郑州市2008-2011学年高一下期末试题汇编(文档版)
- 格式:docx
- 大小:1.45 MB
- 文档页数:10
郑州市2008-2009高一下期期中五校联考数学试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下面对算法描述正确的是A .算法只能用自然语言来描述B .算法只能用图形方式来描述C .同一个问题可以有不同的算法D .同一个问题的算法不同,结果必然不同 2.=0210sinA .23 B .23- C .21 D .21- 3.从装有2个红球和2个白球的袋中任取2个球,那么互斥而不对立的两个事件是A .至少有1个白球,都是白球B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球 4.若函数)sin(ϕ+=x y 为偶函数,则ϕ的一个取值为A .4πB .2πC .πD .π25.当3=a 时,下面的程序段输出的结果是A .9B .3C .10D .6 6.已知54sin =θ,且θ是第二象限角,那么θtan 等于A .34-B .43- C .43 D .347.某质量监督局要对某厂6月份生产的三种型号的轿车进行抽检,已知6月份该厂共生产甲种轿车1400辆,乙种轿车6000辆,丙种轿车2000辆,现采用分层抽样的方法抽取47辆进行检验,则这三种型号的轿车依次应抽取A .14辆,21辆,12辆B .7辆,30辆,10辆C .10辆,20辆,17辆D .8辆,21辆,18辆 8.若54)sin(=+θπ,53)2sin(=+θπ,则θ角的终边在A .第一象限B .第二象限C .第三象限D .第四象限9.如果执行右面的程序框图,那么输出的=SA .10B .22C .46D .94 10.设75sinπ=a ,72cos π=b ,72tan π=c ,则 A .c b a << B .b c a << C .a c b << D .c a b << 11.将一枚质地均匀的硬币连续投掷4次,出现“3次正面朝上,1次反面朝上”的概率是 A .41 B .21 C .161 D .81 12.运行如右程序:当输入168,72时,输出的结果是A .12B .24C .36D .72第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题每小题5分,共20分.把答案填在题中横线上) 13.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2700,3000) 的频率为 .14.把9化成二进制数,结果为 . 15.使函数x y cos =是增函数,x y sin =是减 函数的角x 的取值范围是 .16.在下面的程序框图中,如果运行的结果为120=S ,那么判断框中应填入 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求证:1cos sin sin cos 1+=-αααα.。
2010学年度第二学期高一数学学科期末练习卷考生注意:1.本次测试有试题纸和答题纸,作答必须在答题纸上,写在试题纸上的解答无效. 2.答卷前,考生务必在答题纸上将姓名、学校、考试号,以及试卷类型等填写清楚. 3.本试卷共有14道试题,满分100分.考试时间90分钟. 一、填空题(本大题共9小题,每小题4分,满分36分)1.设函数13)(+=x x f ,则=-)2(1f ▲ .2.若某地人口按每年%1的比率增长,则该地人口达到原来的2倍只需 ▲ 年.(取整) 3.下列三个命题,其中,所有真命题的序号为 ▲ .① 第一象限的角都是锐角; ② 若α是第一象限的角,则2α也必是第一象限的角;③ 59π-弧度的角与 36的角是终边相同的角.4.若α、β为锐角,且满足2tan =α,55)cos(-=+βα,则βtan 的值为 ▲ .5.在ABC ∆中,若 30A =, 135C =,2BC =,则ABC ∆的面积为 ▲ .6.当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船等待营救.甲船立即将消息告知在甲船南偏东 30,相距10海里C 处的乙船,乙船距离渔船 ▲ 海里.7.函数32=y 与y )0(cos 3sin π≤≤+=x x x 图像交点的横坐标为 ▲ .8.设数列}{n a 的前n 项和为n S ,若11=a ,)N (2*1∈+=+n S a S n n n ,则=6a ▲ .9.设等比数列}{n a 的公比为21,对于*∈N n ,n n a b 2log=,若当且仅当6=n 时,数列{}n b 的前n 项和取得最大值,则1b 的取值范围为 ▲ .二、解答题(本大题共5小题,每题的分数依次为12、12、12、14、14,满分64分) 10.求函数4loglog 42xx y ⋅=在闭区间 [1, 8] 上的最大值和最小值.11.(1)设)Z (2∈≠k k πα,请运用任意角的三角比定义证明:)csc )(sec cos (sin cot tan αααααα-+=-.(2)设)Z (∈≠k k πα,求证:αααα2cos 4)2tan2(cot2sin =-.12.请以两角差的正弦公式y x y x y x sin cos cos sin )sin(-=-为已知条件,推导两角和的余弦公式,进而推导半角的正弦公式.13.已知正割函数x y sec =在区间)2,0(π上的图像如图(请看答题卡)所示,请在所示范围内画出正割函数的大致图像,指出它的定义域、值域和基本性质,并任选其基本性质之一给予证明.14.假设某市2010年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年后,该市每年新建住房面积平均比上年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底 (1)该市历年所建中低价房的累计面积(以2010年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?高一数学学科期末练习卷参考答案与评分标准(2011.6)一、1.12log 3-; 2.70; 3.③;4.34; 5.13-; 6.310;7.31arcsin32-π; 8.32-; 9.)6,5(.二、10.解一:)2(loglog22-=x x y …………………………………………………5分81≤≤x ,3log02≤≤∴x ……………………………………………………………………3分故,问题转化为:求二次函数)2(21-=t t y 在闭区间[0,3]上的最大值和最小值.所以,当1=t 时,21min -=y ; …………………………………………………2分当3=t 时,23max =y . ……………………………………………………………2分解二:)1(loglog244-=x x y …………………………………………………………5分81≤≤x , 23log04≤≤∴x ……………………………………………………………………3分故,问题转化为:求二次函数)1(2-=t t y 在闭区间[0,23]上的最大值和最小值.所以,当1=t 时,21min -=y ; …………………………………………………2分当23=t 时,23max=y . ……………………………………………………………2分解三:)4lg (lg lg )2(lg 212-=x x y (5)分81≤≤x ,lg8lg 0≤≤∴x ……………………………………………………………………3分令x t lg =,问题转化为:求二次函数)4lg ()2(lg 212-=t t y 在闭区间[0,8lg ]上的最大值和最小值.所以,当2lg =t 时,21min -=y ;…………………………………………………2分当8lg =t 时,23max =y .……………………………………………………………2分11.(1)证 设),(y x P 是角α终边上任意一点,且0||22>=+=r yx OP ,…1分则由任意角的三角比定义,有rx ry ==ααcos ,sin ,yx xy ==ααcot ,tan ,yr xr ==ααcsc ,sec ,xyx yy x xy 22cot tan -=-=-=∴αα左,………………………………………2分.))(()csc )(sec cos (sin 22xyx y y r x r r x r y -=-+=-+=αααα右 ……………2分左=右,所以,原式成立. ………………………………………………1分(2)设)(Z k k ∈≠πα,求证:αααα2cos 4)2tan2(cot 2sin =-.证明一:左==--+=ααααααα2cos 4)sin cos 1sin cos 1(cos sin 2右. ……………6分证明二:αααααααααα22cos 4cot 2cos sin 22tan2tan12sin )2tan2tan1(2sin =⋅=-⋅=-. 6分12.解:y x y x y x sin cos cos sin )sin(-=-解法一:用y -替换y ,得y x y x y x y x y x cos sin cos sin )sin(cos )cos(sin )sin(+=---=+……………2分由诱导公式,有])2sin[()](2sin[)cos(y x y x y x --=+-=+ππy x y x y x y x sin sin cos cos sin )2cos(cos )2sin(-=---=ππ即:=+)cos(y x y x y x sin sin cos cos -=. …………………………4分解法二:在公式y x y x y x sin cos cos sin )sin(-=-中,用y --2π替换y ,得)cos (cos )sin (sin )2sin(cos )2cos(sin )](2sin[y x y x y x y x y x ---=-----=++πππ即:=+)cos(y x y x y x sin sin cos cos -=. ……………………………………6分令x y =,得x x x 22sin cos 2cos -=,……………………………………2分由于1sincos 22=+x x ,所以x x 2sin212cos -=. ……………………………1分用2x 替换x ,得2sin 21cos 2x x -=, 故推得半角的正弦公式2cos 12sinxx -±=.………………………………………3分13.画图4分,定义域、值域各1分,其它每个基本性质1分;证明一个基本性质3分定义域:)(2Z k k x ∈+≠ππ,值域:),1[]1,(+∞--∞正割函数的基本性质:奇偶性:偶函数;证明:任取2πk x ≠,有)(sec cos 1)cos(1)sec()(x f x xx x x f ===-=-=-所以,正割函数x y sec =是偶函数.● 单调区间:单调递减区间)2,22(πππk k +-和)223,2(ππππk k ++,Z k ∈;单调递增区间)22,2(πππk k +和)2,22(ππππk k ++,Z k ∈.证明正割函数在区间)22,2(πππk k +(Z k ∈)上为增函数:任取2121),22,2(,x x k k x x <+∈πππ,则0cos ,0cos 21>>x x ,且21cos cos x x >,0cos cos cos cos cos 1cos 1sec sec 21122121<-=-=-x x x x x x x x ,所以,正割函数在在区间)22,2(πππk k +(Z k ∈)上为增函数.●最大值和最小值:无.证明:反证法:假设有最大值0M ,显然10>M , 则对于所有2πk x ≠,有0)(M x f ≤.令11sec 0>+=M x ,得)1,0(11cos 0∈+=Mx ,所以,存在0x ,使得1sec 00+=M x ,与0M 为正割函数的最大值矛盾.所以正割函数无最大值,同理可证正割函数无最小值.●零点:无.证明:因为]1,1[cos -∈x ,所以1|sec |≥x ,故方程0sec =x 无解, 所以,正割函数无零点. ●周期:π2.证明:设2πk x ≠,有)(sec cos 1)2cos(1)2sec()2(x f x xx x x f ===+=+=+πππ,所以,π2是正割函数的周期.14.解(1)设中低价房面积形成数列{}n a ,由题意可知{}n a 是等差数列. 其中2501=a ,50=d ,则,22525502)1(2502n n n n n S n +=⨯-+=………………3分令,4750225252≥+n n 即019092≥-+n n ,因为*∈N n ,所以10≥n .………3分到2019年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.………1分 (2)设新建住房面积形成数列}{n b ,由题意可知}{n b 是等比数列,其中4001=b ,08.1=q ,则1)08.1(400-⋅=n n b ,由题意可知n n b a 85.0>.有85.0)08.1(40050)1(2501⋅⋅>⋅-+-n n ,………………………………………………4分 使用计算器解得满足上述不等式的最小正整数6=n .……………………………………2分 到2015年底,当年建造的中低价房面积占该年建造住房面积的比例首次大于85%.…1分。
一、选择题 1.(0分)[ID:12724]已知向量cos,sina,1,2b,若a与b的夹角为6,
则ab( ) A.2 B.7 C.2 D.1
2.(0分)[ID:12717]设m,n为两条不同的直线,,为两个不同的平面,则( ) A.若//m,//n,则//mn B.若//m,//m,则
//
C.若//mn,n,则m D.若//m,,则
m
3.(0分)[ID:12696]已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是( )
A.50,2 B.1,4 C.1,22 D.
5,5
4.(0分)[ID:12694]设l,m是两条不同的直线,是一个平面,则下列命题正确的是 ( ) A.若lm,m,则l B.若l,//lm,则
m
C.若//l,m,则//lm D.若//l,//m,则
//lm
5.(0分)[ID:12692]已知数列{}na的前n项和22nSnn,那么它的通项公式是( ) A.21nan B.
21nan
C.41nan D.
41nan
6.(0分)[ID:12686]我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱111ABCABC,其中ACBC,若11AAAB,当“阳马”即四棱锥
11BAACC体积最大时,“堑堵”即三棱柱111ABCABC的表面积为
A.21 B.31 C.2232 D.
332
7.(0分)[ID:12680]已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是( ) A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个
一、选择题1.(0分)[ID :12728]△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.(0分)[ID :12724]已知向量()cos ,sin a θθ=,()1,2b =,若a 与b 的夹角为6π,则a b +=( ) A .2B .7C .2D .13.(0分)[ID :12720]如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =,4AD AC ⋅=,则AB BC ⋅=A .-45B .13C .-13D .-374.(0分)[ID :12712]已知不等式()19a x y x y ⎛⎫++⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( )A .8B .6C .4D .25.(0分)[ID :12702]已知D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,则xy 的取值范围是( )A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦6.(0分)[ID :12695]已知集合A ={1,2,3}, B ={x|x 2<9},则A ∩B = A .{−2,−1,0,1,2,3} B .{−2,−1,0,1,2} C .{1,2,3} D .{1,2}7.(0分)[ID :12678]当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)8.(0分)[ID :12674]已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48πB .12πC .12πD .3π9.(0分)[ID :12672]若||1OA =,||3OB =0OA OB ⋅=,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB =+(,)m n R ∈,则mn的值为( ) A .13B .3 CD10.(0分)[ID :12635]已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 11.(0分)[ID :12654]已知二项式2(*)nx n N ⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-12.(0分)[ID :12653](2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4513.(0分)[ID :12651]在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么 ( ) A .M 一定在直线AC 上 B .M 一定在直线BD 上C .M 可能在直线AC 上,也可能在直线BD 上 D .M 既不在直线AC 上,也不在直线BD 上14.(0分)[ID :12639]在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知5a =,7b =,8c =,则A C +=A .90︒B .120︒C .135︒D .150︒15.(0分)[ID :12711]设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,5二、填空题16.(0分)[ID :12827]在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示)17.(0分)[ID :12822]已知两个正数,x y 满足4x y +=,则使不等式14m x y+≥恒成立的实数m 的范围是__________18.(0分)[ID :12821]已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为__________.19.(0分)[ID :12795]已知2a b ==,()()22a b a b +⋅-=-,则a 与b 的夹角为 .20.(0分)[ID :12779]如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.21.(0分)[ID :12777]已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,则不等式()()1ln f f x <的解集是________.22.(0分)[ID :12745]设f(x)={1−√x,x ≥0x 2,x <0,则f(f(−2))=________23.(0分)[ID :12769]设12a =,121n n a a +=+,21n n n a b a +=-,*n N ∈,则数列{}n b 的通项公式n b = .24.(0分)[ID :12750]如图,某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积为________.25.(0分)[ID :12760]△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________. 三、解答题26.(0分)[ID :12906]已知不等式ax 2−3x +6>4的解集为{x|x <1或x >b}. (1)求a,b ;(2)解关于x 的不等式ax 2−(ac +b)x +bc <0 27.(0分)[ID :12900]已知23()sin cos 3cos 2f x x x x =+- (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.28.(0分)[ID :12896]某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?29.(0分)[ID :12877]从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;30.(0分)[ID :12873]如图所示,一座小岛A 距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一城镇B .一年青人从小岛A 出发,先驾驶小船到海岸线上的某点C 处,再沿海岸线步行到城镇B .若PAC θ∠=,假设该年青人驾驶小船的平均速度为2/km h ,步行速度为4/km h .(1)试将该年青人从小岛A到城镇B的时间t表示成角θ的函数;(2)该年青人欲使从小岛A到城镇B的时间t最小,请你告诉他角θ的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.D4.C5.D6.D7.C8.D9.B10.B11.C12.C13.A15.C二、填空题16.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决17.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m的范围【详解】由题意知两个正数xy满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查18.【解析】【分析】由题意首先求解底面积然后结合四棱锥的高即可求得四棱锥的体积【详解】由题意可得底面四边形为边长为的正方形其面积顶点到底面四边形的距离为由四棱锥的体积公式可得:【点睛】本题主要考查四棱锥19.【解析】【分析】【详解】根据已知条件去括号得:20.2米【解析】【分析】【详解】如图建立直角坐标系设抛物线方程为将A(2-2)代入得m=-2∴代入B得故水面宽为米故答案为米考点:抛物线的应用21.【解析】由定义在实数集上的偶函数在区间上是减函数可得函数在区间上是增函数所以由不等式得即或解得或即不等式的解集是;故答案为22.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-23.2n+1【解析】由条件得且所以数列是首项为4公比为2的等比数列则24.【解析】【分析】由三视图知几何体是半个圆锥圆锥的底面半径是1母线长是2得到圆锥的高利用圆锥体积公式得到结果【详解】由三视图知该几何体是半个圆锥圆锥的底面半径是1母线长是2∴圆锥的高是∴几何体的体积是25.【解析】【分析】首先利用正弦定理将题中的式子化为化简求得利用余弦定理结合题中的条件可以得到可以断定为锐角从而求得进一步求得利用三角形面积公式求得结果【详解】因为结合正弦定理可得可得因为结合余弦定理可三、解答题26.27.28.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.B解析:B 【解析】 【分析】先计算a 与b 的模,再根据向量数量积的性质22()a b a b +=+即可计算求值. 【详解】因为()cos ,sin a θθ=,()1,2b =,所以||1a =,||3b =.又222222()2||2||||cos||6a b a b a a b b a a b b +=+=+⋅+=+π+137=++=, 所以7a b +=,故选B. 【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.3.D解析:D 【解析】 【分析】先用AB 和AC 表示出2A AB BC AB C AB ⋅=⋅-, 再根据,12BD DC =用用AB 和AC 表示出AD ,再根据4AD AC ⋅=求出A AB C ⋅的值,最后将A AB C ⋅的值代入2A AB BC AB C AB ⋅=⋅-,,从而得出答案. 【详解】()2A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-,∵12BD DC =, ∴111B C ?C B 222AD A A AD AD A AD A -=-=-+(), 整理可得:12AB 33AD AC +=, 221A A 433AD AC AB C C ∴⋅⋅+==∴ A =-12AB C ⋅,∴2=A =122537AB BC AB C AB ⋅⋅---=-., 故选:D . 【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.4.C解析:C 【解析】 【分析】由题意可知,()min 19a x y x y ⎡⎤⎛⎫++≥⎢⎥ ⎪⎝⎭⎣⎦,将代数式()1a x y x y ⎛⎫++ ⎪⎝⎭展开后利用基本不等式求出该代数式的最小值,可得出关于a 的不等式,解出即可. 【详解】()11a ax yx y a x y y x ⎛⎫++=+++⎪⎝⎭. 若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立; ③当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C. 【点睛】本题考查基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力,属于中等题.5.D解析:D 【解析】 【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值. 【详解】解:D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦,则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下,对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D . 【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.6.D解析:D 【解析】试题分析:由x 2<9得−3<x <3,所以B ={x|−3<x <3},因为A ={1,2,3},所以A ∩B ={1,2},故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.7.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则240k k k >⎧⎨=-<⎩解得:04k <<,综上k 的取值范围是[)0,4,故选C. 8.D解析:D 【解析】 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R∴=所以ABC∆的外接圆面积为=3ππ.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.B解析:B【解析】【分析】利用向量的数量积运算即可算出.【详解】解:30AOC︒∠=3cos,2OC OA∴<>=32OC OAOC OA⋅∴=()32mOA nOB OAmOA nOB OA+⋅∴=+2222322m OA nOB OAmOA mnOA OB n OBOA+⋅=+⋅+1OA =,3OB=,0OA OB⋅==229m n∴=又C在AB上m∴>,0n>3mn∴=故选:B【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.10.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.11.C解析:C 【解析】 【分析】由二项展开式的通项公式为()12rn rr r nT C x -+⎛= ⎝及展开式中第2项与第3项的二项式系数之比是2︰5可得:6n =,令展开式通项中x 的指数为3,即可求得2r ,问题得解. 【详解】二项展开式的第1r +项的通项公式为()12rn rr r nT Cx -+⎛= ⎝由展开式中第2项与第3项的二项式系数之比是2︰5,可得:12:2:5n n C C =. 解得:6n =.所以()()366216221rr n rr rr r r n T C x C x---+⎛==- ⎝ 令3632r -=,解得:2r ,所以3x 的系数为()2262621240C --=故选C 【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题.12.C解析:C 【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为:()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.13.A解析:A 【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF ⊂平面ABC ,HG ⊂平面ADC , 故M∈平面ABC ,M∈平面ADC ,所以M∈平面ABC∩平面ADC=AC. 选A. 点睛:证明点在线上常用方法先找出两个平面,然后确定点是这两个平面的公共点,再确定直线是这两个平面的交线.14.B解析:B 【解析】 【分析】由已知三边,利用余弦定理可得1cos 2B =,结合b c <,B 为锐角,可得B ,利用三角形内角和定理即可求AC +的值. 【详解】 在ABC ∆中,5a =,7b =,8c =,∴由余弦定理可得:2222564491cos 22582a cb B ac +-+-===⨯⨯,b c <,故B 为锐角,可得60B =︒,18060120A C ∴+=︒-︒=︒,故选B . 【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.15.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C二、填空题16.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决解析:12n m【解析】 【分析】 【详解】由题意得ABC ∆的三边分别为,1,2x x x ++ 则由()()22221x x x +=++ 可得3n = ,所以,三角数三边分别为3,4,5,因为A B C π∠+∠+∠= ,所以三个半径为1 的扇形面积之和为211=22ππ⨯⨯ ,由几何体概型概率计算公式可知1122,1342n n m m ππ=∴=⨯⨯,故答案为12nm. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.17.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m 的范围【详解】由题意知两个正数xy 满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查 解析:94m ≤【解析】 【分析】由题意将4x y +=代入14x y+进行恒等变形和拆项后,再利用基本不等式求出它的最小值,根据不等式恒成立求出m 的范围. 【详解】由题意知两个正数x ,y 满足4x y +=,则14559144444x y x y y x x y x y x y +++=+=++≥+=,当4y x x y =时取等号; 14x y ∴+的最小值是94, 不等式14m x y +≥恒成立,94m ∴≤. 故答案为94m ≤. 【点睛】本题考查了利用基本不等式求最值和恒成立问题,利用条件进行整体代换和合理拆项再用基本不等式求最值,注意一正二定三相等的验证.18.【解析】【分析】由题意首先求解底面积然后结合四棱锥的高即可求得四棱锥的体积【详解】由题意可得底面四边形为边长为的正方形其面积顶点到底面四边形的距离为由四棱锥的体积公式可得:【点睛】本题主要考查四棱锥解析:112【解析】 【分析】由题意首先求解底面积,然后结合四棱锥的高即可求得四棱锥的体积. 【详解】由题意可得,底面四边形EFGH 为边长为22的正方形,其面积22122EFGH S ⎛⎫== ⎪ ⎪⎝⎭, 顶点M 到底面四边形EFGH 的距离为12d =, 由四棱锥的体积公式可得:111132212M EFGH V -=⨯⨯=. 【点睛】本题主要考查四棱锥的体积计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.19.【解析】【分析】【详解】根据已知条件去括号得: 解析:60︒【解析】 【分析】 【详解】根据已知条件(2)()2a b a b +⋅-=-,去括号得:222422cos 242a a b b θ+⋅-=+⨯⨯-⨯=-,1cos ,602θθ︒⇒==20.2米【解析】【分析】【详解】如图建立直角坐标系设抛物线方程为将A (2-2)代入得m=-2∴代入B 得故水面宽为米故答案为米考点:抛物线的应用解析:26米 【解析】 【分析】 【详解】如图建立直角坐标系,设抛物线方程为2x my =, 将A (2,-2)代入2x my =, 得m=-2,∴22x y =-,代入B ()0,3x -得0x =故水面宽为考点:抛物线的应用21.【解析】由定义在实数集上的偶函数在区间上是减函数可得函数在区间上是增函数所以由不等式得即或解得或即不等式的解集是;故答案为解析:()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭【解析】由定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,可得函数()f x 在区间()0+∞,上是增函数,所以由不等式()()1ln f f x <得ln 1x >,即ln 1x >或ln 1x <-,解得x e >或10e x <<,即不等式()()1ln f f x <的解集是()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭;故答案为()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭. 22.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1- 解析:-1 【解析】 【分析】由分段函数的解析式先求出f(−2)的值并判定符号,从而可得f(f(−2))的值. 【详解】∵f (x )={1−√x,x ≥0x 2,x <0,−2<0,∴f (−2)=(−2)2=4>0,所以f(f(−2))=f (4)=1−√4=−1,故答案为-1. 【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.23.2n+1【解析】由条件得且所以数列是首项为4公比为2的等比数列则解析:2n+1 【解析】由条件得111112222222111n n n n n n n n a a a b b a a a ++++++++====---,且14b =,所以数列{}n b 是首项为4,公比为2的等比数列,则11422n n n b -+=⋅=.24.【解析】【分析】由三视图知几何体是半个圆锥圆锥的底面半径是1母线长是2得到圆锥的高利用圆锥体积公式得到结果【详解】由三视图知该几何体是半个圆锥圆锥的底面半径是1母线长是2∴圆锥的高是∴几何体的体积是【解析】 【分析】由三视图知几何体是半个圆锥,圆锥的底面半径是1,母线长是2,得到圆锥的高,利用圆锥体积公式得到结果. 【详解】由三视图知该几何体是半个圆锥,圆锥的底面半径是1,母线长是2,=∴几何体的体积是211132π⨯⨯⨯=,【点睛】本题考查由三视图还原几何图形,考查圆锥的体积公式,属于基础题.25.【解析】【分析】首先利用正弦定理将题中的式子化为化简求得利用余弦定理结合题中的条件可以得到可以断定为锐角从而求得进一步求得利用三角形面积公式求得结果【详解】因为结合正弦定理可得可得因为结合余弦定理可【解析】 【分析】首先利用正弦定理将题中的式子化为sin sin sin sin 4sin sin sin B C C B A B C +=,化简求得1sin 2A =,利用余弦定理,结合题中的条件,可以得到2cos 8bc A =,可以断定A 为锐角,从而求得cos A =,进一步求得bc =,利用三角形面积公式求得结果. 【详解】因为sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin 4sin sin sin B C C B A B C +=, 可得1sin 2A =,因为2228b c a +-=, 结合余弦定理2222a b c bccosA =+-,可得2cos 8bc A =,所以A为锐角,且cos 2A =,从而求得3bc =, 所以ABC ∆的面积为111sin 222S bc A ===. 【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30、45、60等特殊角的三角函数值,以便在解题中直接应用.三、解答题 26.(1)a =1,b =2;(2)①当c >2时,解集为{x |2<x <c };②当c <2时,解集为{x |c <x <2};③当c =2时,解集为∅. 【解析】 【分析】(1)根据不等式ax 2﹣3x +6>4的解集,利用根与系数的关系,求得a 、b 的值; (2)把不等式ax 2﹣(ac +b )x +bc <0化为x 2﹣(2+c )x +2c <0,讨论c 的取值,求出对应不等式的解集. 【详解】(1)因为不等式ax 2﹣3x +6>4的解集为{x |x <1,或x >b }, 所以1和b 是方程ax 2﹣3x +2=0的两个实数根,且b >1; 由根与系数的关系,得{1+b =3a 1×b =2a, 解得a =1,b =2;(2)所求不等式ax 2﹣(ac +b )x +bc <0化为x 2﹣(2+c )x +2c <0, 即(x ﹣2)(x ﹣c )<0;①当c >2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x |2<x <c }; ②当c <2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x |c <x <2}; ③当c =2时,不等式(x ﹣2)(x ﹣c )<0的解集为∅. 【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题.27.(1)对称轴方程为()212k x k Z ππ=+∈(2)单调递增区间为[0,]12π和7[,]12ππ【解析】【分析】(1)由二倍角公式和辅助角公式对函数进行整理,可得()sin(2)3f x x π=+,令2()32x k k Z πππ+=+∈即可求出对称轴.(2)由(1)知,令222()232k x k k Z πππππ-+++∈,即可求出函数的单调递增区间,令0k =和1可求得函数在[0,]π上的单调递增区间. 【详解】解:(1)已知2()sin cos f x x x x =+1sin 2cos 2)2x x =+ sin(2)3x π=+,令2()32x k k Z πππ+=+∈,解得:()212k x k Z ππ=+∈, 所以函数()f x 的对称轴方程为()212k x k Z ππ=+∈. (2)由(1)得:令:222()232k x k k Z πππππ-+++∈,整理得:5()1212k x k k Z ππππ-++∈,当0k =和1时, 函数在[0,]π上的单调递增区间为[0,]12π和7[,]12ππ. 【点睛】本题考查了二倍角公式,考查了辅助角公式,考查了三角函数的对称轴求解,考查了三角函数单调区间的求解.本题的关键是对函数解析式的化简.本题的易错点是在求单调区间时,解不等式求错.28.(1)()1,()0)8f x x g x x ==≥;(2)投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元. 【解析】 【分析】(1)投资债券等稳健型产品的收益()f x 与投资额x 成正比,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,用待定系数法求这两种产品的收益和投资的函数关系;(2)由(1)的结论,设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,这时可构造出一个关于收益y 的函数,然后利用求函数最大值的方法进行求解. 【详解】(1)依题意设()1,()f x k x g x k ==,1211(1),(1)82f kg k ====, ()1,()0)8f x x g x x ==≥; (2)设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,1(20)()(20)8y f x g x x =-+=-212)3,0208x =-+≤≤,2,4x ==万元时,收益最大max 3y =万元,20万元资金,投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【点睛】本题考查函数应用题,考查正比例函数、二次函数的最值、待定系数法等基础知识与基本方法,属于中档题.29.(1)0.9(2)0.085,0.125a b ==【解析】试题分析:(Ⅰ)先频数分布表求出课外阅读时间不少于12小时的人数,再由对立事件的频率公式求出一名学生该周课外阅读时间少于12小时的频率;(Ⅱ)结合频数分布表、直方图确定课外阅读时间落在[4,6)、[8,10)的人数为17,求出对应的频率,分别由频率/组距求出a 、b 的值试题解析:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计这名学生该周课外阅读时间少于12小时的概率为0.9 (2)课外阅读时间落在组[4,6)的有17人,频率为0.17, 所以0.170.0852a ===频率组距, 课外阅读时间落在组[8,10)的有25人,频率为0.25, 所以0.250.1252b ===频率组距 考点:频率分布直方图 30.(1)1tan 3cos 2t θθ=+-;(2)6π 【解析】【分析】(1)根据直角三角形的边角关系求出AC 和BC 的值,再求t 关于θ的函数解析式;(2)根据t 的解析式,结合三角函数的性质求出t 的最小值以及对应θ的值.【详解】(Ⅰ)由题意知,AP PB ⊥,2AP =,02πθ<<, 所以2tan PC θ=,2cos AC θ=,122tan BC θ=-, 所以t 关于θ的函数为2122tan 1tan 3242cos 4cos 2AC BC t θθθθ-=+=+=+-; (Ⅱ)由(Ⅰ)知,1tan 2sin 33cos 2cos t θθθθ-=+-=+, 令2sin 0cos y θθ-=>,则22sin 2cos 14y y θθ=++解得32y ,当且仅当1sin ,cos 2θθ= 即6πθ=时,所花时间t 最小.【点睛】本题考查了解三角形的应用问题,也考查了三角函数图象与性质的问题,意在考查学生对这些知识的理解掌握水平.。
郑州市2010-2011高一上期期末数学试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{1,3,5,7,9}A =,{0,3,6,9,12}B =,则N A C B =A .{3,5,7}B .{1,5,7}C .{1,3,9}D .{1,2,3}2.在区间(0,)+∞上不是增函数的是A .2xy =B .2log y x =C .2y x=D .2y x =3.在空间中,下列命题中正确的是A .若两直线a ,b 与直线l 所成的角相等,则a ∥bB .若两直线a ,b 与平面α所成的角相等,则a ∥bC .若直线l 与两平面α,β所成的角都是直角,则α∥βD .若平面γ与两平面α,β所成的二面角角都是直二面角,则α∥β4.若直线(32)(14)80a x a y ++-+=和直线(52)(4)70a x a y -++-=互相垂直,则a 为A .0B .1C .0或1-D .0或15.设函数1221,0(),0x x f x xx -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是A .(1,1)-B .(1,)-+∞C .(,2)(0,)-∞-+∞D .(,1)(1,)-∞-+∞6.两条平行直线1l :3420x y +-=,2l :65ax y +=间的距离等于A .415B .75C .715D .237.函数122()2log f x x x =-的零点所在的大致区间为A .(1,2)B .(2,4)C .(4,8)D .1(,1)48.过点(1,3)P 的圆2240x y x +-=的切线方程为2224正视图侧视图俯视图BAB 1A 1C 1D 1DCA .320x y +-=B .320x y -+=C .340x y -+=D .340x y +-=9.如图,正方体1111D C B A ABCD -中,①1DA 与1BC 平行; ②1DD 与1BC 垂直;③1BC 与AC 所成角为060.以上三个结 论中,正确结论的序号是A .①B .②C .③D .②③10.设3log 2a =,ln 2b =,125c =,则A .a b c <<B .b c a <<C .c a b <<D .c b a <<11.已知一个空间几何体的三视图如图所示,根 据图中标出的尺寸(单位:cm ),可得这个几何 体的体积是A .34cm B .35cm C .36cmD .37cm12.定义在R 上的函数()f x 满足:()f x 的图象关于y 轴对称,并且对任意的1x ,212(,0]()x x x ∈-∞≠, 有2121()(()())0x x f x f x -->.则当*n N ∈时,有A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知两个球的表面积之比为9:4,则这两个球的体积之比为 .14.在空间直角坐标系中,在z 轴上求一点C ,使得点C 到点(1,0,2)A 与点(1,1,1)B 的距 离相等,则点C 的坐标为 .15.以直线34120x y -+=夹在两坐标轴间的线段为直径的圆的方程为 .。
翰林教育 听过了就忘记了,说过了就记住了,做过了就理解了,讲过了就清楚
1 / 10 郑州市高一下期期末备考
一.算法初步 【算法案例】 (08-09)2. 将十进制下的数72转化为八进制下的数为 ( ) A.011(8) B.101(8) C.110(8) D.111(8)
15. 用秦九韶算法计算多项式𝑓(𝑥)=3𝑥6+4𝑥5+5𝑥4+6𝑥3+7𝑥2+8𝑥+1,当𝑥=0.4,求f(x)的值时,需
要运算的乘法和加法总次数为______次。
(09-10)7. 840和1764的最大公约数是 ( ) A.84 B.12 C.168 D.2527
(10-11)1. 18和30的最大公约数是 ( ) A.2 B.15 C.6 D.9
【针对性练习】
【程序语言】 (09-10)3.计算机执行右面的程序后,输出的结果是
A.6,6 B.6,10 C.4,10 D.10,6 (09-10)6.将两个数a=25,b=9交换,使a=9,b=25,下面语句正确一组是( )
【流程图】 (08-09)5. 右图的算法流程图的输出结果是 A.5 B.7 C.9 D.11 翰林教育 听过了就忘记了,说过了就记住了,做过了就理解了,讲过了就清楚
2 / 10 (10-11)6. 右面的程序图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的 ( ) A.x>𝑐 B.c>𝑥 C.c>𝑏 D.b>𝑐
【程序设计】 (08-09)19.给出50个数:1,2,6,24,120,……,其规律是:第1个数是1,第2个数是第1个数乘以2所得的积,第3个数是第2个数乘以3所得的积,第4个数是第3个数乘以4所得的积…,依次类推,要计算这50个数的和,现已给出了该问题算法的程序框图(如图所示), ( I) 请在图中执行框内⑴处和判断框中的⑵处填上合适的语句,使之能完成该题算法功能; (II) 根据程序框图写出程序。
(09-10)20.某次考试,满分100分,按规定:x≥80者为良好,60≤x<80者为及格,小于60者不及格,设计一个当输入一个同学的成绩x时,输出这个同学属于良好、及格还是不及格的算法,并画出程序框图。
二.统计 【数字特征计算】 (08-09)6. 在样本的频率分布直方图中,一共有个n小矩形,若中间某一个小矩形的面积等于其余n-1个小
矩形面积和的14,且样本容量为160,则中间该组的频数是 A.32 B.20 C.40 D.25
(08-09)8.右图是某次歌唱比赛中,七位评委为某位选手打出分数(百分制)的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 A.84,4.84 B.84, 1.6 C.85,1.6 D.85,4
(09-10)4. 下图是2010年元旦举行的校园十佳歌手大赛上,七位评委为某选手打出分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 A.84 B.85 C.86 D.87 翰林教育 听过了就忘记了,说过了就记住了,做过了就理解了,讲过了就清楚
3 / 10 (10-11)3.某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有,4人,80分和75分的各有1人,则该小组成绩的平均数、众数、中位数分别是 ( ) A.85、85、85 B.87、85、86 C.87、85、85 D.87、85、90
【抽样方法】 (08-09)13. 假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第9行第8列的数4开始向右读,请你依次写出最先检测的4颗种子的编号分别是429,786,_______,078.(在横线上填上所缺的种子编号) (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(09-10)5. 某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员 ( ) A.3人 B.4人 C.7人 D.12人
(10-11)2. 某单位有职工52人,现将所有职工随机编号,用系统抽样的方法抽取一个容量为4的样本,已知6号、32号、45号职工在样本中,则样本中还有一个职工的编号是 ( ) A.19 B.20 C.18 D.21
【图表分析】 (09-10)19.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有1000名学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频数分布直方图,解答下列问题: ⑴ 求频率分布表中m,n的值,并补全频数分布直方图; ⑵ 若成绩在65.5—85.5分的学生为三等奖,问该校获得三等奖的学生约为多少人? 翰林教育 听过了就忘记了,说过了就记住了,做过了就理解了,讲过了就清楚
4 / 10 【回归分析】 (10-11)20. 某同学大学毕业后在一家公司上班,工作年限x和年收入y(万元),有以下的统计数据: x 3 4 5 6 y 2.5 3 4 4.5 ⑴ 请画出上表数据的散点图; ⑵ 请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=b̂x+â;
⑶ 请你估计该同学第8年的年收入是多少?
三.概率 【古典概率】 (08-09)10. 质地、形状、大小完全相同的3个白球和2个黑球排成一列,那么恰有2个白球相邻的概率为
A.41 B.31 C.21 D.53
(09-10)8.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为209,则参加联欢会的教师共有 A. 54人 B.66人 C.120人 D.140人
(09-10)12. 有5条长度分别为1,3,5,7,9的线段,从中任意取出3条,则所取3条线段构成三角形的概率是
A.53 B.103 C.52 D. 107 (08-09)21. 从0,1,2,3,4五个数字中,任意有放回地连续抽取三个数字,组成一个三位数 ⑴ 求这个三位数各个数位上的数字完全不同的概率; ⑵ 求这个三位数各个数位上的数字都不含3的概率; ⑶ 求这个三位数各个数位上的数字中3恰好出现1次的概率。
(09-10)21. 有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4. ⑴ 甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率; ⑵ 摸球方法与⑴ 同,若规定:两人摸到的球上所标数字之差的绝对值小于等于1,则甲获胜,否则乙获胜,这样规定公平吗?请说明理由。 翰林教育 听过了就忘记了,说过了就记住了,做过了就理解了,讲过了就清楚
5 / 10 (10-11)21.某校高一(1)班有男同学45名,女同学15名,老师按照分层抽样的方法抽取4人组建一个课外兴趣小组。 ⑴ 求课外兴趣小组中男、女同学的人数; ⑵ 经过一个月的学习,讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出一名同学做实验,该同学做完后,再从小组内剩下的同学中选出一名同学做实验,求选出的两名同学中恰有一名女同学的概率; ⑶ 在⑵的条件下,第一次做实验的同学A得到的实验数据为38,40,41,42,44,第二次做实验的同学B得到的数据为339,40,40,42,44,请问哪位同学的实验更稳定?并说明理由。
【几何概率】 (08-09)如图所示,墙上挂有一边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆
心,半径为a2的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是 A.1−π4 B.π4 C.1−π8 D.与a的取值有关
(09-10)14. 在长为10的线段AB上任取一点M,并以线段AM为边作正方形,则正方形的面积介于36cm2与81cm2之间的概率是__________.
(10-11)15. 若正三角形ABC的内切圆为圆O,则∆ABC内的一点落在圆O外部的概率为___________.
四.三角函数 【公式、定义求值计算】 (08-09)1. 已知角α的终边经过点(√3,1),则角α的最小正值是
A.16π B.13π C.56π D.23π
(09-10)13. sin300°的值是___________. (09-10) 17. 已知角θ的终边上有一点P(−√3,m),且sinθ=√24m,试求sinθ与cosθ的值。
(10-11)8. 一个扇形面积为1,周长为4,则该扇形圆心角的弧度数为 A.2π3 B.2 C.π D.π3