FIR数字滤波器的设计与实现
- 格式:doc
- 大小:733.00 KB
- 文档页数:23
fir滤波器设计实验报告fir滤波器设计实验报告引言:滤波器是数字信号处理中常用的工具,它能够对信号进行去噪、频率分析和频率选择等处理。
其中,FIR(Finite Impulse Response)滤波器是一种常见的数字滤波器,具有线性相位和稳定性等优点。
本实验旨在设计一个FIR滤波器,并通过实际测试验证其性能。
一、实验目的本实验的目的是通过设计一个FIR滤波器,掌握FIR滤波器的设计方法和性能评估。
具体包括以下几个方面:1. 了解FIR滤波器的基本原理和特点;2. 学习FIR滤波器的设计方法,如窗函数法、最小二乘法等;3. 掌握MATLAB等工具的使用,实现FIR滤波器的设计和性能评估;4. 通过实际测试,验证所设计FIR滤波器的性能。
二、实验原理FIR滤波器是一种非递归滤波器,其输出仅依赖于当前和过去的输入样本。
其基本原理是将输入信号与一组滤波器系数进行卷积运算,得到输出信号。
FIR滤波器的频率响应由滤波器系数决定,通过调整滤波器系数的值,可以实现不同的滤波效果。
在本实验中,我们采用窗函数法设计FIR滤波器。
窗函数法是一种常见的FIR滤波器设计方法,其基本思想是通过对滤波器的频率响应进行窗函数加权,从而实现对信号频率的选择。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等。
三、实验过程1. 确定滤波器的要求:根据实际需求,确定滤波器的截止频率、通带衰减和阻带衰减等参数。
2. 选择窗函数:根据滤波器的要求,选择合适的窗函数。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等,不同窗函数有不同的性能特点。
3. 计算滤波器系数:根据所选窗函数的特性,计算滤波器的系数。
这一步可以使用MATLAB等工具进行计算,也可以手动计算。
4. 实现滤波器:使用MATLAB等工具,将计算得到的滤波器系数应用于滤波器的实现。
可以使用差分方程、卷积等方法实现滤波器。
5. 评估滤波器性能:通过输入不同的信号,观察滤波器的输出,并评估其性能。
FIR滤波器设计实验报告实验目的:学习和掌握有限脉冲响应(FIR)滤波器的设计方法,了解数字滤波器的原理和实现。
实验器材:计算机、Matlab软件、FIR滤波器设计工具。
实验原理:1.确定滤波器的规格:包括通带频率、阻带频率、通带纹波、阻带衰减等参数。
2. 根据滤波器规格选择合适的FIR滤波器设计方法:常见的设计方法有窗函数法、频域近似法、Remez算法等。
3.根据设计方法计算FIR滤波器的系数:根据设计方法的不同,计算滤波器的系数也有所区别。
4.对FIR滤波器进行验证和优化:可以通过频率响应、幅频特性等指标对滤波器进行调整,并进行验证。
实验步骤:1.确定滤波器规格:设置通带频率为3kHz,阻带频率为5kHz,通带纹波为0.01dB,阻带衰减为40dB。
2.选择窗函数法进行FIR滤波器设计。
3.根据滤波器规格计算滤波器的阶数。
4.根据阶数选择合适的窗函数。
5.计算FIR滤波器的系数。
6.通过绘制滤波器的频率响应曲线进行验证。
7.分析滤波器的性能,并对滤波器进行优化。
实验结果:根据以上步骤进行设计和计算,得到了FIR滤波器的系数,利用Matlab绘制了滤波器的频率响应曲线。
分析和讨论:根据频率响应曲线,可以看出滤波器在通带频率范围内有较好的衰减效果,滤波器的阻带频率范围内衰减也满足要求。
但是在通带和阻带之间存在一定的过渡带,可能会对信号造成一部分的失真。
因此,可以考虑进一步优化滤波器的设计,使其在通带和阻带之间的过渡带更加平滑,减小失真的影响。
结论:通过本次实验,我们学习并掌握了FIR滤波器的设计方法,了解了数字滤波器的原理和实现。
在实际应用中,可以根据需要选择合适的FIR滤波器设计方法,并根据滤波器的规格进行计算和调整。
通过不断优化和验证,可以得到满足要求的FIR滤波器,实现对数字信号的滤波处理。
fir滤波器实验报告fir滤波器实验报告引言:滤波器是信号处理中常用的工具,它可以对信号进行频率选择性处理。
在数字信号处理中,FIR(Finite Impulse Response)滤波器是一种常见的滤波器类型。
本实验旨在通过设计和实现FIR滤波器,探索其在信号处理中的应用。
一、实验目的本实验的主要目的有以下几点:1. 了解FIR滤波器的基本原理和特性;2. 掌握FIR滤波器的设计方法;3. 实现FIR滤波器并对信号进行处理,观察滤波效果。
二、实验原理1. FIR滤波器的原理FIR滤波器是一种非递归滤波器,其输出仅依赖于输入和滤波器的系数。
它的基本原理是将输入信号与滤波器的冲激响应进行卷积运算,得到输出信号。
FIR滤波器的冲激响应是有限长度的,因此称为有限脉冲响应滤波器。
2. FIR滤波器的设计方法FIR滤波器的设计方法有很多种,常用的包括窗函数法、频率采样法和最小二乘法。
在本实验中,我们将使用窗函数法进行FIR滤波器的设计。
具体步骤如下:(1)选择滤波器的阶数和截止频率;(2)选择适当的窗函数,如矩形窗、汉宁窗等;(3)根据选择的窗函数和截止频率,计算滤波器的系数;(4)利用计算得到的系数实现FIR滤波器。
三、实验步骤1. 确定滤波器的阶数和截止频率,以及采样频率;2. 选择合适的窗函数,并计算滤波器的系数;3. 利用计算得到的系数实现FIR滤波器;4. 准备待处理的信号,如音频信号或图像信号;5. 将待处理的信号输入FIR滤波器,观察滤波效果;6. 调整滤波器的参数,如阶数和截止频率,观察滤波效果的变化。
四、实验结果与分析在实验中,我们选择了一个音频信号作为待处理信号,设计了一个10阶的FIR滤波器,截止频率为1kHz,采样频率为8kHz,并使用汉宁窗进行滤波器系数的计算。
经过滤波处理后,观察到音频信号的高频部分被有效地滤除,保留了低频部分,使得音频信号听起来更加柔和。
通过调整滤波器的阶数和截止频率,我们可以进一步调节滤波效果,使得音频信号的音色发生变化。
fir滤波器设计实验报告一、实验目的本次实验的目的是设计FIR滤波器,从而实现信号的滤波处理。
二、实验原理FIR滤波器是一种数字滤波器,它采用有限长的冲激响应滤波器来实现频率选择性的滤波处理。
在FIR滤波器中,系统的输出只与输入和滤波器的系数有关,不存在反馈环路,因此具有稳定性和线性相位的特性。
FIR滤波器的设计最常采用Window法和最小二乘法。
Window法是指先对理想滤波器的频率特性进行窗函数的处理,再通过离散傅里叶变换来得到滤波器的时域响应。
最小二乘法则是指采用最小二乘法来拟合理想滤波器的频率特性。
本次实验采用的是Window法。
三、实验步骤1.设计滤波器的频率响应特性:根据实际需要设计出需要的滤波器的频率响应特性,通常采用理想滤波器的底通、高通、带通、带阻等特性。
2.选择窗函数:根据设计的滤波器的频率响应特性选择相应的窗函数,常用的窗函数有矩形窗、汉宁窗、汉明窗等。
3.计算滤波器的时域响应:采用离散傅里叶变换将设计的滤波器的频率响应特性转化为时域响应,得到滤波器的冲激响应h(n)。
4.归一化:将得到的滤波器的冲激响应h(n)进行归一化处理,得到单位加权的滤波器系数h(n)。
5.实现滤波器的应用:将得到的滤波器系数h(n)应用于需要滤波的信号中,通过卷积的方式得到滤波后的信号。
四、实验结果以矩形窗为例,设计一阶低通滤波器,截止频率为300Hz,采样频率为8000Hz,得到的滤波器系数为:h(0)=0.0025h(1)=0.0025滤波效果良好,经过滤波后的信号频率响应相对于滤波前有较明显的截止效应。
五、实验总结通过本次实验,我们掌握了FIR滤波器的设计方法,窗函数的选择和离散傅里叶变换的应用,使我们能够更好地处理信号,实现更有效的信号滤波。
在日常工作和学习中,能够更好地应用到FIR滤波器的设计和应用,提高信号处理的精度和效率。
实验二 FIR 数字滤波器设计与软件实现1.实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。
(3)掌握FIR 滤波器的快速卷积实现原理。
(4)学会调用MATLAB 函数设计与实现FIR 滤波器。
2. 两种设计FIR 滤波器的方法比较窗函数法简单方便,易于实现。
但存在以下缺点:滤波器边界频率不易精确控制。
窗函数法总使通带和阻带波纹幅度相等,不能分别控制通带和阻带波纹幅度。
所设计的滤波器在阻带边界频率附近的衰减最小,距阻带边界频率越远,衰减越大。
,所以如果在阻带边界频率附近的衰减刚好达到设计指标要求,则阻带中其他频段的衰减就有很大富余量,存在较大的资源浪费。
等波纹最佳逼近法是一种优化设计方法,克服了窗函数法的缺点,使最大误差最小化,并在整个逼近频段上均匀分布。
用等波纹最佳逼近法设计的FIR 数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。
与窗函数法相比,由于这种设计法使最大误差均匀分布,所以设计的滤波器性能价格比最高。
阶数相同时,这种设计方法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大。
指标相同时,这种设计法使滤波器阶数最低。
3. 滤波器参数及实验程序清单(1) 滤波器参数选取根据加噪信号频谱图和实验要求,可选择一低通滤波器进行滤波,确定滤波器指标参数:通带截止频率Hz f p 130=,阻带截至频率Hz f s 150=,换算成数字频率,通带截止频率ππω26.02==T f p p ,通带最大衰减为dB p 1.0=α,阻带截至频率ππω3.02==T f s s ,阻带最小衰减为dB s 60=α。
(2) 实验程序清单 图1 程序流程图信号产生函数xtg 程序清单function xt=xtg%产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz.N=1600;Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt ,频率为f0ct=cos(2*pi*fc*t); %产生载波正弦波信号ct ,频率为fcxt=mt.*ct; %相乘产生单频调制信号xtnt=2*rand(1,N)-1; %产生随机噪声nt%=======设计高通滤波器hn,用于滤除噪声nt 中的低频成分,生成高通噪声======= fp=150; fs=200;Rp=0.1;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord函数所需参数f,m,devdev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(n,fo,mo,W); % 调用remez函数进行设计,用于滤除噪声nt中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt%================================================================ xt=xt+yt; %噪声加信号fst=fft(xt,N);k=0:N-1;f=k/Tp;figure(1);subplot(2,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/4,min(xt),max(xt)]);title('信号加噪声波形');subplot(2,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('信号加噪声的频谱');axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度');FIR数字滤波器设计及软件实现程序清单clear all;close allxt=xtg; %调用xtg产生信号xt, xt长度N=1600,并显示xt及其频谱fp=130;fs=150;Rp=0.1;As=60;Fs=1000; % 输入给定指标%用窗函数法设计滤波器wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)B=2*pi*(fs-fp)/Fs;Nb=ceil(11*pi/B);hn=fir1(Nb-1,wc,blackman(Nb));y1t=fftfilt(hn,xt,1600); %调用函数fftfilt对xt滤波figure(2);t=0:0.001:1.599; %绘制滤波后的信号时域波形图subplot(2,1,1);plot(t,y1t);grid;xlabel('t/s');ylabel('y_1(t)');title('滤波后的y_1(t)的波形');axis([0 0.5 -1 1]);subplot(2,1,2);[h w]=freqz(hn); %绘制低通滤波器的损耗函数曲线plot(w/pi,20*log10(abs(h)));grid;xlabel('ω/π');ylabel('幅度(dB )');title('窗函数法低通滤波器的损耗函数曲线');axis([0 1 -120 5]);%用等波纹最佳逼近法设计滤波器fb=[fp,fs];m=[1,0]; %确定remezord 函数所需参数f,m,devdev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); %确定remez 函数所需参数hn=remez(Ne,fo,mo,W); %调用remez 函数进行设计y2t=fftfilt(hn,xt,1600); %调用函数fftfilt 对xt 滤波figure(3);t=0:0.001:1.599; %绘制滤波后的信号时域波形图subplot(2,1,1);plot(t,y2t);grid;xlabel('t/s');ylabel('y_2(t)');title('滤波后的y_2(t)的波形');axis([0 0.5 -1 1]);subplot(2,1,2);[h w]=freqz(hn); %绘制低通滤波器的损耗函数曲线plot(w/pi,20*log10(abs(h)));grid;xlabel('ω/π');ylabel('幅度(dB )');title('等波纹逼近法低通滤波器的损耗函数曲线');axis([0 1 -80 5]);4. 实验结果在matlab 中键入以上程序,得到的仿真结果如下图2 具有加性噪声的信号x(t)及其频谱图3 窗函数法设计的滤波器损耗函数曲线及其滤波后的信号)(1t y图4 等波纹逼近法设计的滤波器损耗函数曲线及其滤波后的信号)(2t y由上述实验结果可见用窗函数法设计滤波器,滤波器长度 Nb=184。
FIR数字滤波器设计与软件实现实验报告222 FIR数字滤波器设计与软件实现实验报告222实验报告标题:FIR数字滤波器设计与软件实现实验目的:1.掌握FIR数字滤波器的设计原理;2.学会使用软件进行FIR数字滤波器设计;3.实现FIR数字滤波器的软件仿真。
实验材料与设备:1.计算机;2.FIR滤波器设计软件。
实验原理:FIR(Finite Impulse Response)数字滤波器是一种线性时不变滤波器,具有无穷冲击响应长度。
其传递函数表达式为:H(z)=b0+b1*z^(-1)+b2*z^(-2)+...+bM*z^(-M)其中,H(z)为滤波器的传递函数,z为z变换的复数变量,b0,b1,...,bM为滤波器的系数,M为滤波器的阶数。
FIR滤波器的设计包括理想滤波器的设计和窗函数法的设计两种方法。
本实验使用窗函数法进行FIR滤波器的设计。
窗函数法的步骤如下:1.确定滤波器的阶数M;2.设计理想低通滤波器的频率响应Hd(w);3.根据滤波器的截止频率选择合适的窗函数W(n);4.计算滤波器的单位脉冲响应h(n);5.调整滤波器的单位脉冲响应h(n)的幅度;6.得到滤波器的系数b0,b1,...,bM。
实验步骤:1.在计算机上安装并打开FIR滤波器设计软件;2.根据实验要求选择窗函数法进行FIR滤波器的设计;3.输入滤波器的阶数M和截止频率,选择合适的窗函数;4.运行软件进行滤波器设计,得到滤波器的系数;5.使用软件进行FIR滤波器的软件仿真。
实验结果:经过软件仿真,得到了FIR数字滤波器的单位脉冲响应和频率响应曲线,满足设计要求。
滤波器的阶数和截止频率对滤波器的响应曲线有一定影响。
通过调整滤波器阶数和截止频率,可以得到不同的滤波效果。
实验结论:本实验通过窗函数法进行FIR数字滤波器的设计,并通过软件进行了仿真。
实验结果表明,FIR数字滤波器具有良好的滤波效果,可以用于信号处理和通信系统中的滤波需求。
基于DSP的FIR数字滤波器的设计与仿真毕业设计论文研究背景数字信号处理在现代通信、音视频处理、图像处理等领域中起着至关重要的作用,数字滤波器是数字信号处理中的重要内容。
其中FIR数字滤波器是一种常用的滤波器,其具有线性相位和稳定性等特点,在数字信号处理中应用广泛。
因此,本毕业设计将以FIR 数字滤波器为研究对象,结合DSP平台,进行数字滤波器的设计与仿真研究。
研究目标本文旨在设计一种基于DSP的FIR数字滤波器,并且研究其性能和仿真效果。
主要目标包括:1. 掌握DSP平台的开发流程和设计方法,包括硬件平台和软件开发技术。
2. 研究FIR数字滤波器的原理和特点,掌握其设计方法和计算技巧。
3. 基于DSP平台设计实现FIR数字滤波器,包括硬件和软件两个方面,满足设计要求。
4. 仿真FIR数字滤波器的性能和效果,验证设计的正确性和可行性。
5. 撰写毕业设计论文,总结设计过程和结果,体现出自己的设计思路和方法。
研究方法本研究采用如下方法:1. 研究DSP平台的开发流程和设计方法,包括使用硬件平台和软件开发技术。
2. 研究FIR数字滤波器的原理和特点,掌握其设计方法和计算技巧。
3. 基于DSP平台设计实现FIR数字滤波器,采用Verilog语言描述硬件电路,C语言编写软件程序。
4. 利用模拟工具对FIR数字滤波器进行仿真,测试性能和效果。
5. 撰写毕业设计论文,总结设计过程和结果,体现出自己的设计思路和方法。
预期结果本研究预期可以达到如下结果:1. 掌握DSP平台的开发流程和设计方法,能够应用于数字信号处理和嵌入式系统开发等领域。
2. 研究FIR数字滤波器的原理和特点,掌握其设计方法和计算技巧,能够进行数字信号处理相关工作。
3. 基于DSP平台设计实现FIR数字滤波器,满足设计要求,具有较好的性能和稳定性。
4. 仿真FIR数字滤波器的性能和效果,能够验证设计的正确性和可行性。
5. 撰写毕业设计论文,总结设计过程和结果,体现出自己的设计思路和方法,具有较好的表达和撰写能力。
实验四 FIR 数字滤波器设计及实现一.实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(2)学会调用MA TLAB 函数设计与实现FIR 滤波器。
二.FIR 数字滤波器的设计思想Matlab 信号处理工具箱为FIR 数字滤波器的设计提供了两种方法———窗函数法和等波纹最佳一致逼近法。
下面就窗函数法简要说明其设计思想。
窗口设计法是从时域出发,将理想滤波器的单位脉冲响应截取一段作为传输函数的系数。
通常情况下,滤波器指标往往在频域给出,算出的理想单位脉冲响应一般是非因果、无限长、物理上不可实现的,需先截短再右移使之成为有限长因果序列,只要截取的长度和方法合理,总能满足频域指标要求。
截短就是加窗,矩形窗最简单,在频域属最小平方逼近,但峰肩和波纹不太理想。
一般希望窗函数的频谱主瓣尽可能地窄,以获得较陡的过渡带,同时能量又要尽量集中在主瓣,以减小峰肩和波纹,进而增加阻带衰减。
实际工程中常用窗的特性及MATLAB 函数比较如表1所示。
表1 常用窗函数性能比较窗类型 最小阻带衰减主瓣宽度 精确过渡带宽 窗函数 矩形窗 21dB 4π/M 1.8π/M boxcar 三角窗 25dB 8π/M 6.1π/M bartlett 汉宁窗 44dB 8π/M 6.2π/M hanning 哈明窗 53dB 8π/M 6.6π/M hamming 布莱克曼窗74dB12π/M11π/Mblackman 取凯塞窗时用kaiserord 函数来得到长度M 和βkaiser利用窗口设计法设计FIR 数字滤波器的过程:)()()()()(ωωj DTFT n w d IDTFT j d eH n h n h eH −−→−−−→−−−→−⨯具体操作步骤如下:1、对设计指标进行归一化处理。
数字滤波器传输函数只与频域的相对值有关,故在设计时可先将滤波器设计指标对采样频率进行归一化处理,归一化公式为:2、根据阻带衰减要求和过渡带宽,由表1选择窗函数的类型并估计窗口长度M ,此时滤波器的阶数为M-1(注意窗口长度与滤波器类型的关系)。
数字信号处理实验报告实验四IIR数字滤波器设计及软件实现(一) FIR数字滤波器设计及软件实现(二)2018 年 11 月 28 日一、实验目的(实验4_1)(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
(实验4_2)(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
(3)掌握FIR滤波器的快速卷积实现原理。
(4)学会调用MATLAB函数设计与实现FIR滤波器。
二、实验原理与方法(实验4_1)设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
3、实验内容及步骤(实验4_1)(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1所示。
由图可见,三路信号时域混叠无法在时域分离。
实验二FIR滤波器设计与实现FIR(Finite Impulse Response)滤波器是一种数字滤波器,由有限长的冲激响应组成。
与IIR(Infinite Impulse Response)滤波器相比,FIR滤波器具有线性相位、稳定性和易于设计等优点。
本实验旨在设计和实现一个FIR滤波器。
首先,我们需要确定滤波器的规格和要求。
在本实验中,我们将设计一个低通FIR滤波器,将高频信号滤除,只保留低频信号。
滤波器的截止频率为fc,滤波器的阶数为N,采样频率为fs。
接下来,我们需要确定滤波器的频率响应特性。
常用的设计方法有窗函数法、最小最大规范法等。
本实验采用窗函数法进行滤波器设计。
窗函数法的基本思想是利用窗函数来加权冲激响应的幅度,以达到要求的频响特性。
常用的窗函数有矩形窗、汉宁窗、汉明窗等。
在本实验中,我们选择汉宁窗作为窗函数。
首先,我们需要计算出滤波器的理想频率响应。
在低通滤波器中,理想频率响应为0频率处幅度为1,截止频率处幅度为0。
然后,我们需要确定窗函数的长度L。
一般来说,窗函数的长度L要大于滤波器的阶数N。
在本实验中,我们选择L=N+1接下来,我们利用窗函数对理想频率响应进行加权处理,得到加权后的冲激响应。
最后,我们对加权后的冲激响应进行归一化处理,使滤波器的频率响应范围在0到1之间。
在设计完成后,我们需要将滤波器实现在实验平台上。
在本实验中,我们使用MATLAB软件进行滤波器实现。
首先,我们需要生成一个输入信号作为滤波器的输入。
可以选择一个随机的信号作为输入,或者选择一个特定的信号进行测试。
然后,我们将输入信号输入到滤波器中,得到滤波器的输出信号。
最后,我们将滤波器的输入信号和输出信号进行时域和频域的分析,以评估滤波器的滤波效果。
在实验的最后,我们可以尝试不同的滤波器设计参数,如截止频率、窗函数的选择等,以观察滤波器设计参数对滤波器性能的影响。
综上所述,本实验是关于FIR滤波器设计与实现的实验。
《DSP技术与应用》 课程设计报告
课 题 名 称: 基于DSP Builder的FIR数字滤波器的设计与实现 学 院: 班 级: 学 号: 姓 名: 基于DSP Builder的FIR数字滤波器的设计与实现 基于DSP Builder的FIR数字滤波器的设计与实现 摘要:数字滤波器是数字信号处理中的核心环节,而FIR数字滤波器因其具有
严格的线性相位,系统总是稳定等特点而广泛应用于数字信号处理的各个领域,因此是一个重要的研究课题。随着微电子技术的发展,数字信号处理得到了飞速发展。数字滤波器是谱分析、雷达信号处理、通信信号处理应用中的基本处理算法,在数字音频、图像处理、数据传输、生物医学等领域得到了广泛应用。 本文内容包括FIR数字滤波器的网络结构、线形相位条件和特点以及设计方法、基于MATLAB/Simulink的DSP设计技术、详细的设计流程向导、ModelSim仿真等。本文通过一个设计实例,提出了一种采用DSP Builder实现有限冲激响应滤波器的设计方案,并以一个20阶低通数字滤波器的实现为例,设计并完成软件仿真与验证。
通过仿真与验证,本系统所设计的数字滤波器能够成功运行,且所设计滤波器稳定性好,精确度高,不易受环境影响。在利用FPGA进行数字滤波器的开发时,采用基于Matlab环境的DSP Builder作为设计工具可以更方便的建立模型,完成整个设计。
关键词:MATLAB;数字滤波器;DSP Builder;FIR 基于DSP Builder的FIR数字滤波器的设计与实现 The FIR digital filter design and implementation of DSP based on Builder
Abstract: the digital filter is a key link in digital signal processing, and FIR
digital filter because of its strict linear phasecharacteristics of the system is always stable, so it is widely used in various fields of digital signal processing, so it is an important research topic. With the development of microelectronics technology, digital signal processing has been the rapid development. Digital filter is the spectrum analysis, radar signal processing, communication and signal processing applications in the basic algorithm, has been widely applied in digital audio, image processing, data transmission and biomedical fields.
The content of this paper includes FIR digital filter with linear phase condition and network structure, characteristics and design method and DSP design technology, MATLAB/Simulink detailed design process wizard, ModelSim simulationbased on. In this paper, through a design example, presents a realization of finite impulse response filter design schemeby using DSP Builder, and to achieve a 20 order low-pass digital filter as an example, the design and complete the software simulation and verification.
Through simulation and verification, the system of the digital filter designed to run successfully, and the designed filter has good stability, high accuracy, less susceptible to environmental impact. The development of digital filter in the use ofFPGA, using Matlab environment based on DSP Builder as a design tool can be more convenient to create models,complete the whole design.
Key words: MATLAB; Digital filter; DSP Builder; FIR.
基于DSP Builder的FIR数字滤波器的设计与实现 目录
一、绪论 ............................................ 1 (一)数字滤波器的研究背景 .............................................................................................................. 1 (二)数字滤波器的概念以及分类 ...................................................................................................... 2 (三)FIR和IIR滤波器的比较 ........................................................................................................... 2
二、FIR数字滤波器的原理 ............................. 3
三、DSP BUILDER设计流程 ............................. 4 四、基于DSP BUILDER的FIR数字滤波器的设计与实现 ..... 6 (一)利用DSP BUILDER库建立DDS模型 ............................................................................................. 6 (二)加入激励,完成系统仿真 .......................................................................................................... 6 (三)由SIMULINK模型转成VHDL .......................................................................................................... 7 (四)综合 .............................................................................................................................................. 7 (五)利用MODELSIM完成功能仿真 ....................................................................................................... 7 (六)编译适配 ...................................................................................................................................... 8
五、基于MATLAB的滤波器设计工具 ..................... 8
(一)滤波器指标 .................................................................................................................................. 8 (二)打开MATLAB的FDATOOL ............................................................................................................. 8 (三)滤波器分析 .................................................................................................................................. 9 (四)导出滤波器系数 ........................................................................................................................ 12
六、课程设计心得 ................................... 14
七、参考文献 ....................................... 15 八、附录 ........................................... 16