第3章管道流动及能量损失
- 格式:ppt
- 大小:1.86 MB
- 文档页数:38
流体在管道中对流动规律——流动能量损失的确定流体流动时会产生能量损失,只有知道流体流动过程的能量损失,才能用柏努利方程解决流体输送中的实际问题。
流体流动过程的能量损失一般简称为流体阻力。
一、流体阻力的产生原因1.黏度理想流体在流动时不会产生流体阻力,因为理想流体是没有黏性的,实际流体流动时会产生流体阻力,是因为实际流体有黏性。
流体的黏性是流体流动时产生能力损失的根本原因,而流体层与层之间、流体和壁面之间的相对运动是产生内磨擦阻力,引起能量损失的必要条件。
流体黏性的大小用黏度来表示,其数值越大,在同样的流动条件下,流体阻力就会越大。
流体黏度的定义为:两层流体之间单位面积上的内磨擦与速度梯度为之比,用符号μ表示,其单位是:Pa ·s液体的黏度随温度升高减小,气体的黏度则随温度升高而增大。
压力变化时,液体的黏度基本不变;气体的黏度随压力的增加而增加得很少,在一般工程计算中可忽略,只有在极高或极低的压力下,才需要考虑压力对气体黏度的影响。
某些常用流体的黏度,可以从有关手册中查得。
流体流动时产生的能量损失除了与流体的黏性、流动距离有关外,还取决于管内流体的流速等因素。
流速对能量损失的影响与流体在流道内的流动形态有关。
2.流体的流动型态1883年著名的科学家雷诺用实验揭示了流体流动的两种截然不同的流动型态。
实验装置:图1-36,在1个透明的水箱内,水面下部安装1根带有喇叭形进口的玻璃管,管的下游装有阀门以便调节管内水的流速。
水箱的液面依靠控制进水管的进水和水箱上部的溢流管出水维持不变。
喇叭形进口处中心有一针形小管,有色液体由针管流出,有色液体的密度与水的密度几乎相同。
实验现象:①当玻璃管内水的流速较小时,管中心有色液体不扩散,呈现一根平稳的细线流,沿玻璃管的轴线向前流动(如图1-36(a)所示)。
②随着水的流速增大至某个值后,有色液体的细线开始抖动,弯曲,呈现波浪形(如图1-36(b)所示)。
③速度增大到一定程度后,有色液体的细线扩散,使管内水的颜色均匀一致(如图1-36(c )所示)。
公用设备工程师-专业基础(暖通空调、动力)-工程流体力学及泵与风机-3.3流动阻力和能量损失[单选题]1.紊流阻力包括有()。
[2018年真题]A.黏性切应力B.惯性切应力C(江南博哥).黏性切应力或惯性切应力D.黏性切应力和惯性切应力正确答案:D参考解析:流动呈现什么流态,取决于扰动的惯性作用与黏性的稳定作用的相对强弱。
层流各流层间互不掺混,只存在黏性引起的各流层间的滑动摩擦阻力;紊流时则有大小不等的涡体动荡于各流层间。
因此紊流阻力除了存在黏性阻力,还存在着由于质点掺混、互相碰撞所造成的惯性阻力。
因此,紊流阻力包括有黏性切应力和惯性切应力。
[单选题]2.变直径圆管,前段直径d1=30mm,雷诺数为3000,后段直径变为d2=60mm,则后段圆管中的雷诺数为()。
[2012年真题]A.1000B.1500C.2000D.3000正确答案:B参考解析:连续性方程的公式为:A1v1=A2v2。
由题意可得,d1/d2=30/60=1/2,则v2/v1=A1/A2=(d1/d2)2=1/4。
雷诺数Re=vd/υ,则Re2/Re1=(v2/v1)(d2ub>/d1)=(1/4)×2=1/2。
因此,后段圆管中的雷诺数Re2=Re1/2=3000/2=1500。
[单选题]3.一管径d=32mm的水管,水温t=10℃,此时水的运动粘度系数ν=1.31×10-6m2/s,如果管中水的流速为2m/s,则管中水的流态为()。
[2019年真题]A.层流B.均匀流C.层流向紊流的过渡区D.紊流正确答案:D参考解析:雷诺数作为判别流体的流态的准则,管内流动以临界雷诺数Re=vd/ν=2000为界限:①当雷诺数Re=vd/ν≤2000时,流态为层流;②当雷诺数Re=2000~4000时,流态属于由层流向紊流的过渡过程;③雷诺数Re>4000时,流态为紊流。
当该管雷诺数Re=2×0.032/(1.31×10-6)=48855>4000,因此管中的流态为紊流。
流体流动过程中能量损失和管道计算摩擦损失是由于流体与管道壁面的摩擦而产生的能量损失。
流体在管道中流动时,与管道壁面发生摩擦,使得流体的动能转化为内能和热能,从而使流体的总能量逐渐减少。
根据流体力学的基本方程,可以推导出摩擦损失的计算公式。
其中,流体的粘性、管道内径和长度、管壁的光滑程度等因素都会影响摩擦损失的大小。
局部阻力是由于管道中存在的凸起、弯曲、收缩等不规则形状所导致的能量损失。
这些不规则形状会使流体的流速产生变化,从而导致流体的能量损失。
局部阻力可以通过流量系数来表示,通过实验和经验公式可以估算出不同形状的局部阻力系数。
除了摩擦损失和局部阻力外,流体流动过程中还会发生一些其他的能量损失,例如流体受到的外力、液体的汽蚀和气蚀等。
这些能量损失的计算通常需要根据具体情况进行分析和估算。
管道计算是指根据流体的流量、压力、温度等参数,计算流体在管道中的流速、压力损失、温度变化等相关参数的过程。
在管道计算中,需要考虑流体的物性参数、管道的几何形状、流动条件和所需的精度等因素。
管道计算通常包括流速计算、压力损失计算和温度变化计算。
流速计算可以根据流量和管道截面积的关系得出流速值。
在压力损失计算中,需要考虑管道长度、流体的粘性、流过的局部阻力等因素,可以通过经验公式和流体力学的基本方程进行计算。
而温度变化计算则需要综合考虑流体的物性参数、管道的材料热传导性能等因素,可以使用简单的热传导方程进行计算。
综上所述,流体流动过程中能量损失和管道计算是流体力学中的重要内容。
通过对流体的摩擦损失、局部阻力以及其他能量损失的分析,可以对流体流动过程中的能量变化进行评估。
同时,通过管道计算可以得出流体在不同条件下的流速、压力损失和温度变化等参数,为工程设计和实际应用提供重要参考。
流体⼒学第三章课后习题答案⼀元流体动⼒学基础1.直径为150mm 的给⽔管道,输⽔量为h kN /7.980,试求断⾯平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→//A Qv ρ=得:s m v /57.1=2.断⾯为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出⼝处断⾯收缩为150mm ×400mm,求该断⾯的平均流速解:由流量公式vA Q = 得:A Q v =由连续性⽅程知2211A v A v = 得:s m v /5.122=3.⽔从⽔箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流⼊⼤⽓中. 当出⼝流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性⽅程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输⽔量为h kg /294210的给⽔管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代⼊得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代⼊vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代⼊得:mm d 5.420≥ 取mm d 450= 代⼊vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断⾯上,⽤下法选定五个点,以测局部风速。
设想⽤和管轴同⼼但不同半径的圆周,将全部断⾯分为中间是圆,其他是圆环的五个⾯积相等的部分。
第一章 流体流动§4 流体在管内流动时的摩擦阻力损失本节重点:直管阻力与局部阻力的计算,摩擦系数的影响因素。
难点:用量纲分析法解决工程实际问题。
流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。
化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。
相应流体流动阻力也分为两种:直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。
一 范宁公式(Fanning )1、范宁公式 :范宁经过理论推导,得到了以下公式: 22l u h f d λ= (1-53) 式(1-53)为计算流体在直管内流动阻力的通式,称为范宁(Fanning )公式。
式中λ为无量纲系数,称为摩擦系数或摩擦因数,与流体流动的Re 及管壁状况有关。
式(1-53)也可以写成:22u d l h p f f ρλρ==∆ (1-54) 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数λ不同。
2、管壁粗糙度对摩擦系数λ的影响光滑管:玻璃管、铜管、铅管及塑料管等称为光滑管;粗糙管:钢管、铸铁管等。
管道壁面凸出部分的平均高度,称为绝对粗糙度,以ε表示。
绝对粗糙度与管径的比值即dε,称为相对粗糙度。
工业管道的绝对粗糙度数值见教材(P27表1-1)。
管壁粗糙度对流动阻力或摩擦系数的影响,主要是由于流体在管道中流动时,流体质点与管壁凸出部分相碰撞而增加了流体的能量损失,其影响程度与管径的大小有关,因此在摩擦系数图中用相对粗糙度dε,而不是绝对粗糙度ε。
流体作层流流动时,流体层平行于管轴流动,层流层掩盖了管壁的粗糙面,同时流体的流动速度也比较缓慢,对管壁凸出部分没有什么碰撞作用,所以层流时的流动阻力或摩擦系数与管壁粗糙度无关,只与Re有关。
流体作湍流流动时,靠近壁面处总是存在着层流内层。
如果层流内层的厚度δL大于管壁的绝对粗糙度ε,即δL>ε时,如图1-28(a)所示,此时管壁粗糙度对流动阻力的影响与层流时相近,此为水力光滑管。
流体流动中的能量损失分析引言流体流动中的能量损失是流体力学研究中的一个重要问题,对于理解流体流动的机理、优化工程设计和提高能源利用效率具有重要意义。
本文将从流体流动中的能量损失的概念入手,详细分析流体流动过程中产生的能量损失及相关因素,探讨减小能量损失的方法和应用,提高流体流动效率。
1.能量损失的概念和分类1.1 能量损失的概念能量损失是指在流体流动过程中,由于各种因素的作用,流体所具有的能量被消耗或转化为其他形式的能量。
能量损失是流体流动中不可避免的现象,是流体流动效率的重要衡量指标。
1.2 能量损失的分类能量损失可以分为以下几类:1.摩擦损失:由于流体与管道壁面之间摩擦力的作用而产生的能量损失;2.惯性损失:由于流体流动的方向和速度变化导致的能量损失;3.弯头损失:由于流体在弯头处发生流向和速度的突变而产生的能量损失;4.突跃损失:由于流体在管道中突然发生变化,如管道断径或突然扩大等原因导致的能量损失;5.出口损失:由于流体从管道出口流出时产生的能量损失。
2.能量损失的计算和影响因素2.1 能量损失的计算方法能量损失的计算一般采用以下两种方法:1.管道总能量法:根据流体力学基本方程,通过整段管道计算流体在净能量损失面上的能量损失;2.局部能量法:根据流体力学基本方程,分别对局部流动部分进行能量损失计算,然后将各部分损失累加得到总能量损失。
2.2 能量损失的影响因素能量损失的大小受多种因素的影响,主要包括以下几个方面:1.流速:流速越大,能量损失越大;2.管道内壁粗糙度:管道内壁越粗糙,摩擦损失越大;3.管道长度:管道长度越长,能量损失越大;4.管道内径:管道内径越大,能量损失越小;5.弯头半径:弯头半径越小,能量损失越大;6.突跃形式:突跃形式越复杂,能量损失越大。
3.减小能量损失的方法和应用3.1 减小摩擦损失要减小摩擦损失,可以采取以下措施:1.选择光滑内壁的管道材料,并保持管道内壁的清洁;2.降低流速,减小流体与管道内壁之间的摩擦力;3.减小管道长度,缩短流体流动距离;4.使用优质润滑剂,减少流体与管道内壁的摩擦。