2 7
3
x 4
x
5
x3 1
x3
2. 7
机动 目录 上页 下页 返回 结束
例4、
求
lim
x1
x
2
x2 1 2x
3
.
( 0型) 0
解:x 1时,分子,分母的极限都是零.
先约去不为零的无穷小因子x 1后再求极限.
lim
x1
x2
x2 1 2x
3
lim
x1
(x (x
1)( x 3)( x
1) 1)
yy y x2 当 x 0 时为减函数;
当 x 0 时为增函数;
o
xx
机动 目录 上页 下页 返回 结束
(3) 函数的有界性:
若X D, M 0,x X ,有 f ( x) M 成立, 则称函数f ( x)在X上有界.否则称无界.
y
y 1 x
在(,0)及(0,)上无界; 在(,1]及[1,)上有界.
2
2
2
机动 目录 上页 下页 返回 结束
例3、 设函数 f ( x) 1 , g( x) x 2
x 1
求 f [g( x)] 和g[ f ( x)] 解:f [g(x)] 1 1 ,
g(x) 1 x 2 1 g[ f (x)] f (x) 2 1 2
x 1
机动 目录 上页 下页 返回 结束
(或n )的过程中, 对应函数值 f ( x)无限
趋近于一个确定常数 A.
lim
n
an
A
lim f ( x) A
x
lim f ( x) A
x
lim f ( x) A
x
定理 : lim f ( x) A lim f ( x) A且 lim f ( x) A.