怎样控制隧道的工后沉降
- 格式:doc
- 大小:34.50 KB
- 文档页数:4
隧道施工中的地表沉降控制随着城市化的进一步发展,城市交通建设逐渐被重视,地下交通设施也越来越常见。
地下交通设施的建设需要进行隧道施工,而隧道施工往往会引起地下水位变化、地基变形等问题,导致地表沉降。
因此,隧道施工中的地表沉降控制成为了不可忽视的问题。
地表沉降的影响隧道施工中的地表沉降如果不能得到有效地控制,就会带来很多负面影响,比如:1. 给土地使用带来困难。
地表沉降让原本平整的地面出现了明显的凹陷,影响了该区域土地的使用。
2. 水利工程受到影响。
地表沉降会改变附近水域的水位和水流形态,导致水利工程防洪效果下降。
3. 对建筑物产生影响。
地表沉降会让基础受到压力,使得建筑物的稳定性变差。
4. 道路出现不平整面。
地表沉降会让道路出现明显的凹凸不平,影响行驶安全。
因此,隧道施工中的地表沉降控制必不可少。
地表沉降的原因地表沉降是隧道施工中常见的问题,其原因有很多,下面列举一些:1. 过度开采地下水资源。
隧道施工需要进行地下采暖,这时候水资源会被过度开采,导致地表出现沉降。
2. 岩石垮塌。
隧道施工时,需要对地下进行钻探和挖掘,对地下的稳定性会产生一定的影响,甚至会引起岩石垮塌,导致地表沉降。
3. 地下水位下降。
施工导致的地下水位变化会影响地表沉降。
4. 建筑物扰动。
施工过程中的动态荷载和爆破会对旁边的建筑物产生影响,导致地表沉降。
地表沉降的控制隧道施工中的地表沉降控制是复杂的工序,涉及到多种技术和方法。
这里介绍几种典型的地表沉降控制方法:1. Grouting法。
该方法主要是在地下隧道开挖过程中,通过注入混凝土泥浆使地基得到加固,防止地基流失,从而避免地沉降。
2. 地基加固法。
此方法利用高浓度浆料注入的方式,加固挖掘现场以及周边区域地基,从而达到控制地表沉降的目的。
3. 沉降预测法。
在隧道施工之前,将沿线的装置装好进行沉降数据的实时记录,预测施工过程中的地沉降,从而做出有效的掌握控制措施。
4. 机械法。
该方法主要是利用振动器等机械设备将土壤进行压实,从而达到控制沉降的目的。
隧道支护中的地表沉降控制地下隧道的建设是现代城市发展不可或缺的一部分。
然而,隧道建设中面临的一个主要挑战是地表沉降问题。
随着人们对更高质量、更长寿命的隧道需求的增加,对地表沉降的控制变得尤为重要。
本文将从隧道支护中地表沉降的控制出发,探讨一些常见的措施和技术。
在隧道建设中,地表沉降是由隧道开挖引起的。
隧道开挖会导致地下岩层的失稳,从而引发地表沉降。
所以,在隧道建设中,地表沉降的控制是一个非常重要的问题。
首先,要控制地表沉降,就需要采取有效的隧道支护措施。
合理选择隧道支护系统,是减小地表沉降的关键。
目前常用的隧道支护系统有钢筋混凝土衬砌、钢支撑和浅埋法。
钢筋混凝土衬砌是最常用的隧道支护形式之一,它能够提供良好的强度和刚度,有效保护隧道结构不受外部力的破坏。
钢支撑是另一种常见的隧道支护形式,它主要由钢梁和钢拱构成,能够承受较大的荷载。
而浅埋法则是通过在地下挖掘浅埋的方式来建设隧道,能够减少对地表的干扰。
其次,地表沉降控制还需要进行精确的地表监测。
通过监测地表沉降的情况,可以及时采取措施来控制沉降的速度和幅度。
常用的地表监测技术包括测量方法和遥感方法。
测量方法主要包括经典的测量仪器和现代的全站仪、GPS等设备。
遥感方法利用遥感卫星获取地表图像,通过对比前后的图像变化来监测地表沉降情况。
这些监测技术的应用,可以为地表沉降控制提供科学依据。
此外,合理的施工方法和管理也对地表沉降控制起着重要作用。
在施工过程中,应尽量避免重型机械对地下岩土进行过度挖掘或挤压,以减少沉降的发生。
同时,应合理安排施工工序和施工时间,控制挖掘进度,以避免隧道开挖过快引起的地表沉降问题。
另外,施工期间的地下水管理也是减小地表沉降的重要环节,应采取措施保持地下水的稳定,防止水压和渗流对地下岩土的影响。
最后,对于已经发生的地表沉降,及时采取补偿措施也是必不可少的。
通过地下注浆、加固地基等方法,可以在一定程度上抵消已经发生的地表沉降,保持地表的平稳。
隧道施工中的地表沉降控制与补偿方法隧道工程是现代城市建设的重要组成部分,其建设不仅能缓解交通压力,还能促进经济发展。
然而,隧道施工过程中的地表沉降问题一直备受关注。
地表沉降对城市地下设施、建筑物以及附近居民的安全和舒适产生直接影响。
因此,控制和补偿地表沉降成为了隧道施工中的重要任务。
地表沉降是隧道施工不可避免的副作用,因为在挖掘隧道时,需要通过开挖的方式破坏地下土层结构。
沉降程度与隧道的深度、开挖方式以及地质条件密切相关。
一般来说,隧道越深、采用爆破开挖方式,地表沉降程度就越大。
为了控制地表沉降,隧道施工中采取了多种方法。
首先,选择合适的隧道开挖方式对于控制地表沉降至关重要。
对于地质条件较好的地区,可以采用盾构施工方式,减少地表沉降。
盾构施工是通过推进盾构机挖掘土层,然后在后方安装衬砌,不会对地表造成太大的破坏。
其次,对于需要采用传统开挖方式的隧道,可以利用土压平衡控制地表沉降。
土压平衡盾构机在开挖过程中,通过控制螺旋输送机的进出料量,使土层与隧道周围的土体形成平衡,减小地表沉降的影响。
除了控制地表沉降外,还需要补偿地表沉降对城市设施和居民的影响。
一种常用的方法是进行地下管道的重新布置和加固。
在隧道施工前,可以对地下管道进行改线或者增加管壁支撑,以避免管道受到地表沉降的影响。
另外,针对附近建筑物的沉降问题,可以利用压实基槽的方式进行补偿。
压实基槽是在施工前先将地下土体进行压实,然后再施工隧道,在地下压实区域进行浅埋施工,以减小地表沉降对建筑物的影响。
此外,一种较新的地表沉降控制与补偿方法是应用地下连续墙技术。
地下连续墙是指通过挖掘连续的深井,然后在井中灌入钢筋混凝土,形成承重连续墙。
这种技术可以有效地控制地表沉降,并且可以在挖掘井后继续施工。
地下连续墙技术不仅可以用于隧道施工,还可以用于保护附近的建筑物和地下管道。
综上所述,隧道施工中的地表沉降控制与补偿方法是确保隧道施工安全和环境保护的重要手段。
一种盾构隧道施工地表沉降精准控制的方法随着城市的不断发展,交通建设的需求也越来越大。
为了满足人们对于交通的需求,盾构隧道作为一种重要的交通建设方式,得到了广泛的应用。
然而,在盾构隧道的施工过程中,地表沉降问题一直是一个不容忽视的难题。
如果沉降控制不精准,就会对周围的建筑物和地下管线产生不良影响,甚至引发灾害事故。
因此,如何实现盾构隧道施工地表沉降的精准控制成为了一个亟待解决的问题。
在盾构隧道施工地表沉降精准控制的方法中,最常用的是基于监测与预测的控制方法。
通过对盾构隧道施工过程中的地表沉降进行实时监测,并根据监测数据进行预测和分析,可以及时发现问题并采取相应的措施进行调整和控制。
在盾构隧道施工前,需要进行详细的地质勘探和工程测量,确定地下情况和地表沉降的潜在影响范围。
在施工过程中,需要对盾构机的掘进参数、土壤条件等进行实时监测,获取准确的数据。
在监测数据的基础上,通过数学模型和计算方法进行地表沉降的预测。
根据盾构隧道的施工方案和地质情况,可以建立相应的模型,预测地表沉降的幅度和范围。
同时,还可以通过计算控制点的沉降速度和沉降量,及时预警并调整施工参数。
第三,通过采取合理的施工措施和技术手段,控制地表沉降的幅度和范围。
在盾构隧道施工过程中,可以采用补偿注浆、土体加固、减小掘进参数等方法,减少地表沉降的影响。
同时,还可以通过调整盾构机的掘进速度和方向,避免对地表造成过大的压力和沉降。
监测与预测的控制方法还可以结合其他技术手段,如人工智能、物联网等,实现更加精准的地表沉降控制。
通过人工智能算法的优化和物联网设备的应用,可以对盾构隧道施工过程进行实时监测和预测,提高控制的精度和准确性。
盾构隧道施工地表沉降精准控制是一个复杂而重要的问题。
通过监测与预测的控制方法,可以及时发现问题并采取相应的措施进行调整和控制。
同时,结合其他技术手段的应用,可以进一步提高控制的精度和准确性。
通过不断的研究和实践,相信在未来的盾构隧道施工中,地表沉降控制会得到更好的解决,为城市的发展和交通建设做出更大的贡献。
地铁浅埋暗挖隧道地层沉降因素及控制对策地铁是现代城市交通工具的代表之一,它不仅便捷,而且节省时间,受到了广大市民的欢迎和喜爱。
地铁建设需要在地下挖掘隧道,这种浅埋暗挖的方法对地层沉降有着显著的影响。
本文将讨论地铁浅埋暗挖隧道地层沉降因素及控制对策。
一、地铁浅埋暗挖隧道的地层沉降因素1.构造裂隙地壳中存在许多构造裂隙,这些裂隙会在地铁浅埋暗挖隧道过程中引起沉降。
由于地铁隧道穿过了许多构造裂隙,裂隙中的岩石容易破碎和变形,从而导致地层沉降。
2.土壤性质地铁建设的过程中,需要挖掘和开挖土壤,因此,土壤性质对地铁建设的影响非常大。
一般来说,软黏土和淤泥是导致地层沉降的主要土壤类型。
当地铁通过这些土层时,土壤会被挤压和变形,随着时间的推移,地层沉降会越来越明显。
3.水位变化地下水位的变化也会对地层沉降造成影响。
如果地铁穿过含有高水位的土壤层,那么地铁建设过程中,需要采用排水措施,以保证施工过程中的安全。
如果排水不当,水压过大会导致地层沉降,而且还可能导致隧道的变形和破坏。
二、地铁浅埋暗挖隧道地层沉降控制对策1.预测地层沉降在进行地铁建设之前,必须首先预测地层沉降情况。
可以使用数值模型来模拟和预测地层沉降,评估地下建筑物可能引起的地层沉降,从而采取相应的措施来控制地层沉降。
2.地层加固对于地铁经过的土地层,可以采取加固措施,如注浆等,以保证隧道建设过程中的稳定性。
可以使用高分子灌浆剂、水泥浆、珍珠岩等材料对地下土层进行加固。
3.监测地层变形在地铁建设过程中,需要对隧道周围的土地进行实时监测,以便及时发现地层变形的情况并采取相应的措施。
可以使用传感器等设备进行监测。
4.合理排水通过合理的排水控制,可以减少因水压过大而导致的地层沉降,从而保证地下建筑物的安全。
采用排泥管、泥水分离设备等措施可以有效地控制地下水位。
总之,地铁浅埋暗挖隧道施工过程中,地层沉降是一个非常重要的问题。
针对上述因素,采取控制对策可以有效地避免地层沉降,从而保证地铁建设过程的安全和稳定。
地铁隧道施工中的地面沉降影响分析与控制地铁隧道施工是现代城市建设中一项重要而复杂的工程。
隧道施工过程中的地面沉降问题一直备受关注,因为地面沉降对于城市的稳定性、安全性以及地下管道等基础设施的影响不容忽视。
本文将从地面沉降的影响机理、分析方法以及控制措施等方面进行探讨。
地面沉降的影响机理主要与隧道开挖所引起的土体变形有关。
隧道开挖会导致地下土体的应力重分布,造成土体的加固、排水能力下降,从而导致地面沉降。
此外,施工期间的振动、地下水位变化等因素也会对地面沉降产生影响。
为了全面评估地面沉降的影响,需要进行综合性的地质勘探及隧道工程参数的测量和分析。
分析地面沉降的影响,需要从建筑物、地下管线及地表设施等方面进行综合考虑。
首先,对于地铁沿线的建筑物而言,地面沉降可能会导致其结构的破坏,特别是老旧建筑物更容易受到影响。
因此,在施工前需要对沿线建筑物进行详细的结构安全评估,以确定其是否需要进行加固或者拆除重建。
其次,地下管线也是受地面沉降影响的重要对象。
地铁隧道施工可能会对地下管线造成挤压、位移等影响,从而影响管线的正常运行。
为了保证地下管线的安全运行,我们需要在施工前进行管道的定位、检测以及加固,以降低地面沉降对其的影响。
另外,地面沉降还可能对地表设施造成影响,如道路、桥梁等。
沉降导致的地表变形可能破坏道路的平整性,影响交通的通行。
因此,在施工前需要进行道路的检测和评估,并采取适当的措施来保证道路的安全和顺畅。
为了控制地面沉降的影响,在隧道施工过程中,我们可以采取多种技术措施。
首先,合理选择施工方法和工艺,以减小地面沉降的发生。
例如,可以采用盾构机等地铁隧道施工专用设备进行施工,减少地面开挖量和振动。
其次,需要加强监测和测量工作,对地面沉降进行实时的监控和分析。
通过监测数据的收集与分析,可以及时发现地面沉降的异常情况,并采取相应的措施进行调整和修正。
此外,在地铁隧道施工中,还需要进行土体加固和排水处理工作,以提高土体的稳定性和排水能力,减小地面沉降的发生。
浅埋暗挖法隧道施工引起地面沉降的原因及控制措施本文整理分析了浅埋暗挖法隧道出现地表沉降的原因,并就这些原因提出了切实可行的控制措施,供浅埋暗挖法隧道施工控制地表沉降进行参考。
标签:浅埋暗挖;隧道; 沉降控制1 引言在我们国家,山区占了国土面积的大部分,在进行基础建设铁路,公路的修筑的时候,经常需要修筑隧道。
隧道修筑过程中,随着地层物质被挖出,自洞室临空面向四周一定范围内地层应力场也将发生调整,地表则必将发生或大或小的沉降。
对城市来说,过大的地面沉降和地层变位将直接危及地面建筑物的正常使用,进而危及施工安全,因此施工中必须对有害沉降进行控制。
本文分析了引起浅埋暗挖隧道沉降的主要因素,提出控制地层变形和地表沉降可以采取的对策和措施。
以供暗挖隧道参考。
2 沉降原因浅埋暗挖法隧道施工造成地面沉降的原因主要有以下几个方面:2.1 地下水的影响根据经典土力学理论,天然土体一般是由矿物颗粒组成骨架体,再由孔隙水和气填充骨架而组成三相体系。
土颗粒的压缩性很小,一般认为是不可压缩的,。
因此,土体的变形是孔隙流体的流失及气体体积的减小、颗粒重新排列、粒间间距缩短、骨架体发生错动的结果。
随着隧道的开挖引起地下水的流失, 颗粒重新排列,在宏观上的表现就是地层出现沉降。
2.2地层上覆体特性的影响上覆体本身力学特性对沉降也有比较大的影响。
有些土如枯土、粉质枯土及强风化泥质粉砂岩等一些土的承载能力差,无法形成自然载拱;而有些如硬质岩、极硬质岩可以形成自然拱。
能否形成自然拱,成拱的质量如何,对于地表出现的沉降有很大的影响。
2.3地层应力的影响隧道开挖的过程也是地层内应力重新分布的过程。
隧道开挖形成空洞,周围会产生急剧的变形与应力重新分配与调整的一个过程,应力的重新分布改变了土体颗粒的流动方向,从而引起隧道周围一定范围内土体产生一定量的移动,而引起地面沉降。
2.4爆破施工的影响由于地质条件的复杂多变,各段的地质条件不同,部分施工段可以进行机械挖掘,但有部分施工段需要爆破松动。
地铁浅埋暗挖隧道地层沉降因素及控制对策随着城市交通的发展,地铁成为现代城市中不可或缺的交通方式。
而地铁建设中最为复杂的工程之一就是地铁浅埋暗挖隧道。
在地铁建设过程中,地层沉降是一个重要的问题,它不仅关系到地铁建设的安全和稳定,还会对周边环境和建筑物造成影响。
研究地铁浅埋暗挖隧道地层沉降因素及控制对策显得十分重要。
地铁浅埋暗挖隧道地层沉降因素主要包括地质条件、暗挖施工方式、地下水、建筑物及设施等因素。
首先是地质条件,地质条件对地层沉降有着直接的影响,例如地质构造、地层岩性、地下水情况等都会影响地层的承载能力和稳定性。
其次是暗挖施工方式,挖掘方式的选择会直接影响地层的沉降情况,不同的挖掘方式对地层的影响也不同。
再者是地下水,地下水位的变化会对地层稳定性产生影响,尤其是在暗挖隧道时,当地下水位下降会导致地层沉降。
最后是周边建筑物及设施,地铁建设会对周边建筑物和设施造成一定的影响,尤其是在地层沉降较大时可能会引起周边建筑物的裂隙等问题。
针对以上地层沉降因素,我们需要采取相应的控制对策。
首先是对地质条件的控制,需要在地铁建设前进行详细的地质勘察和分析,充分了解地质情况,根据地质情况设计合理的地铁线路和施工方案。
其次是对暗挖施工方式的控制,选择适合地质条件的挖掘方式,并且在挖掘过程中采取相应的支护措施,保证挖掘过程中地层的稳定性。
再者是地下水的控制,需要合理的控制地下水位的变化,特别是在暗挖隧道时,要加强地下水的排水工作,避免地下水位下降带来的地层沉降问题。
最后是对周边建筑物及设施的控制,地铁建设前需要对周边建筑物和设施进行详细的评估和加固工作,保证地铁建设过程中对周边建筑物和设施的影响尽量降到最低。
除了以上的控制对策,我们还可以采取其他一些措施来减小地层沉降对周边环境和建筑物的影响。
在地铁建设过程中加强监测工作,对地层的沉降情况进行实时监测,并根据监测数据及时调整施工方案,保证地层沉降在可控范围内。
可以采取地铁隧道盾构施工、压浆注浆技术、地下水位监测和调控技术等先进技术来控制地层沉降的影响。
隧道工程中的地面沉降控制技术隧道工程在现代城市建设中起着重要的作用。
而地面沉降是隧道施工过程中不可避免的问题之一。
隧道工程施工过程中,对地下管线、建筑物、道路和地质环境都会产生一定的影响。
因此,随着城市化进程的不断加快,地面沉降控制技术也越来越受到人们的关注。
一、地面沉降的原因在了解地面沉降控制技术之前,我们首先需要了解导致地面沉降的原因。
地面沉降主要有以下几个原因:1. 地下挖掘工作:隧道施工过程中,由于地下开挖工作的进行,土体会受到压缩和位移的影响,从而导致地面沉降。
2. 污染物排放:隧道施工过程中会产生大量的污染物,这些污染物会对土体的物理和化学性质产生影响,导致土体的稳定性下降,进而引起地面沉降。
3. 地下水位变化:地下水位的变化对土体的稳定性和压实度都会产生重要影响。
因此,当隧道施工过程中需要降低地下水位时,地面沉降是不可避免的。
二、地面沉降控制技术为了尽量减少地面沉降对周围环境的影响,隧道工程中采取了多种地面沉降控制技术。
1. 预应力绷筋技术:预应力绷筋技术是一种常用的地面沉降控制技术。
通过在隧道周围埋设预应力钢筋,在施工过程中对钢筋进行预张力,使之产生良好的牵引力,从而抵消地面沉降的压缩效应。
2. 地下连续墙技术:地下连续墙技术是一种有效控制地面沉降的技术。
通过在隧道两侧的土体中挖掘成连续墙,以增加土体的抗压强度,从而减少地面沉降的发生。
3. 土体注浆技术:土体注浆技术是一种常用的地面沉降控制技术。
通过在隧道周围的土体中注入适量的浆液,以填充土体间的孔隙,提高土体的稳定性和密实度,从而减少地面沉降的程度。
4. 振动监测技术:振动监测技术是一种用于控制地面沉降的技术。
通过在隧道周围的建筑物、道路和地下管线等重要设施上安装振动传感器,实时对振动的变化进行监测和分析,从而及时采取相应措施,减少地面沉降的不良影响。
三、地面沉降控制技术的应用隧道工程中的地面沉降控制技术具有广泛的应用价值。
无论是山区隧道、城市地铁还是高速公路隧道,都可以借助这些技术来有效控制地面沉降。
隧道工程地表沉降过大应急预案一、预防措施1、详细研究和分析地质勘察资料,超前预判可能发生塌陷的位置,提前采取应对措施。
2、对于盾构始发端头及隧道埋深较浅等易发生地面坍塌的部位必须提前进行旋喷或注浆进行加固,提高土体自稳能力。
3、水是造成地面塌陷风险的重要因素,对有可能发生塌陷的部位,一定要做好注浆止水措施,必要时注双液浆进行堵水。
4、始发端头,一定要采用打设垂直探孔和水平探孔的方法,对加固情况进行检查和验证,确保加固效果。
如果效果不理想,必须进行二次补强,直至达到预期的目的。
5、采用土压平衡模式时,控制好土仓压力和注浆压力,始终保持盾构机处于良好的姿态,尽量减少对上层土体的扰动,避免破坏覆土稳定,导致塌陷事故的发生。
二、处置措施1、当隧道附近地面沉降过大时,在沉降及周围加密布置监测点,每半个小时监测一次,直至确定地面沉降稳定才可放缓监测频率。
隧道内也要加强二次注浆质量,必要时要注双液浆。
2、当隧道附近地面发生坍塌时,在没有人员伤亡的情况下,立即用低标号的砼进行灌注,并在塌方处及周围加密布置监测点,每半个小时监测一次,直至确定地面沉降稳定才可放缓监测频率。
如灌注完砼后地面沉降仍然显著,则要及时在地面钻孔进行注浆,同时隧道内也要加强二次注浆质量,必要时要注双液浆。
在进行地面注浆时,为防止浆液凝固困住盾构机,注浆时盾构机要缓慢运动,同时还要通过盾构机超前注浆孔及盾体上的注浆孔向盾体外侧注入膨润土,使盾构机周围被膨润土包围,形成蛋糕状,确保盾构机能正常掘进。
3、塌陷处理过程中,抢险人员随时观察塌方情况,防止塌方伤人。
必须确保通讯畅通,并对处理情况、围岩变化情况、人员及机械设备情况等及时上报,在抢险有困难或需要救援时以便领导决策,及时提供救援。
三、确保文明施工的技术组织措施(一)管理制度1、建立以项目经理为组长的文明工地领导小组。
2、建立文明施工的规章制度,责任到班组,落实到人。
3、工地生产班组健全特殊工种工人持证上岗。
对此危害做出正确的评估。
(2)在施工期间,施工人员需要保证施工表面开挖面的稳定,土压力本身是一个会变动的动态平衡。
容易受到设备推进以及相关施工法的影响。
由于此次隧道施工采用的盾构法,盾构法在对土体进行操作时需要通过设备对土体进行相关的压力推进,同时需要利用盾构设备对前方的土体进行一个相对平衡的施工操作,保证施36|CHINA HOUSING FACILITIES372018.06|中,首先宝能够根据现场的实际情况确定或是预测处精确的土压力,通过螺旋输送机旋转的速度调节土体的压力值趋近稳定。
盾构机在对隧道进行施工时尾部会产生一定的运转。
在利用盾构机尾需要严格控制注浆的压力,时刻关注注浆量。
由于在现场中注浆量会实际操作中需要的注浆量通常都会比预测的注浆量多。
如果隧道现场么注浆量就需要再次进行一个对于增加量的计算。
所以预测的理论注好的预测效果,施工人员还是需要在实际的注浆操作中通过实际的操观察注浆压力值判断注浆量是否达到现场实际需要的标准,倘若注浆时候的注浆已经达到了实际的需求标准,施工人员可以停止注浆。
否有高层建筑。
而实际隧道工程地面是否存在高层建筑对于施工是存存在,那么施工人员就可以通过采用土压平衡方式进行掘进,只要能间严格监测好地表沉降的数值,保证地表一直处在合理的范围内,该沉降控制网,监测好每一段隧道的沉降量,并对周边的环境、土层、构监测点都需要进行数据分析,将地面变形控制在地表的-30以及地求,施工人员要及时对隧道现场进行调整,找出原因,并做好应对措施。
数进行优化,保证开挖面的稳定,以及周边环境的稳定。
在挖掘中倘可以是泡沫、聚合物等膨润土对该层进行改良、填充。
在施工过程中,洞口不会由于盾构机的来回进出出现洞口坍塌等情况,在盾构机工作,保证用低速转动进行挖掘,避免对隧道造成过大的伤害。
本身对盾构机并不会产约束力,这个时候施工人员很难控制好盾构的轨迹的现象。
这个时候操作人员要能够控制好盾构机的挖掘速度,将急。
隧道沉降处置方案模板1. 项目背景随着城市化进程的加速和交通运输建设的不断发展,越来越多的城市开始建设地下隧道以缓解道路交通压力,提高城市交通效率。
然而,在隧道建设过程中,由于地质条件、施工技术、设计计划等因素的影响,可能会出现隧道沉降等问题。
因此,为保证隧道的安全及运营能力,需要制定适当的隧道沉降处置方案。
2. 隧道沉降处置方案制定流程2.1 阶段一:问题发现及报告首先,需要进行隧道沉降问题的发现和报告。
对于已经通车的隧道,可以通过长期巡查和常规检测等方式发现沉降问题。
对于正在建设的隧道,需要在施工中进行实时监测以及结构安全评估等工作,及时报告沉降问题。
2.2 阶段二:沉降问题诊断在收到沉降问题报告后,需要对隧道沉降原因进行分析和诊断。
一般可分为以下几种因素导致的沉降:地质因素、设计因素、施工因素、物理因素等。
需要进行综合分析,确定具体原因。
2.3 阶段三:处置方案制定根据沉降问题的具体原因,制定出相应的处置方案。
常用的处置方案包括:地面加固、隧道压岁、地下加固、岩层加固、支撑结构加固等。
2.4 阶段四:方案执行根据制定的隧道沉降处置方案进行实施。
在实施过程中还需要进行实时监测和评估,及时调整处置措施并形成相关的技术文件以备以后参考。
3. 隧道沉降处置方案模板3.1 问题发现及报告在此处列出发现隧道沉降问题的时间、地点等基本信息。
3.2 沉降问题诊断在此处分析隧道沉降问题的具体原因,并进行诊断。
3.3 处置方案制定在此处制定隧道沉降处置方案。
包括处置措施、施工计划、技术指标要求等。
3.4 方案执行在此处记录隧道沉降处置方案的实施情况。
包括监测数据、实施措施、效果评估等。
4. 隧道沉降处置方案示例4.1 问题发现及报告时间:2021年5月1日地点:某城市某隧道4.2 沉降问题诊断通过现场实地勘察和沉降监测数据分析,诊断出该隧道沉降问题主要由地质因素引起,存在地层层理倾斜及地下水抽降等因素。
4.3 处置方案制定根据诊断结果,综合确定下列处置措施:1.加固地面,利用预应力锚杆、优质混凝土等方式加固地面,提升地面整体承载力。
暗挖隧道穿路路面沉降专项应对方案暗挖隧道穿路路面沉降是指在隧道施工过程中,由于地下水位的改变或施工挖掘引起的地下水脱空现象,导致地表路面发生下沉的情况。
这种情况会给交通运输和城市发展带来巨大的影响和危害。
因此,必须制定专项对策来应对暗挖隧道穿路路面沉降问题。
1.预防措施:隧道施工前应进行充分的地质勘察和水文地质调查,以了解地下水位和地层情况,预测可能出现的暗挖隧道穿路路面沉降风险。
根据调查结果,采取适当的防控措施,包括:-构筑临时马蹄槽或围堰,防止地下水流失和回灌;-使用泥浆平衡盾构机进行掘进,保持地下水位相对稳定;-采用张拉预应力或喷射注浆技术,加固地下岩土和路面。
2.监测与预警系统:建立全面的监测与预警系统,对隧道施工过程中的地下水位、地表沉降等进行实时监测和分析。
该系统应包括:-地下水位监测系统:安装水位测量仪器,实时监测地下水位的变化;-地表沉降监测系统:采用测量仪器对地表沉降进行定期和实时监测;-数据分析与处理系统:对监测数据进行实时分析和处理,及时发出预警信号。
3.施工控制:对隧道施工过程中出现的地下水位变化和地表沉降情况进行有效的控制,包括:-合理安排挖掘顺序和施工进度,避免过度挖掘导致地下水位下降或地表沉降;-采用适当的降水井、抽水泵等设备,控制地下水位的变化;-在地表沉降较大的区域,加大支护措施,如加固地基、搭建临时桥梁等。
4.应急预案:制定完善的应急预案,对可能发生的暗挖隧道穿路路面沉降问题进行应急处理-组织专业人员进行现场调查和评估,判定沉降情况的严重程度;-采取紧急措施保护周边建筑物和交通设施的安全;-进行彻底的修复和恢复工作,尽快恢复交通运输和城市发展的正常秩序。
总之,针对暗挖隧道穿路路面沉降问题,应制定预防、监测、施工控制和应急预案等方案,旨在保障交通运输和城市发展的顺利进行,确保施工过程中的地表路面不发生下沉现象,最大限度地减少潜在的安全隐患和经济损失。
地铁隧道施工中的地面沉降控制技术随着城市人口的增加和交通需求的不断增长,地铁建设成为现代城市发展中的重要组成部分。
然而,在地铁隧道施工过程中,地面沉降成为一个值得关注的问题。
地面沉降可能对周围建筑物和地下管线造成损害,因此对于地面沉降的控制技术就显得尤为重要。
一、地面沉降的原因地铁隧道施工过程中,地面沉降主要由以下几个因素引起:1. 操作导致的沉降:施工人员在地下进行钻探、开挖等作业时,地面土壤受到破坏而引起沉降。
2. 液化导致的沉降:地铁隧道施工过程中使用的泥浆、水泥等材料可能导致地下土壤液化,进而引起地面沉降。
3. 土体位移引起的沉降:地铁隧道施工时,如果相邻区域的土体发生位移,也会导致地面沉降。
二、地面沉降的影响1. 对地下管线的影响:地面沉降可能会对地下的管线造成压力,导致破裂或渗漏,进而引起供水或供电中断。
2. 对周围建筑物的影响:地面沉降可能会导致周围建筑物的结构受损,甚至造成倒塌,对人员和财产安全带来威胁。
3. 对环境的影响:地面沉降可能导致地下水位降低,进而引发水资源紧缺等环境问题。
三、地面沉降控制技术为了有效控制地铁隧道施工中地面沉降的影响,工程师们开发出了一系列的地面沉降控制技术。
1. 预应力锚杆技术:通过预应力锚杆技术,可以在地下施工过程中对地面进行支撑,减少地面沉降的幅度。
2. 土体加固技术:通过注浆、固化剂等材料对地下土体进行加固,提高土壤的承载力,减小地面沉降的风险。
3. 监测与预警系统:设置地面沉降监测仪器,及时监测地下施工过程中地面沉降的情况,并通过预警系统提前采取相应的措施。
4. 土体处理技术:地下施工过程中,对于敏感地区可以采用土体处理技术,如冻结法、激光法等,来减小地下施工对地面沉降的影响。
5. 工程措施:设计合理的工程措施,如分段开挖、人工控制、合理施工序列等,可以有效控制地面沉降的幅度。
四、结论地铁隧道施工中的地面沉降控制技术是确保地铁建设安全与周围环境及设施的保护的关键。
地铁浅埋暗挖隧道地层沉降因素及控制对策随着城市的发展,地铁作为重要的城市轨道交通方式已经广泛应用于各大城市。
然而,在建设地铁时,浅埋暗挖隧道地层沉降是其面临的一个重要问题,不仅会对地面建筑、道路和地下管线等造成影响,同时也会影响地铁运营的安全和舒适性。
因此,控制地铁浅埋暗挖隧道地层沉降是建设地铁必须要考虑的一个重要问题。
地铁工程浅埋暗挖隧道地层沉降受多种因素的影响,主要包括以下几个方面。
1、地质条件地质条件是地铁浅埋暗挖隧道地层沉降的决定性因素,包括土层结构、土壤的压缩性和水文地质条件等。
一般来说,地质条件越差,地层沉降的影响就越大。
2、地面建筑物和管线的状态地面建筑物和管线的状态也会对地铁浅埋暗挖隧道地层沉降产生影响,如果地下管线和建筑物的材料较脆弱,强度低,那么在地层沉降的情况下,就可能出现破坏,因此需要重视。
3、地铁隧道结构地铁隧道结构的建造方式和结构设计也会影响地层沉降。
若隧道支护强度过低,隧道周围土体失去支撑,就会导致地层沉降。
所以,在设计地铁隧道时,也要考虑隧道结构的支撑和强度。
1、地质调查和分析在地铁工程建设开始之前,必须对工程所在地区的地质条件进行详细的调查和分析,并针对地质条件不同地区采用相应的地层支护技术,以此来控制地层沉降。
2、减少地层变形为了减少地层变形,可以采用衬砌加固的方式,在隧道周围的土体中安装衬砌,并组成一个整体,这样可以减少隧道周围土体的变形程度,降低地层沉降的影响。
3、加强隧道支撑和加固在地铁隧道建造过程中,如果发现地层沉降过多,就可以采取隧道锚杆加固技术,通过加固措施以提高隧道的承载力,降低地层沉降的影响。
4、在隧道建设过程中减少地下水位在地铁建设过程中,如果地下水位高于需要的隧道进入的位置,那么就需要降低地下水位,以此来降低地层沉降的影响。
可以通过注水、加固隔水工程、打钻孔减压等方式来实现降低地下水位的目的。
总之,为了控制地铁浅埋暗挖隧道地层沉降,必须从地质调查、支护设计、水文地质、管线和建筑物状态等多个方面进行全面考虑和控制,从而减少地层沉降的影响,确保地铁隧道工程的安全和顺利实施。
地铁浅埋暗挖隧道地层沉降因素及控制对策随着城市的不断扩张,地铁系统的建设成为现代城市发展不可或缺的组成部分。
地铁浅埋暗挖隧道是地铁建设中的重要环节,然而在地下复杂的地层环境中进行暗挖隧道工程往往会导致地层沉降问题,给城市地下设施和建筑物造成不利影响。
研究地铁浅埋暗挖隧道地层沉降因素及控制对策显得尤为重要。
本文将围绕这一主题展开讨论。
1. 地质条件在地铁建设中,地下地质条件是直接影响地层沉降的主要因素之一。
地层的不均匀性、岩土层的粘聚力和内摩擦角等参数会影响挖掘引起的地层位移和沉降,导致地下管线和建筑物的变形和破坏。
2. 地下水位地下水位的变化也是导致地层沉降的重要因素。
在挖掘隧道的过程中,地下水位的变化会导致地层的松散度和密实度发生改变,进而引起地层沉降。
3. 施工方式地铁浅埋暗挖隧道的施工方式对地层沉降也有很大影响。
不同的施工方式会产生不同的地下应力分布,从而导致地层的不均匀沉降。
4. 城市地下管线和建筑物在城市地下存在大量的管线和建筑物,地铁建设中的挖掘会引起地下管线和建筑物的受力状态发生改变,导致地层沉降。
5. 地铁运营地铁的运营也会对地层沉降产生影响。
地下挖掘后的地下空洞会影响地下水流动,从而导致地层沉降。
地铁浅埋暗挖隧道地层沉降是一个受多种因素综合影响的复杂问题,需要进行综合分析和研究,以找出合理的控制对策。
1. 预测和监测在地铁浅埋暗挖隧道施工前,需要进行地下地质勘察和预测,以了解地下地质条件,预测地层沉降情况。
隧道施工过程中,需要对地层沉降进行实时监测,以及时了解地层变形情况,为采取控制措施提供依据。
2. 合理的施工工艺在地铁浅埋暗挖隧道施工中,需要根据地下地质条件选择合适的施工方式和工艺,避免由于施工引起的地层沉降。
可以采取分段施工、局部加固等措施,降低地层沉降风险。
合理控制地下水位变化,包括排水、注水等措施,可以减少地下水位变化对地层沉降的影响。
在地铁施工中,需要对地下管线和建筑物进行合理的防护和支护,避免施工对其产生影响,减少地层沉降。
地铁浅埋暗挖隧道地层沉降因素及控制对策地铁浅埋暗挖隧道是城市地铁建设的重要组成部分,但在其施工和使用过程中,地层沉降因素对城市地面和地下设施造成了不小的影响。
对地铁浅埋暗挖隧道地层沉降因素及控制对策进行研究和探讨,对于确保地铁施工和使用的安全和稳定具有重要意义。
本文将就地铁浅埋暗挖隧道地层沉降因素及控制对策进行详细的阐述。
1. 地质构造地铁浅埋暗挖隧道地层沉降的首要因素之一是地质构造。
城市地下的地质结构多种复杂,包括岩石、土层、水系等,这些地质构造对地铁浅埋暗挖隧道的施工和使用过程都会产生一定的影响。
地质构造的不同会导致地铁隧道地层沉降的不同情况,需要在隧道设计和施工过程中加以考虑和控制。
2. 地下水位地下水位是影响地铁浅埋暗挖隧道地层沉降的重要因素之一。
地下水位的变化会直接影响地铁隧道周围的土层的稳定性,进而导致地层沉降的变化。
地下水位的波动引起了土层的液化和压缩,使得地铁隧道周围的地层易产生沉降,需要采取一定的控制措施。
3. 施工方法地铁浅埋暗挖隧道的施工方法也是影响地层沉降的重要因素之一。
不同的施工方法对地下土层的影响不同,合理选择施工方法可以有效地降低地层沉降的发生。
常用的地铁隧道施工方法包括盾构法、顶管法、开挖法等,每种施工方法都有其适用的地质条件和特点,需要结合具体情况进行选择。
1. 地质勘测和分析在地铁浅埋暗挖隧道施工前,需要进行地质勘测和分析,了解地质构造、地下水位、土层性质等信息,从而科学地选择施工方法和采取相应的控制措施。
地质勘测和分析是地铁浅埋暗挖隧道地层沉降控制的第一步,对有效地降低地层沉降具有重要意义。
3. 地铁设计与运行控制地铁浅埋暗挖隧道的设计和运行控制也是降低地层沉降的重要手段。
在地铁设计中,需要考虑地质条件、地下水位等因素,加强地层沉降的分析和预测,从而减少地铁运行对地层沉降的影响。
在地铁运行过程中,需要加强监测和管理,及时发现和处理地层沉降问题,保障地铁的安全和稳定运行。
地铁浅埋暗挖隧道地层沉降因素及控制对策地铁浅埋暗挖隧道是城市地下交通的重要组成部分,但其施工对周围地层造成的沉降问题一直是各城市工程师关注的焦点。
地层沉降可能导致地面建筑物、路面和管线等的损坏和安全隐患,甚至使地铁线路陷入危险状态,因此,必须采取措施保证地层沉降的控制。
1. 地层沉降因素地铁浅埋暗挖隧道在施工过程中,会对周围地层物理力学性质产生破坏,使得地层产生相应的沉降。
主要的地层沉降因素包括:(1)超前地应力影响。
施工过程中,顶部人工支护结构的阻碍加剧了地应力的超前范围,导致地应力范围扩大,形成较大的应力集中区域。
(2)土体变形和固结。
顶部人工支护结构能够稳定顶部土体,并分散较小的固体应力,但仍会使土体在轴向方向上产生较大的变形和固结,进而导致地层沉降。
(3)地下水位的变化。
地铁施工过程中,会对周边土体的渗透性产生影响,导致地下水位的剧烈变化,水压力的变化会进一步恶化地层的力学性质。
(4)上部建筑物的重力荷载。
地铁线路通行时的振动,可能会在邻近的建筑物中产生共振,在地下隧道周围的桩基中产生重大沉降。
2. 地层沉降控制对策为控制地层沉降,必须从施工方式、土体性质、地下水位控制、结构设计等方面着手,采取相应的控制对策。
(1)施工方式施工方式是地层沉降的主要因素,选择合适的施工方式可以有效地控制地层沉降。
常见的施工方式包括:① 地面开挖法。
地面开挖法可以减少超前地应力的影响,但存在操作空间约束的问题。
③ 盾构法。
盾构法不会对周围土体产生影响,但是需要大面积的异常排空和土体浪涌处理。
(2)土体性质为了控制地层沉降,还应保持土体的良好物理力学性质,采取措施减小固结度和剪切强度等。
可采取的措施包括:① 加入补充剂。
可以用于填充包括细粒土、淤泥等的图吉土(弱固土)或砂、石灰石等的破碎岩石。
② 掺入利图敛(Litecrete)泡沫混凝土。
这种泡沫混凝土重量轻,具有较低的强度和刚度,可以在保持孔隙度的同时提高土体的抗剪力。
地铁浅埋暗挖隧道地层沉降因素及控制对策随着城市化进程的加快,地铁建设越来越成为城市交通建设的重点。
而地铁的建设离不开地下隧道的开挖和施工,而浅埋暗挖技术是在城市地下建设中得到普遍应用的一种技术。
但是,由于地铁隧道施工引起的地层沉降问题已经成为制约其发展的重要因素之一。
本文分析了地铁浅埋暗挖隧道地层沉降的因素,并提出了控制对策。
一、影响地层沉降的因素1、隧道开挖的深度地铁浅埋隧道施工,开挖深度较浅,一般在10~20米左右。
如果开挖的深度过大,地层的变化范围就会逐渐扩大,可能会引起地层的塌陷和沉降,导致建筑物产生裂缝等安全问题,需要做好相关的措施。
2、土层的性质和含水量不同土层的性质和含水量会直接影响地层的稳定性和变形规律。
一般来说,含水量较高的土层比含水量较低的土层更容易发生沉降,而且隧道开挖对于弱土层的影响更加明显。
3、地下水位的深度和变化地下水位是地层沉降的重要因素之一,隧道开挖会破坏土层的稳定性,导致裂缝和沉降,而高地下水位可以通过分散土层上部分压而缓解沉降;而当地下水位经过开挖面之后被隔离起来,干燥土层上部分压下降,容易导致地层沉降。
4、施工钻机的种类和施工方式施工钻机的种类和施工方式会直接影响地层的变形规律,不同的钻机和施工方式对地层的影响也不尽相同。
二、控制地层沉降的对策1、地层稳定性预测与监测在施工前,应通过地勘及试验室条件下的模型试验、数值模拟等方式,对不同地层的稳定性进行预测,并对不同地质条件下开挖的隧道沿线地层进行监测,及时发现隧道开挖对地层的影响,及时采取措施。
2、保证隧道的设计合理应根据地质资料,结合工程物理性质及土层沉降模拟计算等作为参考源数据,合理设计隧道的断面形状和开挖的深度,合理选择抗压性能良好的材料,以减少沉降的风险。
3、施工过程管理应根据隧道施工数量及现场管理特点,制定合理、科学的施工管理方案,包括施工区域控制、材料供应、协调进度计划等方面的管理工作。
4、地层加固可采用传统的加固方法,例如土钉加固等,对地层进行加固,以增加地层的稳定性。
隧道沉降控制及观测方案沉降观测点埋设、观测频率按照设计文件及及相关技术指南等要求执行。
(1)沉降监测内容隧道口仰拱、隧道一般地段和不良、复杂地质区段沉降观测。
(2)监测要求垂直、位移监测网均独立建网,网形按照闭合环状、结点或附合水准路线形式。
每个独立监测网应设置不少于3个稳固可靠的基准点,长度4km左右。
基准点选设在变形影响范围以外,也可用即有的控制桩;工作基点约200m一个,设置在比较稳定的位置。
每个观测段落至少有2个工作基点,形成附合或闭合水准线路。
变形观测采用水准测量方法,水准测量的精度±1.0mm,读数取位至0.1mm。
沉降变形观测实行“五固定”原则,固定的监测人员,需培训后方可上岗。
沉降变形监测点布设按照设计要求进行布设,局部可根据现场条件调整。
(3)监测频率隧道主体工程完工后,变形观测期一般不应少于3个月。
观测数据不足或工后沉降评估不能满足设计要求时,应适当延长观测期。
隧道内一般地段沉降观测断面的布设根据地质围岩级别确定,不良和复杂地质区段适当加密布设。
隧道沉降观测精度为±1mm,读数取位至0.1mm。
隧道基础沉降观测频次(4)观测资料整理及提交资料1)观测资料应齐全、详细、规范,符合评估指南及评估单位规定的要求。
2)人工测试数据必须在观测当天及时输入计算机,核对无误后在计算机内备份;自动采集测试数据应及时在计算机内备份。
沉降观测资料及时输入沉降观测管理信息系统,以保证各相关单位在观测过程中时时监控。
观测中有沉降异常情况应及时通知有关各方及时处理。
3)按照提交资料要求及时整理、汇总、分析,按有关规定整编成册。
主要由沉降观测资料表、观测点的平面纵断面和横断面布置图及控制点与观测量、标石标志规格及埋设图、仪器检测及校正资料、观测记录本(薄)、平差计算测量成果质量评定资料等组成。
在线下工程施工结束,无砟轨道铺设前施工单位以书面和电子文件将每个断面(点)的沉降监测数据,整段落报送评估单位。
1
怎样控制客运专线隧道的工后沉降
无砟轨道铁路对线下工程变形有严格的限制要求,在无砟轨道铺设前需要对线下工
程的工后沉降进行预测和评估,确认满足无砟轨道铺设条件后方能进行无砟轨道的铺
设,因此,工后沉降在路基、桥涵、隧道工程中有着重要的意义。
1.工后沉降控制的作用、意义及其必要性
严格控制隧道工后沉降,控制隧道的不均匀沉降,才能保证客运专线铁路轨道高平
顺性。这就要求隧道的设计和施工必须满足隧道的工后沉降小、不均匀沉降小,在动力
作用下的变形小、稳定性高。铁路客运专线时速高,其基础设施标准一般按350 km/h
设计,为确保行车安全与乘客舒适,对线路的平顺性标准要求极高,线路工后沉降量,
特别是无碴轨道线路的工后沉降量,一般应控制在2~3em内,几乎是“零沉降”。
2. 沉降问题现状与加强沉降控制意识
2.1 工后沉降问题现状
(1)现行铁路规范对工后沉降的规定,140km/h铁路一般地段不大于30em,桥台台
尾过渡段不大于15em;160 km/h铁路一般地段不大于20em,桥台台尾过渡段不大于10em;
200 km/h客货共线铁路一般地段不大于15em,桥台台尾过渡段不大于8em。
(2)目前工后沉降控制与应对的主要措施是预留沉落量、补碴抬道。
(3)长期以来,对工后沉降控制除施工预留沉降外,养护维修部门普遍采用补碴抬
道这一简单的措施补救,而施工期间采取技术措施来控制工后沉降的意识则相当淡薄。
2.2 加强沉降控制意识
(1)隧道的长度在整个线路长度中占有一部分比例,隧道的沉降将极大地影响线路
的平顺性。
(2)由于客运专线采用无碴轨道结构,对下沉采用补碴抬道已不可行,必须采用积
2
极的、主动的预控措施,以确保隧道工后沉降控制在允许范围内。
(3)工后沉降控制是一项系统工作,涉及地质勘察、设计、施工、预测、沉降观测
分析、补救等,必须重视每一个环节,进行全过程控制。
3. 控制工后沉降的主要途径
3.1 加强技术培训,明确控制标准
(1)由于承包商对工后沉降控制缺乏经验,可聘请专家现场指导。加强技术培训,
大力培训沉降观测人员、整理分析人员、计算预测人员,从控制方案、预测分析、观测
操作上采取主动预控措施。
(2)制定隧道工后沉降控制标准。工后沉降及沉降差控制标准一般采用四项指标:
工后沉降不大于30mm、不均匀沉降不大于20mm/20m、错台不大于5mm、折角不大于1/1000。
3.2 重视黄土地质核查
(1)加强黄土地质核查,使采取的技术措施达到沉降预测与实际相符。
(2)在选定黄土的物理力学指标时,必须注意其地理环境、地貌单元、微地貌、沉
积年代及成因类型等条件影响所产生的差异性,同时掌握这些自然条件与黄土性质之间
的规律。
(3)黄土分布评价、湿陷性评价、现场浸水试验以及微观电镜分析是了解黄土的重
要手段。
3.3 加强隧道沉降分析与预测
(1)沉降问题包括隧道本身的沉降、隧道周边的压缩变形,各类变形均包括沉降量
与沉降过程两个方面。
(2)工后沉降量的延续时间考虑在实测曲线拟合的基础上外延预估,与计算值对比
分析。实测曲线的拟合常用三点法和双曲线法。为了分析沉降过程,按一维固结理论计
3
算得到瞬时加载的沉降一时间曲线,按加载过程采用沉降量一时间关系进行修正,由修
正后的曲线预估工后沉降及其完成所需的时间。
(3)沉降分析、预测采用半经验半理论模式,根据实测资料不断调整计算参数、模
型,使预测与实测尽量吻合,确保实际工后沉降满足要求。
(4)积极开展地质核查、沉降预测等专题研究,以科研成果指导沉降分析、预测。
3.4 做好隧道沉降观测(沉降变形观测技术要求 )
(1)隧道沉降观测的主要目的是确定无碴轨道工程的施工时间及工后沉降量,确保
工后沉降量满足要求。
(2)沉降观测以二等几何水准测量高程,观测精度不低于1mm。采用精密水准仪、铟
化水准尺。观测做到四个固定:固定观测人员;固定仪器及水准尺;固定后视尺读数;
固定测站及转点。
(3)隧道内一般根据地质围岩情况布设沉降观测断面,一般情况下,Ⅲ级围岩每
400m、Ⅳ级围岩每300m、Ⅴ级围岩每200m布设一个观测断面。地应力较大、断层破碎带、
膨胀土、湿陷性黄土等不良和复杂地质区段适当加密布设。隧道洞口至分界里程范围内
应至少布设一个观测断面。
(4)每次观测完毕,及时绘制沉降点的时间一沉降量的关系曲线。
(5)隧道主体工程完工后,变形观测期一般不应少于3个月。
(6)观测期内,线下工程沉降实测值超过设计值20%及以上时,应及时会同建设、
勘察设计等单位查明原因,必要时进行地质复查,并根据实测结果调整计算参数,对设
计预测沉降进行修正或采取沉降控制措施。
(7)评估时发现异常现象或对原始记录资料存在疑问,可进行必要的检查。
(8)观测精度:线下工程沉降水准测量精度为±1mm,读数取位至0.1mm,剖面沉降
4
的测量精度为8mm/30m。
(9)沉降观测装置应埋设稳定,观测期间应对观测装置采取有效的保护措施。
3.5 施工控制措施
隧道工后沉降的控制贯穿于隧道施工整个全过程。要控制隧道工后沉降满足设计要
求,必须控制好隧道施工质量,全过程对质量进行控制、监测。主要从施工前对地质补
勘(即对地质勘察深度及所采用的设计方法和计算参数进行复核审核),施工中对各施工
部位填料特性全过程监控,施工完成后对隧道均匀或不均匀沉降及其沉降值监测、检查、
调整等方面进行控制。对施工过程质量的控制要建立先进、可靠、精确、完整、有效的
质量控制与检测体系,保证隧道工后沉降满足规范验标、设计要求。
总之,通过经验及技术验证总结出建立高精度测量控制网、科学的沉降观测方案及
其实施、正确的工后沉降评估技术是实现隧道工后沉降有效控制的一个重要的环节和措
施。
郭丹丹
2011年3月23日