下,顶点位于x轴上方,点Q(2+2a,5a)位于点P的左侧,(ⅰ)如图2,当顶点位于点P下方时,抛物线与线段PQ有公共点,此时﹣4a≤2,解得a.(ⅱ)如图3,当顶点位于点P上方,点M位于点Q右侧时,抛物线与线段PQ有公共点,此时2+2a≤﹣1,解得a.综上,a的取值范围是a≥或﹣a<0或a.19.解:(1)由题意可得:4=36﹣5×6+a﹣2,∴a=0,∴抛物线的解析式为:y=x2﹣5x﹣2,∴顶点C坐标为(,﹣),(2)如图,当顶点C在线段AB下方时,由题意可得:,解得:0≤a<6;当顶点C在AB时,当x=时,y=4,∴,∴a=,综上所述:当0≤a<6或时,抛物线与线段AB恰有一个公共点;(3)由题意可得当x=3时,y=0,即9﹣15+a﹣2=0,∴a=8.20.解:(1)∵二次函数y=mx2+2mx+3的图象与x轴交于点A(﹣3,0),与y轴交于点B,∴令x=0,则y=3,∴B(0,3),把A(﹣3,0)代入y=mx2+2mx+3,求得m=﹣1,∴函数的表达式为y=﹣x2﹣2x+3;(2)画出函数y=﹣x2﹣2x+3的图象如图所示:把A(﹣3,0)代入y=x2+2x+a得0=9﹣6+a,解得a=﹣3,二次函数y=x2+2x+a的的顶点与图象F的顶点(﹣1,4)重合时,则4=1﹣2+a,解得a=5,由图象可知,二次函数y=x2+2x+a的图象与F只有一个公共点,a的取值范围为﹣3≤a<3或a=5.21.解:(1)∵抛物线y=ax2﹣2ax﹣3a(a≠0),∴对称轴x=﹣=1,∵一次函数y=﹣ax+3的图象与y轴交于点A,∴A(0,3),∵点A向右平移5个单位得到点C,∴C(5,3).(2)①如图1中,观察图象可知,抛物线与图象G的交点有3个,②∵抛物线的顶点(1,﹣4a),当a<0时,由①可知,a=﹣1时,抛物线经过A,B,∴当a<﹣1时,抛物线与图象G有且只有一个公共点,当抛物线的顶点在线段AC上时,如图2中,也满足条件,∴﹣4a=3,∴a=﹣,当a>0时,如图3中,抛物线经过点C时,25a﹣10a﹣3a=3,解得a=,抛物线经过点B时,﹣4a=﹣a+3,解得a=﹣(舍弃)不符合题意.观察图象可知a≥时,满足条件,综上所述,满足条件的a的取值范围:a<﹣1或a≥或a=﹣.22.解:(1)由题意可得:对称轴是直线x==1,故答案为:1;(2)当a>0时,∵对称轴为x=1,当x=1时,y有最小值为﹣a,当x=3时,y有最大值为3a,∴3a﹣(﹣a)=4.∴a=1,∴二次函数的表达式为:y=x2﹣2x;当a<0时,同理可得y有最大值为﹣a;y有最小值为3a,∴﹣a﹣3a=4,∴a=﹣1,∴二次函数的表达式为:y=﹣x2+2x;综上所述,二次函数的表达式为y=x2﹣2x或y=﹣x2+2x;(3)∵a<0,对称轴为x=1,∴x≤1时,y随x的增大而增大,x>1时,y随x的增大而减小,x=﹣1和x=3时的函数值相等,∵t≤x1≤t+1,x2≥3时,均满足y1≥y2,∴t≥﹣1,t+1≤3,∴﹣1≤t≤2.23.解:(1)∵抛物线y=x2﹣2mx+m﹣4与y轴交于点C(0,﹣3),∴m﹣4=﹣3,∴m=1.(2)∵抛物线的解析式为y=x2﹣2x﹣3,令y=0,得到x2﹣2x﹣3=0,解得x=﹣1或3,∵抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),∴A(﹣1,0),B(3,0),∵一次函数y=kx+5(k≠0)的图象经过点A,∴﹣k+5=0,∴k=5.(3)如图,设平移后的直线的解析式为y=5x+5+n,点C平移后的坐标为(﹣n,﹣3),点B平移后的坐标为(3﹣n,0),当点C落在直线y=5x+5+n上时,﹣3=﹣5n+5+n,解得n=2,当点B落在直线y=5x+5+n上时,0=5(3﹣n)+5+n解得n=5,观察图象可知,满足条件的n的取值范围为2≤n≤5.24.解:(1)∵抛物线y=ax2﹣3ax+a+1与y轴交于A,令x=0,得到y=a+1,∴A(0,a+1).(2)由抛物线y=ax2﹣3ax+a+1,可知x=﹣=,∴抛物线的对称轴x=.(3)对于任意实数a,都有a+1>a,可知点A在点N的上方,令抛物线上的点C(﹣2,y),∴y c=11a+1,①如图1中,当a>0时,y c>﹣a﹣2,∴点C在点M的上方,结合图象可知抛物线与线段MN没有公共点.②当a<0时,(a)如图2中,当抛物线经过点M时,y c=﹣a﹣2,∴a=﹣,结合图象可知抛物线与线段MN巧有一个公共点M.(b)当﹣<a<0时,观察图象可知抛物线与线段MN没有公共点.(c)如图3中,当a<﹣时,y c<﹣a﹣2,∴点C在点M的下方,结合图象可知抛物线与线段MN恰好有一个公共点,综上所述,满足条件的a的取值范围是a≤﹣.25.解:(1)①当G在原点下方时,b=﹣3,②当G在原点上方时,=3,整理得:x4+(1﹣2b)x2+b2﹣9=0,△=(1﹣2b)2﹣4(b2﹣9)=0,解得:b=(舍去),故答案为:﹣3;(2)如图1,作直线y=x+3与x轴交于点B(﹣3,0),过点M作MN⊥BN交于点N,则MN的长度为所求值,则△BMN为等腰直角三角形,故MN=BM=3,故点M(3,0)到直线y=x+3的距离为3;(3)①当点N在直线BH和x=2的交点下方时,如图2,作直线y=x+4交x轴于点B,过点N作NH⊥BH于点H,过点N作MN∥x轴交直线BH于点M,则HN=4,由(2)同理可知,△HMN为等腰直角三角形,MN =HN=4,故x M=2﹣4,y M=x M+4=6﹣4=y N,故点N的坐标为:(2,6﹣4);②当点N在直线BH和x=2的交点上方时,同理可得:点N的坐标为:(2,6+4);综上,点N的坐标为:(2,6﹣4)或(2,6+4).。
2016年北京市咼级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有一个。
1. 如图所示,用量角器度量/ AOB可以读出/ AOB的度数为(A)45 °(B)55 °(C)125 °(D)135 °答案:B考点:用量角器度量角。
解析:由生活知识可知这个角小于90度,排除CD,又OB边在50与60之间,所以,度数应为552. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数(A)(B) 28 X 洞(C) (D) 0:28 x 1(J S法表示应为答案:C考点:本题考查科学记数法。
解析:科学记数的表示形式为a 10n形式,其中1 |a| 10 ,门为整数,28000=:。
故选C。
3. 实数a, b在数轴上的对应点的位置如图所示,则正确的结论是(A) a>—2 ( B) | :—:'1 (C):划(D) :答案:D考点:数轴,由数轴比较数的大小。
解析:由数轴可知,—3vav— 2,故A、B错误;1<bv 2, —2<—b<—1,即一b在一2与一1之间,所以,證耳4. 内角和为540的多边形是答案:c考点:多边形的内角和。
解析:多边形的内角和为(n 2) 180,当n = 5时,内角和为540°,所以,选C。
5. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C) 圆柱(D) 三棱柱答案:D 考点:三视图,由三视图还原几何体。
解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。
11(A ) 2 (B ) -2(C(D )答案:A考点:分式的运算,平方差公式。
2 2 2b a aba (a b)(a b) a解析:(a )==.= a b = 2。
a 'ab a 'a ba 1 a b7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是答案:D考点:轴对称图形的辨别。
2020年北京市朝阳区中考数学三模试卷一.选择题(共8小题)1.某种球形病毒的直径为0.00000043米,将数据0.00000043用科学记数法表示为()A.4.3×10﹣6B.0.43×10﹣6C.43×10﹣6D.4.3×10﹣72.下列各数在数轴上对应的点到原点的距离最近的是()A.﹣2B.﹣1C.2D.33.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.130πcm2B.120πcm2C.65πcm2D.60πcm24.如图,在▱ABCD中,AE平分∠BAD,交CD边于E,AD=3,EC=2,则AB的长为()A.1B.2C.3D.55.小红同学对数据25,32,23,25,4■,43进行统计分析,发现“4■”的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.中位数B.平均数C.众数D.方差6.如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,连接AC.若∠DAB=50°,则∠B的度数为()A.50°B.65°C.75°D.130°7.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x28.某公司为了解销售人员某季度商品的销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成统计表进行分析.组别销售数量(件)频数频率A20≤x<4020.04B40≤x<6060.12C60≤x<8013bD80≤x<100a0.48E100≤x<12050.10合计501下面有三个推断:①表中a的值为24;②表中b的值为0.13;③这50名销售人员该季度销售数量的中位数在D组.所有合理推断的序号是()A.①②B.①③C.②③D.①②③二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围是.10.在如图所示的几何体中,主视图是三角形的是.(填序号)11.如图,已知▱ABCD,通过测量、计算得到▱ABCD的面积约为cm2.(结果保留一位小数)12.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.13.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.14.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.15.在一次函数y=x+b的图象上有一点A,将点A沿该直线移动到点B处,若点B的横坐标减去点A的横坐标的差为1,则点B的纵坐标减去点A的纵坐标的差为.16.某公园的门票价格如表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a ≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=;b=.三.解答题(共12小题)17.计算:|﹣1|﹣tan60°+(π﹣3.14)0+()﹣1.18.解不等式组,并把它的解集在数轴上表示出来.19.如图,在△ABE中,C,D是边BE上的两点,有下面四个关系式:(1)AB=AE,(2)BC=DE,(3)AC=AD,(4)∠BAC=∠EAD.请用其中两个作为已知条件,余下两个作为求证的结论,写出你的已知和求证,并证明.已知:求证:证明:20.通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.21.如图,四边形ABCD是平行四边形,AD=BD,过点C作CE∥BD,交AD的延长线于点E.(1)求证:四边形BDEC是菱形;(2)连接BE,若AB=2,AD=4,求BE的长.22.为了解某社区居民掌握民法知识的情况,对社区内的甲、乙两个小区各500名居民进行了测试,从中各随机抽取50名居民的成绩(百分制)进行整理、描述、分析,得到部分信息:a.甲小区50名居民成绩的频数直方图如下(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.图中,70≤x<80组的前5名的成绩是:79 79 79 78 77c.图中,80≤x<90组的成绩如下:82838485858686868686 86868687878788888989 d.两组样本数据的平均数、中位数、众数、优秀率(85分及以上)、满分人数如下表所示:小区平均数中位数众数优秀率满分人数甲78.5884.5a b1乙76.9279.59040%4根据以上信息,回答下列问题:(1)求表中a,b的值;(2)请估计甲小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,分析甲、乙两个小区参加测试的居民掌握民法知识的情况.23.如图,P A是⊙O的切线,切点为A,AC是⊙O的直径,过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)若cos∠P AB=,BC=2,求PO的长.24.如图,点D是射线BC上的一定点,点P是线段AB上一动点,连接PD,作BQ垂直PD,交直线PD于点Q.小腾根据学习函数的经验,对线段PB,PD,BQ的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段PB,PD,BQ的长度的几组值,如表:位置1位置2位置3位置4位置5位置6位置7 BP/cm0.00 1.00 2.00 3.00 4.00 5.00 6.00PD/cm 2.00 1.220.98 1.56 2.43 3.38 4.35BQ/cm0.000.78 1.94 1.82 1.56 1.41 1.31在PB,PD,BQ的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PD>BQ时,PB长度范围是cm.25.在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n(n>0),且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=(x>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若PN≥3PM,结合函数的图象,直接写出n的取值范围.26.在平面直角坐标系xOy中,二次函数y=ax2﹣2ax+c的图象经过点A(﹣1,1),将A 点向右平移3个单位长度,再向上平移2个单位长度,得到点B,直线y=2x+m经过点B,与y轴交于点C.(1)求点B,C的坐标;(2)求二次函数图象的对称轴;(3)若二次函数y=ax2﹣2ax+c(﹣1<x<2)的图象与射线CB恰有一个公共点,结合函数图象,直接写出a的取值范围.27.在△ABC中,∠C=90°,AC=BC,点P在线段BA的延长线上,作PD⊥AC,交AC 的延长线于点D,点D关于直线AB的对称点为E,连接PE并延长PE到点F,使EF=AC,连接CF.(1)依题意补全图1;(2)求证:AD=CF;(3)若AC=2,点Q在直线AB上,写出一个AQ的值,使得对于任意的点P总有QD =QF,并证明.28.在平面直角坐标系xOy中,A(t,0),B(t+4,0),线段AB的中点为C,若平面内存在一点P使得∠APC或者∠BPC为直角(点P不与A,B,C重合),则称P为线段AB 的直角点.(1)当t=0时,①在点P1(,0),P2(,),P3(,﹣)中,线段AB的直角点是;②直线y=x+b上存在四个线段AB的直角点,直接写出b取值范围;(2)直线y=x+1与x,y轴交于点M,N.若线段MN上只存在两个线段AB的直角点,直接写出t取值范围.2020年北京市朝阳区中考数学三模试卷参考答案与试题解析一.选择题(共8小题)1.某种球形病毒的直径为0.00000043米,将数据0.00000043用科学记数法表示为()A.4.3×10﹣6B.0.43×10﹣6C.43×10﹣6D.4.3×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000043=4.3×10﹣7,故选:D.2.下列各数在数轴上对应的点到原点的距离最近的是()A.﹣2B.﹣1C.2D.3【分析】根据到原点距离最近的点就是绝对值最小的数,对每个数作出判断,即可求出答案.【解答】解:∵﹣2到原点的距离是2个长度单位,﹣1到原点的距离是1个长度单位,2到原点的距离是2个长度单位,3到原点的距离是3个长度单位,∴到原点的距离最近的是﹣1.故选:B.3.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.130πcm2B.120πcm2C.65πcm2D.60πcm2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算.【解答】解:这个圆锥的侧面积=×2π×5×13=65π(cm2),故选:C.4.如图,在▱ABCD中,AE平分∠BAD,交CD边于E,AD=3,EC=2,则AB的长为()A.1B.2C.3D.5【分析】首先证明DA=DE,再根据平行四边形的性质即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴BA∥CD,AB=CD,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴DE=AD=3,∴CD=CE+DE=2+3=5,∴AB=5.故选:D.5.小红同学对数据25,32,23,25,4■,43进行统计分析,发现“4■”的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.中位数B.平均数C.众数D.方差【分析】根据中位数定义可得答案.【解答】解:中位数与计算结果与被涂污数字无关,故选:A.6.如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,连接AC.若∠DAB=50°,则∠B的度数为()A.50°B.65°C.75°D.130°【分析】首先证明∠DAC=∠CAB=25°,再证明∠ACB=90°,利用三角形内角和定理即可解决问题.【解答】解:∵BC=CD,∴=,∴∠DAC=∠CAB,∵∠DAB=50°,∴∠CAB=×50°=25°,∵AB是直径,∴∠ACB=90°,∴∠B=90°﹣25°=65°,故选:B.7.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x2【分析】由点A(﹣1,m),B(1,m)的坐标特点,可知函数图象关于y轴对称,于是排除选项A、B;再根据B(1,m),C(2,m﹣n)的特点和二次函数的性质,可知抛物线的开口向下,即a<0,故D选项正确.【解答】解:∵A(﹣1,m),B(1,m),∴点A与点B关于y轴对称;由于y=x,y=的图象关于原点对称,因此选项A、B错误;∵n>0,∴m﹣n<m;由B(1,m),C(2,m﹣n)可知,在对称轴的右侧,y随x的增大而减小,对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,∴D选项正确故选:D.8.某公司为了解销售人员某季度商品的销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成统计表进行分析.组别销售数量(件)频数频率A20≤x<4020.04B40≤x<6060.12C60≤x<8013bD80≤x<100a0.48E100≤x<12050.10合计501下面有三个推断:①表中a的值为24;②表中b的值为0.13;③这50名销售人员该季度销售数量的中位数在D组.所有合理推断的序号是()A.①②B.①③C.②③D.①②③【分析】①用50减去各个组别的频数即可求解;②用1减去各个组别的频率即可求解;③根据中位数的定义即可求解.【解答】解:①a=50﹣2﹣6﹣13﹣5=24,是合理推断;②b=1﹣0.04﹣0.12﹣0.48﹣0.10=0.26,不是合理推断;③按照从小到大的顺序排列,第25和第26个数据都在D组,故这50名销售人员该季度销售数量的中位数在D组,是合理推断.故选:B.二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围是x≥3.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.10.在如图所示的几何体中,主视图是三角形的是③.(填序号)【分析】找到从正面看所得到的图形,得出主视图是三角形的即可.【解答】解:①的主视图是矩形;②的主视图是矩形,③的主视图是等腰三角形.∴主视图是三角形的是③.故答案为:③.11.如图,已知▱ABCD,通过测量、计算得到▱ABCD的面积约为0.8cm2.(结果保留一位小数)【分析】过点A作AE⊥BC于点E,测量出BC,AE的长,再利用平行四边形的面积公式即可求出▱ABCD的面积.【解答】解:如图所示,过点A作AE⊥BC于点E,经测量AE≈0.7cm,BC≈1.1cm,S▱ABCD=BC•DE=1.1×0.7≈0.8(cm2),故答案为:0.8.12.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.13.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=45°.【分析】直接利用网格得出对应角∠1=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=45°.故答案为:45°.14.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为5.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.15.在一次函数y=x+b的图象上有一点A,将点A沿该直线移动到点B处,若点B的横坐标减去点A的横坐标的差为1,则点B的纵坐标减去点A的纵坐标的差为1.【分析】设点A(a,c),点B(m,n),将点A,点B坐标代入解析式,可得c=a+b,n =m+b,即可求解.【解答】解:设点A(a,c),点B(m,n),∵点A,点B在一次函数y=x+b的图象上,∴c=a+b,n=m+b,∴n﹣c=m﹣a=1,故答案为:1.16.某公园的门票价格如表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a ≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=70;b=40.【分析】分两种情况讨论,由两次门票费用,列出方程组,可求解.【解答】解:∵=99,=117,∴1≤b≤50,51<a≤100,若a+b≤100时,由题意可得:,∴(不合题意舍去),若a+b>100时,由题意可得,∴,故答案为:70,40.三.解答题(共12小题)17.计算:|﹣1|﹣tan60°+(π﹣3.14)0+()﹣1.【分析】先按照绝对值的化简法则、特殊角的锐角三角函数值、零指数幂和负整数指数幂的运算法则化简,再按照实数的加减法法则计算即可.【解答】解:|﹣1|﹣tan60°+(π﹣3.14)0+()﹣1=﹣1﹣+1+2=2.18.解不等式组,并把它的解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x≤3,解不等式②,x>﹣1,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示如下:.19.如图,在△ABE中,C,D是边BE上的两点,有下面四个关系式:(1)AB=AE,(2)BC=DE,(3)AC=AD,(4)∠BAC=∠EAD.请用其中两个作为已知条件,余下两个作为求证的结论,写出你的已知和求证,并证明.已知:求证:证明:【分析】已知:AB=AE,BC=DE,求证:AC=AD,∠BAC=∠EAD;由“SAS”可证△ABC≌△AED,可得AC=AD,∠BAC=∠EAD.【解答】解:已知:AB=AE,BC=DE,求证:AC=AD,∠BAC=∠EAD,证明:∵AB=AE,∴∠B=∠E,∵AB=AE,∠B=∠E,BC=DE,∴△ABC≌△AED(SAS),∴AC=AD,∠BAC=∠EAD;也可以(1)(3)⇒(2)(4)或(2)(3)⇒(1)(4)或(1)(4)⇒(2)(3)或(3)(4)⇒(1)(2).证明方法类似.20.通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.【分析】设该公园原来平均每分钟接待游客的人数为x人,由“接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟”列出方程可求解.【解答】解:设该公园原来平均每分钟接待游客的人数为x人,由题意可得:,解得:x=20,经检验,x=20是原方程的解,答:该公园原来平均每分钟接待游客的人数为20人.21.如图,四边形ABCD是平行四边形,AD=BD,过点C作CE∥BD,交AD的延长线于点E.(1)求证:四边形BDEC是菱形;(2)连接BE,若AB=2,AD=4,求BE的长.【分析】(1)由平行四边形的性质可得AD∥BC,AD=BC=BD,由两组对边平行的四边形是平行四边形,可证四边形BDEC是平行四边形,即可得结论;(2)连接BE交CD于O,由菱形的性质可得DO=CO=CD=1,BO=BE,CD⊥BE,由勾股定理可求BO的长,即可求解.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=CD,∵AD=BD,∴BD=BC,∵CE∥BD,AD∥BC,∴四边形BDEC是平行四边形,又∵BD=BC,∴四边形BDEC是菱形;(2)如图,连接BE交CD于O,∵四边形BDEC是菱形,∴DO=CO=CD=1,BO=BE,CD⊥BE,在Rt△BDO中,AD=BD=4,DO=1,∴BO===,∴BE=2BO=2.22.为了解某社区居民掌握民法知识的情况,对社区内的甲、乙两个小区各500名居民进行了测试,从中各随机抽取50名居民的成绩(百分制)进行整理、描述、分析,得到部分信息:a.甲小区50名居民成绩的频数直方图如下(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.图中,70≤x<80组的前5名的成绩是:79 79 79 78 77c.图中,80≤x<90组的成绩如下:82838485858686868686 86868687878788888989 d.两组样本数据的平均数、中位数、众数、优秀率(85分及以上)、满分人数如下表所示:小区平均数中位数众数优秀率满分人数甲78.5884.5a b1乙76.9279.59040%4根据以上信息,回答下列问题:(1)求表中a,b的值;(2)请估计甲小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,分析甲、乙两个小区参加测试的居民掌握民法知识的情况.【分析】(1)由众数的定义和优秀率的计算公式可求解;(2)A小区500名居民成绩能超过平均数的人数:500×=310(人);(3)根据统计量:平均数、中位数、众数、优秀率,即可分析甲、乙两小区参加测试的居民掌握民法知识的情况.【解答】解:(1)∵86出现的次数最多,∴众数a=86,优秀率b=×100%=50%;(2)500×=310(人),答:甲小区500名居民成绩能超过平均数的人数为310人;(3)从平均数看,甲小区居民掌握民法知识平均分比乙小区居民掌握民法知识的平均分高;从中位数看,甲小区居民掌握民法知识的情况比乙小区居民掌握民法知识的情况好;从众数看,乙小区居民掌握民法知识的情况比甲小区居民掌握民法知识的情况好;从优秀率看,甲小区居民掌握民法知识的成绩优秀率比乙小区居民掌握民法知识的成绩优秀率高.23.如图,P A是⊙O的切线,切点为A,AC是⊙O的直径,过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)若cos∠P AB=,BC=2,求PO的长.【分析】(1)连结OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;(2)根据余弦的定义求出OA,证明△P AO∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)连接OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,∵,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵P A为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)∵∠P AB+∠BAC=∠BAC+∠C=90°,∴∠P AB=∠C,∴cos∠P AB=cos∠C==,∵BC=2,∴AC=2,∴AO=,∵∠P AO=∠ABC=90°,∠POA=∠C,∴△P AO∽△ABC,∴=,即=,解得PO=5.24.如图,点D是射线BC上的一定点,点P是线段AB上一动点,连接PD,作BQ垂直PD,交直线PD于点Q.小腾根据学习函数的经验,对线段PB,PD,BQ的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段PB,PD,BQ的长度的几组值,如表:位置1位置2位置3位置4位置5位置6位置7 BP/cm0.00 1.00 2.00 3.00 4.00 5.00 6.00PD/cm 2.00 1.220.98 1.56 2.43 3.38 4.35BQ/cm0.000.78 1.94 1.82 1.56 1.41 1.31在PB,PD,BQ的长度这三个量中,确定BP的长度是自变量,PD的长度和BQ 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PD>BQ时,PB长度范围是0<PB<1.5或BP>3.2cm.【分析】(1)确定BP的长度是自变量,PD的长度和PQ的长度都是这个自变量的函数.(2)利用描点法画出函数图象即可.(3)写出函数PD的图象在函数BQ的函数图象的上方时,自变量x的取值范围即可.【解答】解:(1)在PB,PD,BQ的长度这三个量中,确定BP的长度是自变量,PD的长度和PQ的长度都是这个自变量的函数,故答案为PB,PD,BQ.(2)函数图象如图所示:(3)观察图象可知PD>BQ时,PB的长度范围为:0<PB<1.5或BP>3.2.故答案为0<PB<1.5或BP>3.2.25.在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n(n>0),且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=(x>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若PN≥3PM,结合函数的图象,直接写出n的取值范围.【分析】(1)将点A坐标代入双曲线解析式中和直线解析式中,求解即可得出结论;(2)①先求出点M,N点坐标,即可得出结论;②先求出点P坐标,进而表示出点M,N的坐标,得出PM,PN,利用PN≥3PM建立表达式求解即可得出结论.【解答】解:(1)∵函数y=(x>0)的图象与直线y=mx交于点A(2,2),∴k=2×2=4,2=2m,∴m=1,即k=4,m=1;(2)①由(1)知,k=4,m=1,∴双曲线的解析式为y=,直线OA的解析式为y=x,∵n=1,∴P(1,1),∵PM∥x轴,∴M(0,1),N(4,1),∴PM=1,PM=4﹣1=3,∴PN=3PM;②由①知,如图,双曲线的解析式为y=,直线OA的解析式为y=x,∵点P的横坐标为n,∴P(n,n),∵PM∥x轴,∴M(0,n),N(,n),∵PN≥3PM,∴PM=n,PN=﹣n,∵PN≥3PM,∴﹣n≥3n,∵∴0<n≤1.26.在平面直角坐标系xOy中,二次函数y=ax2﹣2ax+c的图象经过点A(﹣1,1),将A 点向右平移3个单位长度,再向上平移2个单位长度,得到点B,直线y=2x+m经过点B,与y轴交于点C.(1)求点B,C的坐标;(2)求二次函数图象的对称轴;(3)若二次函数y=ax2﹣2ax+c(﹣1<x<2)的图象与射线CB恰有一个公共点,结合函数图象,直接写出a的取值范围.【分析】(1)由平移的性质可求点B坐标,代入解析式可求m的值,可求直线解析式,即可求点C坐标;(2)由对称轴为x=﹣可求解;(3)分类讨论,结合图形,可求解.【解答】解:(1)∵点A(﹣1,1)向右平移3个单位长度,再向上平移2个单位长度,得到点B,∴点B(2,3),∵直线y=2x+m经过点B,∴3=4+m,∴m=﹣1,∴直线解析式为:y=2x﹣1,∵直线y=2x+m与y轴交于点C.∴点C(0,﹣1);(2)二次函数y=ax2﹣2ax+c的对称轴直线x=﹣=1;(3)∵二次函数y=ax2﹣2ax+c的图象经过点A(﹣1,1),∴1=a+2a+c,∴c=1﹣3a,∴抛物线解析式为:y=ax2﹣2ax+1﹣3a,∴顶点坐标为(1,1﹣4a)当a>0时,如图所示,∴当1﹣4a<1时,二次函数y=ax2﹣2ax+c(﹣1<x<2)的图象与射线CB恰有一个公共点,∴a>0;当a<0时,如图所示,∴4a﹣4a+1﹣3a>3,∴a<﹣,综上所述:当a>0或a<﹣时,二次函数y=ax2﹣2ax+c(﹣1<x<2)的图象与射线CB恰有一个公共点.27.在△ABC中,∠C=90°,AC=BC,点P在线段BA的延长线上,作PD⊥AC,交AC 的延长线于点D,点D关于直线AB的对称点为E,连接PE并延长PE到点F,使EF=AC,连接CF.(1)依题意补全图1;(2)求证:AD=CF;(3)若AC=2,点Q在直线AB上,写出一个AQ的值,使得对于任意的点P总有QD =QF,并证明.【分析】(1)依照题意,补全图形即可;(2)通过证明四边形DCFP是矩形,可得PD=CF,由等腰直角三角形的性质可得AD =PD=CF;(3)通过证明△DAQ≌△FCQ,可得QD=QF.【解答】解:(1)补全图形,如图所示:(2)∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵PD⊥AC,∴∠PDA=90°,∴∠DP A=90°﹣∠P AD=45°=∠DAP,∴AD=DP,∵点D关于直线AB的对称点为E,∴∠FP A=∠DP A=45°,∴∠DPF=90°,又∵∠PDA=90°=∠ACF,∴四边形DCFP是矩形,∴PD=CF,∴AD=PD=CF;(3)AQ=,理由如下:如图2,连接CQ,∵∠C=90°,AC=BC=2,∴AB=2,∠B=∠CAB=45°,∵AQ=,∴AQ=BQ,又∵∠C=90°,AC=BC=2,∴CQ=AQ=BQ,∠QCA=∠CAQ=45°,∴∠DAQ=∠QCF=135°,又∵AD=CF,∴△DAQ≌△FCQ(SAS),∴FQ=DQ.28.在平面直角坐标系xOy中,A(t,0),B(t+4,0),线段AB的中点为C,若平面内存在一点P使得∠APC或者∠BPC为直角(点P不与A,B,C重合),则称P为线段AB 的直角点.(1)当t=0时,①在点P1(,0),P2(,),P3(,﹣)中,线段AB的直角点是P2,P3;②直线y=x+b上存在四个线段AB的直角点,直接写出b取值范围;(2)直线y=x+1与x,y轴交于点M,N.若线段MN上只存在两个线段AB的直角点,直接写出t取值范围.【分析】(1)由线段AB的直角点定义可求解;(2)由圆周角定理可得点P在以BC为直径或AC为直径的圆上,求出直线y=x+b 过点C时,b的值和直线y=x+b与以BC为直径或AC为直径的圆相切时,b的值,即可求解.(3)由题意可得以BC为直径或AC为直径的圆与线段MN的交点只有两个,利用特殊位置可求解.【解答】解:(1)当t=0时,则点A(0,0),点B(4,0),∵点C是AB中点,∴点C(2,0),∴AC=BC=2,∵AP12+CP12=+≠AC2=4,∴点P1不是线段AB的直角点;∵AP22+CP22=+++=4=AC2=4,∴∠AP2B=90°,∴点P2是线段AB的直角点,∵CP32+BP32=+++=4=BC2=4,∴∠CP3B=90°,∴点P3是线段AB的直角点,故答案为:P2,P3;(2)∵∠APC或者∠BPC为直角,∴点P在以BC为直径或AC为直径的圆上,如图,当直线y=x+b与以AC为直径的圆相切时,直线y=x+b与以AC为直径的圆和以BC为直径的圆有三个交点,即存在三个线段AB的直角点,设切点为F,以AC为直径的圆的圆心为E,直线y=x+b与x轴交于点H,连接EF,∵直线y=x+b与以AC为直径的圆相切,∴EF⊥FH,∵直线y=x+b与x轴所成锐角为30°,∴EH=2EF=2,∴点H(3,0),∴0=×3+b,∴b=﹣,同理可得,当直线y=x+b与以BC为直径的圆相切时,b=﹣,当直线y=x+b过点C时,直线y=x+b与以AC为直径的圆和以BC为直径的圆有三个交点,即直线y=x+b上存在三个线段AB的直角点,∴0=+b,∴b=﹣,∴当﹣<b<﹣或﹣<b<﹣时,直线y=x+b与以AC为直径的圆和以BC为直径的圆有四个交点,即直线y=x+b上存在四个线段AB的直角点,(3)∵直线y=x+1与x,y轴交于点M,N,∴点N(0,1),点M(﹣,0),如图,当直线y=x+1与以BC为直径的圆相切于点F,设BC为直径的圆的圆心为E,连接EF,此时线段MN与以AC为直径的圆和以BC为直径的圆有两个交点,即线段MN 上存在两个线段AB的直角点,∵A(t,0),B(t+4,0),点C是线段AB的中点,∴AB=4,AC=BC=2,∵直线y=x+1与以BC为直径的圆相切于点F,∴EF⊥MN,∵∠NMB=30°,∴ME=2EF=2,∴点E(﹣+2,0),∴点A(﹣﹣1,0),∴t=﹣﹣1当直线y=x+1与以AC为直径的圆相切时,此时线段MN与以AC为直径的圆和以BC为直径的圆有3个交点,即线段MN上存在3个线段AB的直角点,同理可求:t=1﹣,当点A与点M重合时,此时线段MN与以AC为直径的圆和以BC为直径的圆有两个交点,即线段MN上存在两个线段AB的直角点,∴当﹣<t<1﹣或t=﹣﹣1时,线段MN上只存在两个线段AB的直角点.。
2020年北京市西城区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×1082.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2 5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙27.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式.12.(2分)如果a2+a=1,那么代数式﹣的值是.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为,BD的长为.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.18.(5分)解不等式组:19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断种语音识别输入软件的准确性较好,理由如下:(至少从两个不同的角度说明判断的合理性).23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm01234y1/cm 4.00 3.69 2.130y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A与点B可以重合),在图形W2上存在两点M,N(点M与点N可以重合),使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,),点P在线段DE上运动(点P 可以与点D,E重合),连接OP,CP.①线段OP的最小值为,最大值为,线段CP的取值范围是;②在点O,点C中,点与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y=x+b(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两点,分别以H,K为圆心,1为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2020年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据45000000用科学记数法可表示为:4.5×107.故选:B.2.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是圆柱.故选:B.3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、既是轴对称图形又是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2【分析】根据相反数的定义即可求解.【解答】解:由A、B表示的数互为相反数,且AB=2,点A在点B的左边,得点A、B表示的数是﹣,.故选:A.5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=90°﹣∠CAB=25°,∴∠ADC=∠ABC=25°,故选:D.6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)甲=(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;乙s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴甲=乙,s甲2>s乙2,故选:A.7.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【解答】解:根据物高与影长成正比得:,即解得:DE=1.0,则BE=2.7+1.0=3.7米,同理,即:,解得:AB≈4.答:树AB的高度为4米,故选:C.8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④【分析】判断一个命题是假命题,只需举出一个反例即可.【解答】解:①若﹣1<m<0,则<m<m2;,当m=﹣时,,是真命题;②若m>1,则<m2<m,当m=2时,,原命题是假命题;③若m<<m2,则m<0,当m=﹣时,,原命题是假命题;④若m2<m<,则0<m<1,当m=时,,是真命题;故选:B.二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:6.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式y=x2﹣1.【分析】直接利用二次函数的性质得出其顶点坐标,进而得出答案.【解答】解:∵y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,∴二次函数对称轴是y轴,且顶点坐标为:(0,﹣1),故满足上述条件的二次函数表达式可以为:y=x2﹣1.故答案为:y=x2﹣1.12.(2分)如果a2+a=1,那么代数式﹣的值是1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a2+a的值整体代入即可得.【解答】解:原式=﹣===,当a2+a=1时,原式=1,故答案为:1.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.【分析】根据正方形的性质、角平分线的性质及等腰直角三角形的三边比值为1:1:来解答即可.【解答】解:∵四边形ABCD为正方形,∴∠C=90°,∠CDB=45°,BC=CD.∴EC⊥CB.又∵BE平分∠CBD,EF⊥BD,∴EC=EF.∵∠CDB=45°,EF⊥BD,∴△DEF为等腰直角三角形.∵DE=,∴EF=1.∴EC=1.∴BC=CD=DE+EC=+1.故答案为:+1.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为5,BD的长为3.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:如图所示:由勾股定理得:AC==5,S△ABC=BC×AE=×BD×AC,∵AE=3,BC=5,即,解得:BD=3.故答案为:5,3.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为(6,6).【分析】由题意得出M在AB、BC的垂直平分线上,则BN=CN,求出ON=OB+BN=6,证△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【解答】解:如图所示:∵⊙M是△ABC的外接圆,∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0),∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,∴点M的坐标为(6,6);故答案为:(6,6).16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是①④(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.【分析】根据统计图与统计表,结合相关统计或概率知识逐个选项分析即可.【解答】解:①根据题意每日接待游客人数10≤x<15为拥挤,15≤x<20为严重拥挤,由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有2天,25日﹣30日有2天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x<5的有16天,从而中位数位于0≤x<5范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则(10×8+15×2﹣5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为:×=,故④正确.故答案为:①④.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+1+﹣2×=3+﹣=3.18.(5分)解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4,由②得:x>,则不等式组的解集为<x<4.19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先根据方程有两个实数根得出△=[﹣(2m+1)]2﹣4×1×m2>0,解之可得;(2)在以上所求m的范围内取一值,如m=0,再解方程即可得.【解答】解:(1)∵方程有两个实数根,∴△=[﹣(2m+1)]2﹣4×1×m2>0,解得m≥﹣;(2)取m=0,此时方程为x2﹣x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得x=0或x=1(答案不唯一).20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.【分析】(1)根据平行四边形的性质得到OA=OC,OB=OD,求得AC=BD,于是得到结论;(2)根据矩形的性质得到∠BAD=∠ADC=90°,求得∠CAD=∠ABE,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴▱ABCD是矩形;(2)解:∵▱ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,在Rt△ACD中,AD=2,cos∠CAD=cos∠ABE=,∴AC=5.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.【分析】根据平行四边形的判定方法即可作图并证明.【解答】解:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别相等的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图,①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC.∴四边形DBCF是平行四边形.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.(至少从两个不同的角度说明判断的合理性).【分析】(2)根据题意补全频数分布直方图即可;(3)根据众数和中位数的定义即可得到结论;(4)根据A,B两种语音识别输入软件的准确性的方差的大小即可得到结论.【解答】解:(2)根据题意补全频数分布直方图如图所示;(3)补全统计表;平均数众数中位数方差A84.79284.588.91B83.79688.5184.01(4)A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.故答案为:A,∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【解答】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,∴=,∵=,∴==,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012342.130y1/cm 4.00 3.69 3.09(答案不唯一)y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为0.83或2.49(答案不唯一)cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为 5.32(答案不唯一)cm.【分析】(1)利用图象法解决问题即可;(2)描点绘图即可;(3)①分PB=PB、PC=BC、PB=BC三种情况,分别求解即可;②当直线PC恰好经过点O时,PC的长度取得最大值,观察图象即可求解.【解答】解:(1)由画图可得,x=4时,y1≈3.09cm(答案不唯一).故答案为:3.09(答案不唯一).(2)描点绘图如下:(3)①由y1与y2的交点的横坐标可知,x≈0.83cm时,PC=PB,当x≈2.49cm时,y2=5cm,即PC=BC,观察图象可知,PB不可能等于BC,故答案为:0.83或2.49(答案不唯一).②当直线PC恰好经过点O时,PC的长度取得最大值,从图象看,PC=y2≈5.32cm,故答案为5.32(答案不唯一).25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.【分析】(1)①把P(1,6)代入函数y=(x>0)即可求得m的值,直线l1:y=kx+2k (k>0)中,令y=0,即可求得x的值,从而求得A的坐标;②把P的坐标代入y=kx+2k即可求得k的值,进而求得B的坐标,然后根据勾股定理求得PB和P A,即可求得的值;(2)①把x=1代入y=kx+2k,求得y=3k,即可求得P(1,3k);②分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,根据平行线分线段成比例定理则==1,得出MN=MA=3,即可得到2+﹣1=3,解得k=1,根据题意即可得到当=≤1时,k≥1,则m =3k≥3.【解答】解:(1)①令y=0,则kx+2k=0,∵k>0,解得x=﹣2,∴点A的坐标为(﹣2,0),∵点P的坐标为(1,6),∴m=1×6=6;②∵直线l1:y=kx+2k(k>0)函数y=(x>0)的图象的交点P,且P(1,6),∴6=k+2k,解得k=2,∴y=2x+4,令x=0,则y=4,∴B(0,4),∵点A的坐标为(﹣2,0),∴P A==,PB==,∴==,故答案为;(2)①把x=1代入y=kx+2k得y=3k,∴P(1.3k);②由题意得,kx+2k=2kx﹣2,解得x=2+,∴点Q的横坐标为2+,∵2+>1(k>0),∴点Q在点P的右侧,如图,分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,∴==1,∴MN=MA,∴2+﹣1=3,解得k=1,∵MA=3,∴当=≤1时,k≥1,∴m=3k≥3,∴当PQ≤P A时,m≥3.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.【分析】(1)抛物线的对称轴为x=﹣1=﹣,求出b=2a,将点A的坐标代入抛物线的表达式,即可求解;(2)点C在第三象限,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,即可求解;(3)满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,即可求解.【解答】解:(1)抛物线的对称轴为x=﹣1=﹣,解得:b=2a,故y=ax2+bx+a+2=a(x+1)2+2,将点A的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)2+2=﹣x2﹣x+;令y=0,即﹣x2﹣x+=0,解得:x=﹣3或1,故点B的坐标为:(1,0);(2)由(1)知:y=a(x+1)2+2,点C在第三象限,即点C在点A的下方,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,而(x1+x2)=﹣1,即x2=﹣2﹣x1,故﹣1<x2<0;(3)∵抛物线的顶点为(﹣1,2),∴点D(﹣1,0),∵∠DOP=45°,若抛物线上满足条件的点P恰有4个,∴抛物线与x轴的交点在原点的左侧,如下图,∴满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,当x=0时,y=ax2+bx+a+2=a+2<0,解得:a<﹣2,故a的取值范围为:a<﹣2.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠P AC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【解答】解:(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,。
2020年北京市中考数学一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体【答案】D【解析】【分析】 根据三视图都是长方形即可判断该几何体为长方体.【详解】解:长方体的三视图都是长方形,故选D .【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几何体.2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( )A. 50.3610⨯B. 53.610⨯C. 43.610⨯D. 43610⨯【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值大于1时,n 是正数;当原数绝对值小于1时,n 是负数.【详解】解: 36000=43.610⨯,故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示形式是解题的关键. 3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A【解析】【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.【详解】解:由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项为∠2>∠3,C选项为∠1=∠4+∠5,D选项为∠2>∠5.故选:A.【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.4.下列图形中,既是中心对称图形也是轴对称图形的是()A. B.C. D.【答案】D【解析】【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【详解】解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,也不是中心对称图形,故选项错误;C、不是轴对称图形,是中心对称图形,故选项错误;D、既是轴对称图形,又是中心对称图形,故选项正确.故选:D .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键.5.正五边形的外角和为( )A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和定理即可得.【详解】任意多边形的外角和都为360︒,与边数无关故选:B .【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键.6.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A. 2B. -1C. -2D. -3 【答案】B【解析】【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a << 21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A. 14B. 13C. 12D. 23【答案】C【解析】【分析】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:所以共4种情况:其中满足题意的有两种,所以两次记录的数字之和为3的概率是21.42= 故选C .【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】【分析】 设水面高度为,hcm 注水时间为t 分钟,根据题意写出h 与t 的函数关系式,从而可得答案.【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.二、填空题9.若代数式17x -有意义,则实数x 的取值范围是_____. 【答案】7x ≠【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】∵代数式17x -有意义,分母不能为0,可得70x -≠,即7x ≠, 故答案为:7x ≠.【点睛】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10.已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0=,∴440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.11.______.【答案】2(或3)【解析】【分析】<2,34,2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.12.方程组137x y x y -=⎧⎨+=⎩的解为________. 【答案】21x y =⎧⎨=⎩ 【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:两个方程相加可得48x =,∴2x =,将2x =代入1x y -=,可得1y =, 故答案为:21x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键. 13.在平面直角坐标系xOy 中,直线y x =与双曲线m y x =交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴120y y +=,故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD ≌ACD ,这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD (或BD=CD )【解析】【分析】 证明ABD ≌ACD ,已经具备,,AB AC AD AD == 根据选择的判定三角形全等的判定方法可得答案.【详解】解:,,AB AC AD AD ==∴ 要使,ABD ACD ≌则可以添加:∠BAD=∠CAD ,此时利用边角边判定:,ABD ACD ≌或可以添加:,BD CD =此时利用边边边判定:,ABD ACD ≌故答案为:∠BAD=∠CAD 或(.BD CD =)【点睛】本题考查是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键. 15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)【答案】=【解析】【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.【详解】解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得14242ABC S =⨯⨯=个平方单位, 123111=52101513224222⨯---=-⨯⨯-⨯⨯-⨯⨯=ABD S S S S , 故有ABC S =ABD S .故答案为:“=”【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到△ABD 的面积.16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:11()|2|6sin 453---︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=3262+-⨯32=+-5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.18.解不等式组:5322132x x x x ->⎧⎪-⎨<⎪⎩ 【答案】12x <<【解析】【分析】分别解每一个不等式,然后即可得出解集. 【详解】解:5322132x x x x ->⎧⎪⎨-<⎪⎩①② 解不等式①得:1x >,解不等式②得:2x <,∴此不等式组的解集为12x <<.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.19.已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.【答案】21024x x --,-2【解析】【分析】 先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.【详解】解:原式=22942x x x -+-2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-. 【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键. 20.已知:如图,ABC 为锐角三角形,AB=BC ,CD ∥AB .求作:线段BP ,使得点P 在直线CD 上,且∠ABP=12BAC ∠. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD ∥AB ,∴∠ABP= .∵AB=AC ,∴点B 在⊙A 上.又∵∠BPC=12∠BAC ( )(填推理依据)∴∠ABP=12∠BAC【答案】(1)见解析;(2)∠BPC ,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半 【解析】 【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明:,ABP BPC ∠=∠ 再利用圆的性质得到:∠BPC=12∠BAC ,从而可得答案. 【详解】解:(1)依据作图提示作图如下:(2)证明:∵CD ∥AB , ∴∠ABP= BPC ∠ . ∵AB=AC , ∴点B 在⊙A 上. 又∵∠BPC=12∠BAC (在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据) ∴∠ABP=12∠BAC 故答案为:∠BPC ;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF . (1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.【答案】(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO是△DAB的中位线,再结合已知条件OG∥EF,得到四边形OEFG是平行四边形,再由条件EF⊥AB,得到四边形OEFG是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=12AB=12AD=5,得到FG=5,最后BG=AB-AF-FG=2.【详解】解:(1)证明:∵四边形ABCD菱形,∴点O为BD的中点,∵点E为AD中点,∴OE为△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG为平行四边形∵EF⊥AB,∴平行四边形OEFG为矩形.(2)∵点E为AD的中点,AD=10,∴AE=15 2AD=∵∠EFA=90°,EF=4,∴在Rt△AEF中,2222543-=-=AF AE EF.∵四边形ABCD为菱形,∴AB=AD=10,∴OE=12AB=5,∵四边形OEFG为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.22.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =+;(2)2m ≥ 【解析】 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围. 【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+; (2)当1x >时,函数(0)y mx m =≠函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2),∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥.【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF ; (2)若sinC=13,BD=8,求EF 的长.【答案】(1)见解析;(2)2. 【解析】 【分析】(1)连接OD ,根据CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据OF ⊥AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO ,即可证明;(2)设半径为r ,根据在Rt △OCD 中,sin 13C =,可得3OD r OC r ==,,AC=2r ,由AB 为⊙O 的直径,得出∠ADB=90°,再根据推出OF ⊥AD ,OF ∥BD ,然后由平行线分线段成比例定理可得12OE OA BD AB ==,求出OE ,34OF OC BD BC ==,求出OF ,即可求出EF . 【详解】(1)证明:连接OD ,∵CD 是⊙O 的切线, ∴OD ⊥CD ,∴∠ADC+∠ODA=90°, ∵OF ⊥AD ,∴∠AOF+∠DAO=90°, ∵OD=OA , ∴∠ODA=∠DAO , ∴∠ADC=∠AOF ; (2)设半径为r ,在Rt △OCD 中,1sin 3C =, ∴13OD OC , ∴3OD r OC r ==,, ∵OA=r ,∴AC=OC-OA=2r , ∵AB 为⊙O 的直径, ∴∠ADB=90°, 又∵OF ⊥AD , ∴OF ∥BD , ∴12OE OA BD AB ==, ∴OE=4, ∵34OF OC BD BC ==, ∴6OF =,∴2EF OF OE =-=.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24.小云在学习过程中遇到一个函数21||(1)(2)6y x x x x =-+≥-.下面是小云对其探究的过程,请补充完整:(1)当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而 ,且10y >;对于函数221y x x =-+,当20x -≤<时,2y 随x 的增大而 ,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而 . (2)当0x ≥时,对于函数y ,当0x ≥时,y 与x 的几组对应值如下表:x12132 252 3y116 167161954872综合上表,进一步探究发现,当0x ≥时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当0x ≥时的函数y 的图象.(3)过点(0,m)(0m >)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数21||(1)(2)6y x x x x =-+≥-的图象有两个交点,则m 的最大值是 . 【答案】(1)减小,减小,减小;(2)见解析;(3)73【解析】 【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案; (2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当2x =-时,函数有最大值,代入计算即可得到答案. 【详解】解:(1)根据题意,在函数1y x =-中, ∵10k =-<,∴函数1y x =-在20x -≤<中,1y 随x 的增大而减小; ∵222131()24y x x x =-+=-+, ∴对称轴为:1x =,∴221y x x =-+在20x -≤<中,2y 随x 的增大而减小;综合上述,21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当0x ≥时,y 随x 的增大而增大,无最大值; 由(1)可知21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; ∴在20x -≤<中,有 当2x =-时,73y =, ∴m 的最大值为73; 故答案为:73. 【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段 1日至10日 11日至20日 21日至30日 平均数 100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为21,s 5月11日至20日的厨余垃圾分出量的方差为22s ,5月21日至30日的厨余垃圾分出量的方差为23s .直接写出222123,,s s s 的大小关系.【答案】(1)173;(2)2.9倍;(3)222123s s s >>【解析】 【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案; (2)利用5月份的平均数除以4月份的平均数,即可得到答案; (3)直接利用点状图和方差的意义进行分析,即可得到答案. 【详解】解:(1)平均数:1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=(千克); 故答案为:173; (2)17360 2.9÷=倍; 故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:222123s s s >>;【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.26.在平面直角坐标系xOy 中,1122(,),(,)M x y N x y 抛物线2(0)y ax bx c a =++>上任意两点,其中12x x <.(1)若抛物线的对称轴为1x =,当12,x x 为何值时,12;y y c ==(2)设抛物线的对称轴为x t =.若对于123x x +>,都有12y y <,求t 的取值范围. 【答案】(1)120,2x x ==;(2)32t ≤ 【解析】 【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为12y y c ==,抛物线的对称轴为1x =,可得点M ,N 关于1x =对称,从而得到12,x x 的值;(2)根据题意知,抛物线开口向上,对称轴为x t =,分3种情况讨论,情况1:当12,x x 都位于对称轴右侧时,情况2:当12,x x 都位于对称轴左侧时,情况3:当12,x x 位于对称轴两侧时,分别求出对应的t 值,再进行总结即可.【详解】解:(1)当x=0时,y=c , 即抛物线必过(0,c ),∵12y y c ==,抛物线的对称轴为1x =, ∴点M ,N 关于1x =对称, 又∵12x x <, ∴10x =,22x =;(2)由题意知,a >0, ∴抛物线开口向上∵抛物线的对称轴为x t =,12x x <∴情况1:当12,x x 都位于对称轴右侧时,即当1x t ≥时,12y y <恒成立情况2:当12,x x 都位于对称轴左侧时,即1x <2,t x t ≤时,12y y <恒不成立情况3:当12,x x 位于对称轴两侧时,即当1x <2,t x t >时,要使12y y <,必有12x t x t -<-,即()()2212x t x t -<-解得122x x t +>, ∴3≥2t , ∴32t ≤综上所述,32t ≤. 【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想.27.在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,AE a BF b ==,求EF 的长(用含,a b 的式子表示); (2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(122a b +;(2)图见解析,222EF AE BF =+,证明见解析. 【解析】 【分析】(1)先根据中位线定理和线段中点定义可得//DE BC ,12DE BC =,CE AE a ==,再根据平行四边形的性质、矩形的判定与性质可得DE CF =,从而可得CF BF b ==,然后利用勾股定理即可得; (2)如图(见解析),先根据平行线的性质可得EAD GBD ∠=∠,DEA DGB ∠=∠,再根据三角形全等的判定定理与性质可得ED GD =,AE BG =,然后根据垂直平分线的判定与性质可得EF FG =,最后在Rt BGF 中,利用勾股定理、等量代换即可得证.【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点∴DE 为ABC 的中位线,且CE AE a ==∴//DE BC ,12DE BC =∵90C ∠=︒∴18090DEC C ∠=︒-∠=︒∵DF DE ⊥∴90EDF ∠=︒∴四边形DECF 为矩形∴DE CF = 11()22CF BC BF CF ∴==+ ∴CF BF b ==则在Rt CEF中,EF =(2)过点B 作AC 的平行线交ED 的延长线于点G ,连接FG∵//BG AC∴EAD GBD ∠=∠,DEA DGB ∠=∠∵D 是AB 的中点∴AD BD =在EAD 和GBD △中,EAD GBD DEA DGB AD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EAD GBD AAS ≅∴ED GD =,AE BG =又∵DF DE ⊥∴DF 是线段EG 的垂直平分线∴EF FG =∵90C ∠=︒,//BG AC∴90GBF C ∠=∠=︒在Rt BGF 中,由勾股定理得:222FG BG BF =+∴222EF AE BF =+.【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键. 28.在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34PP ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线323y x =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值; (3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围. 【答案】(1)平行,P 3;(23(3)23392d ≤≤【解析】【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由1d OE OF =-得到1d 的最小值;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫ ⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可.平移距离2d 的最大值即点A ,B 点的位置,由此得出2d 的取值范围.【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线323y x =+上,平移之后与圆相交,得到的弦为CD ,CD ∥AB ,过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,OF ⊥CD ,令0y =,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,∴2sin 603OE ︒==.由垂径定理得:22132OF OC CD ⎛⎫=-= ⎪⎝⎭, ∴13d OE OF =-=;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫ ⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可;点A 到O 的距离为2235222AO ⎛⎫=+= ⎪⎝⎭. 如图,平移距离2d 的最小值即点A 到⊙O 的最小值:53122-=;平移距离2d 的最大值线段是下图AB 的情况,即当A 1,A 2关于OA 对称,且A 1B 2⊥A 1A 2且A 1B 2=1时.∠B 2A 2A 1=60°,则∠OA 2A 1=30°, ∵OA 2=1,∴OM=12, A 2M=32, ∴MA=3,AA 2=2233932⎛⎫+= ⎪ ⎪⎝⎭,∴2d 的取值范围为:23392d ≤≤ 【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.。
2020年北京师大附中中考数学模拟试卷(五)一、选择题(共8小题).1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()A.5.8×1010B.5.8×1011C.58×109D.0.58×1011 2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣5B.b+d<0C.|a|﹣c<0D.c5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A.B.C.D.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项()A.图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C.图2显示意大利当前的治愈率高于西班牙D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率二、填空题(每题5分,满分40分,将答案填在答题纸上)9.若代数式的值为0,则实数x的值为.10.若a﹣b=2,则代数式(﹣b)•=.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=.12.比较大小:1(填“>”、“<”或“=”).13.举例说明命题“若>,则b>a.”是假命题,a=,b=.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=.(点A,B,C是网格线交点).15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,﹣1),C(﹣1,﹣1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,﹣2),C(4,﹣2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.甲乙丙丁商品顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买(填“乙”、“丙”、“丁”)商品的可能性最大.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:+()﹣1﹣2cos45°﹣|2﹣3|.18.解不等式组,并求该不等式组的非负整数解.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m﹣1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P 在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()A.5.8×1010B.5.8×1011C.58×109D.0.58×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将580 0000 0000用科学记数法表示应为5.8×1010.故选:A.2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念【分析】根据中心对称图形的概念求解.解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选:C.4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣5B.b+d<0C.|a|﹣c<0D.c【分析】根据各点在数轴上的位置、加减法符号法则、实数的算术平方根,对各个选择支作出判断.解:由数轴知:﹣5<a<﹣4,a<b<0<d,|b|<|d|,|a|>|c|∵﹣5<a<﹣4,所以选项A错误;∵b<0<d且|b|<|d|,所以b+d>0,故选项B错误;∵a<0<c且|a|>|c|,所以|a|﹣c>0.故选项C错误;∵0<c<1,,所以c<.故选:D.5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°【分析】根据正多边形的内角和定义(n﹣2)×180°列方程求出多边形的边数,再根据正多边形内角和为360°、且每个外角相等求解可得.解:多边形内角和(n﹣2)×180°=720°,∴n=6.则正多边形的一个外角=,故选:B.6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒【分析】根据图象,可以写出白昼时长不足11小时的节气,然后即可解答本题.解:由图可得,白昼时长不足11小时的节气是立春、立秋、冬至、大寒,故选:D.7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A.B.C.D.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项()A.图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C.图2显示意大利当前的治愈率高于西班牙D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率【分析】根据所给图表和折线图针对每个选项进行分析即可.解:A、图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量,故原题说法正确;B、图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半,故原题说法正确;C、图2显示西班牙当前的治愈率高于意大利,故原题说法错误;D、图3显示大约从3月16日开始海外的病死率开始高于中国的病死率,故原题说法正确;故选:C.二、填空题(每题5分,满分40分,将答案填在答题纸上)9.若代数式的值为0,则实数x的值为x=1.【分析】分式的值为零,分子等于零.解:依题意得:,所以x﹣1=0,解得x=1.故答案是:x=1.10.若a﹣b=2,则代数式(﹣b)•=.【分析】根据分式的减法和乘法可以化简题目中的式子,然后将a﹣b的值代入化简后的式子即可解答本题.解:(﹣b)•===,当a﹣b=2时,原式==,故答案为:.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=2.【分析】由DE∥AB可得出△DEC∽△ABC,根据相似三角形的性质可得出=()2=,再结合AC=3即可求出DC的长度.解:∵DE∥AB,∴△DEC∽△ABC,∴=()2=,∴=.又∵AC=3,∴DC=2.故答案为:2.12.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.13.举例说明命题“若>,则b>a.”是假命题,a=1答案不唯一,b=﹣2.【分析】通过实例说明命题不成立即可.解:当a=1,b=﹣2时,>,得出a>b,故答案为:答案不唯一,1,﹣2.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=45°.(点A,B,C是网格线交点).【分析】延长BA交格点于D,连接CD,根据勾股定理得到AD2=CD2=1+22=5,AC2=12+32=10,求得AD2+CD2=AC2,于是得到∠ADC=90°,根据三角形外角的性质即可得到结论.解:延长BA交格点于D,连接CD,则AD2=CD2=1+22=5,AC2=12+32=10,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ABC+∠ACB=45°.故答案为:45°.15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,﹣1),C(﹣1,﹣1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,﹣2),C(4,﹣2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是甲,丙,丁.【分析】正确画图,根据四个同学的原点确定平面直角坐标系,根据各点的坐标确定正方形的边长,可得结论.解:甲同学:如图1,易知点B为原点,则AB=BC=CD=AD=1,故甲同学所标的四个点的坐标正确;乙同学:如图2,易知点A为原点,则AB=BC=CD=AD=1,则A(0,0),B(0,﹣1),C(1,﹣1),D(1,0),故乙同学所标C点的坐标错误;丙同学:如图1,易知点B为原点,则AB=BC=CD=AD=3,故丙同学所标的四个点的坐标正确;丁同学:如图3,易知AB=BC=CD=AD=3,故丁同学所标的四个点的坐标正确;上述四名同学表示的结果都正确的是:甲,丙,丁;故答案为:甲,丙,丁.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.商品甲乙丙丁顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为0.2.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买丙(填“乙”、“丙”、“丁”)商品的可能性最大.【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.故答案为:0.2;丙.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:+()﹣1﹣2cos45°﹣|2﹣3|.【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.解:+()﹣1﹣2cos45°﹣|2﹣3|=3+5﹣2×﹣(3﹣2)=3+5﹣﹣3+2=4+2.18.解不等式组,并求该不等式组的非负整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3(x+2)≥x+4,得:x≥﹣1,解不等式<1,得:x<3,∴原不等式解集为﹣1≤x<3,∴原不等式的非负整数解为0,1,2.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.【分析】(1)分类讨论:当m=0时,方程变形为一元一次方程,有一个解;当m≠0时,先计算判别式的值得到△=(3m﹣1)2,根据非负数的性质得△≥0,则根据判别式的意义得到方程总有两个实数解,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先解方程得到x1=﹣,x2=﹣3,根据抛物线与x轴的两交点问题得到交点坐标为(﹣,0),(﹣3,0),再根据正数的整除性易得m=1,从而得到抛物线解析式.【解答】(1)证明:当m=0时,方程变形为x+3=0,解得x=﹣3;当m≠0时,△=(3m+1)2﹣4m•3=(3m﹣1)2,∵(3m﹣1)2≥0,即△≥0,∴m≠0时,方程总有两个实数解,∴不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0,mx2+(3m+1)x+3=0.(mx+1)(x+3)=0,解得x1=﹣,x2=﹣3,则抛物线y=mx2+(3m+1)x+3与x轴的两交点坐标为(﹣,0),(﹣3,0),而m为正整数,﹣也为整数,所以m=1,所以抛物线解析式为y=x2+4x+3.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.【分析】(1)直接利用矩形的性质结合全等三角形的判定与性质得出BE=CF,进而得出答案;(2)利用勾股定理的逆定理得出∠EDF=90°,进而得出•ED•DF=EF•CD,求出答案即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)解:由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m﹣1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.【分析】(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y =x,求出直线被抛物线G截得的线段,再画出两个函数的图象即可;(2)先求出C、D两点的坐标,再代入直线的解析式进行检验即可;(3)先联立直线与抛物线的解析式,求出它们的交点坐标,再根据这两个交点之间的距离不小于2列出不等式,求解即可.解:(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x,直线被抛物线G截得的线段长为,画出的两个函数的图象如图所示:(2)无论m取何值,点C,D都在直线上.理由如下:∵抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,∴点C的坐标为C(0,m﹣1),∵y=mx2+2mx+m﹣1=m(x+1)2﹣1,∴抛物线G的顶点D的坐标为(﹣1,﹣1),对于直线:y=mx+m﹣1(m≠0),当x=0时,y=m﹣1,当x=﹣1时,y=m×(﹣1)+m﹣1=﹣1,∴无论m取何值,点C,D都在直线上;(3)解方程组,得,或,∴直线与抛物线G的交点为(0,m﹣1),(﹣1,﹣1).∵直线被抛物线G截得的线段长不小于2,∴≥2,∴1+m2≥4,m2≥3,∴m≤﹣或m≥,∴m的取值范围是m≤﹣或m≥.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P 在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.【分析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠PAC=∠PAD=30°;②作辅助线,证明△PCD'≌△PCQ,可得PA=PQ;(2)存在,如图2,作辅助线,构建全等三角形,证明△PAD≌△PQC(SAS).可得结论.解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.∵C为AB的中点,Q为BC的中点,∴AC=BC=2BQ.∵BQ=CP,∴AC=BC=CD=2CP.∴AP平分∠DAC.∴∠PAC=∠PAD=30°.②如下图,将△APD绕点A顺时针旋转60°得△AD'C,连接CD',∴∠ACD'=∠ADP=60°,AP=AD',∠PAD'=60°,CD'=PD,∴△APD'是等边三角形,∴PD'=AP,∵k=1,∴BQ=CP,∵CD=AC=BC,∴PD=CQ=CD',∵∠PCQ=180°﹣∠ACP=120°,∠PCD'=∠ACP+∠ACD'=120°,∴∠PCD'=∠PCQ,∴△PCD'≌△PCQ(SAS),∴PD'=PQ,∴PA=PQ;(2)存在,使得②中的结论成立.证明:过点P作PC的垂线交AC于点D.∵∠ACM=45°,∴∠PDC=∠PCD=45°.∴PC=PD,∠PDA=∠PCQ=135°.∵,,∴CD=BQ.∵AC=BC,∴AD=CQ.∴△PAD≌△PQC(SAS).∴PA=PQ.。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。