无机闪烁晶体
- 格式:doc
- 大小:128.00 KB
- 文档页数:7
第一章 辐射源1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种?带电粒子源快电子源: β衰变 内转换 俄歇电子 重带电粒子源: α衰变 自发裂变非带电粒子源电子辐射源:伴随衰变的辐射、湮没辐射、伴随核反应的射线、轫致辐射、特征X 射线 中子源:自发裂变、放射性同位素(α,n )源、光致中子源、加速的带电粒子引起的反应 2、选择辐射源时,常需要考虑的几个因素是什么? 答:能量,活度,半衰期。
3、252Cf 可做哪些辐射源?答:重带点粒子源(α衰变和自发裂变均可)、中子源。
第二章 射线与物质的相互作用电离损失:入射带电粒子与核外电子发生库仑相互作用,以使靶物质原子电离或激发的方式而损失其能量作用机制:入射带电粒子与靶原子的核外电子间的非弹性碰撞。
辐射损失:入射带电粒子与原子核发生库仑相互作用,以辐射光子的方式损失其能量。
作用机制:入射带电粒子与靶原子核间的非弹性碰撞。
能量歧离:单能粒子穿过一定厚度的物质后,将不再是单能的,而发生了能量的离散;这种能量损失的统计分布,称为能量歧离。
引起能量歧离的本质是:能量损失的随机性。
射程:带电粒子沿入射方向所行径的最大距离。
路程:入射粒子在物质中行径的实际轨迹长度。
入射粒子的射程:入射粒子在物质中运动时,不断损失能量,待能量耗尽就停留在物质中,它沿原来入射方向所穿过的最大距离,称为入射粒子在该物质中的射程。
重带电粒子与物质相互作用的特点: 1、主要为电离能量损失2、单位路径上有多次作用——单位路径上会产生许多离子对3、每次碰撞损失能量少4、运动径迹近似为直线5、在所有材料中的射程均很短 电离损失: 辐射损失:快电子与物质相互作用的特点: 1、电离能量损失和辐射能量损失2、单位路径上较少相互作用——单位路径上产生较少的离子对3、每次碰撞损失能量大4、路径不是直线,散射大⎛⎫ ⎪⎝⎭242ion 0dE 4πz e -=NZB dx m v ()()⋅≅rad ion dE/dx E ZdE/dx 800222NZ m E z dx dE rad∝⎪⎭⎫ ⎝⎛-21m S rad ∝E S rad ∝2NZ S rad ∝带电粒子在靶物质中的慢化:(a) 电离损失-带电粒子与靶物质原子中核外电子的非弹性碰撞过程。
第23卷专辑中国稀土学报2005年12月V01.23Spee.IssueJOURNALOFTHECHINESERAREEARTHSOCIETYDec.2005闪烁材料研究进展李喜坤1’孙,邱关明1’3,丘泰1,刘晶2,修稚萌4,孙旭东4(1.南京工业大学,江苏南京210009;2.沈阳理工大学,辽宁沈阳110168;3.长春理工大学,吉林长春130022;4.东北大学,辽宁沈阳110004)摘要:综述了闪烁材料的研究发展的3个阶段:第一阶段,早期随着伦琴发现X射线出现了闪烁体caWO。
第二阶段,随着光电倍增管的发展和萘的闪烁现象出现Hofstadter研制出铊激发Nal闪烁体。
第三阶段,随着高能物理上精确量热技术和医学成像高的光输出技术需求闪烁材料进入大复兴阶段。
总结了闪烁体的主要性能:透明性、光输出、发光效率、精细的时间分辨率、探测效率和灵敏度、良好的能量分辨能力、X射线阻止本领、衰减速度和余辉、辐照损伤、温度效应、材料的可获得性等。
介绍了几种重要闪烁材料:陶瓷闪烁体、玻璃闪烁体和塑料闪烁体等,指出研制高性能闪烁陶瓷材料来逐步取代目前广泛使用的单晶闪烁材料和玻璃闪烁材料是研究闪烁体目前重要的研究方向。
关键词:闪烁体;闪烁性能;闪烁陶瓷;闪烁玻璃中图分类号:TQl74文献标识码:A文章编号:1000—4343(2005}一0037—09闪烁材料是指能吸收高能粒子或射线发出可见光子的材料。
无机闪烁材料广泛应用于电离辐射探测。
在过去的几十年中,闪烁材料在高能物理热量精确测定和医疗成像领域中增长迅速。
随着锗酸铋(Bi。
Ge,O。
:)闪烁现象的发现,及高密度材料在探测领域的应用,国际上好多研究机构在短短10年之内致力于锗酸铋特性和应用方面的研究,而且锗酸铋被欧洲粒子物理研究所用作L3探测器的闪烁材料。
L3探测器由11400根长22cm、重超过10公吨的锗酸铋晶体组成。
今天锗酸铋却不能满足欧洲粒子学会建造CMS探测器的需要,取而代之的是80,000个25em长的钨酸铅晶体。
专题二:新型无机材料概述无机非金属材料概述⏹无机非金属材料的定义除金属材料和高分子材料外的材料,或者除金属外的无机材料都称为无机非金属材料。
⏹无机非金属材料的分类按材料结构状态可分为1、非晶态材料:玻璃、非晶薄膜2、晶态材料:单晶(硅晶)、多晶(陶瓷、水泥)3、混合态材料:液晶、微晶玻璃按材料发展历程分:1、传统无机非金属材料:主要指含硅物质为原料经加热制成的硅酸盐材料:水泥、玻璃、陶瓷、耐火材料2、新型无机非金属材料:主要指新近发展或正在发展的具有优异性能和特殊功能,对科学技术尤其是对高技术的发展和产业具有决定意义的的无机非金属材料精细陶瓷、新型玻璃、能源材料、智能材料、人工晶体传统无机非金属材料:水泥1、主要性质:水化性、水硬性抗硫酸盐性、膨胀性、耐高温性2、原料条件:石灰石、黏土、辅助原料(包括石膏)3、设备装置:水泥回转窑(干法或湿法)立窑(普通和机械)4、反应条件:高温5、水泥成分:硅酸三钙、硅酸二钙、铝酸三钙、游离氧化钙3CaO·SiO2、2CaO·SiO2、3CaO·Al2O36、常见水泥制品:水泥砂浆、混凝土、钢筋混凝土⏹水泥的分类☐硅酸盐水泥,即国外通称的波特兰水泥☐铝酸盐水泥☐硫铝酸盐水泥☐铁铝酸盐水泥☐氟铝酸盐水泥☐以火山灰或潜在水硬性材料及其他活性材料为主要组分的水泥⏹水泥技术性质☐细度☐凝结时间☐安定性☐强度☐碱含量☐水化热水泥生产工艺:两磨一烧熟料水泥冷却加石膏磨细磨烧磨水泥水泥制品水泥电阻普通玻璃1、定义:一种较为透明的固体物质,在熔融时形成连续网络结 构,冷却过程中粘度逐渐增大并硬化而不结晶的硅酸盐类非金属材料2、原料条件:纯碱、石灰石和石英3、设备装置:高温玻璃熔炉4、主要成分:CaO · Na 2 O ·6SiO 25、常见玻璃:窗用玻璃、玻璃器皿、建筑幕墙玻璃、特种建筑玻璃(节能、自洁净、抗菌环保等)6、普通玻璃的生产流程:原料混合→高温融制→快速冷却→后加工加工(退火、镀膜等)⏹普通玻璃的分类☐引上法平板玻璃(分有槽/无槽两种)☐平拉法平板玻璃☐浮法玻璃⏹玻璃通性☐各向同性:均质玻璃在各个方向的性质如折射率、硬度、弹性模量、热膨胀系数等性能相同☐介稳性:当熔体冷却成玻璃体时,它能在较低温度下保留高温时的结构而不变化☐可逆渐变性:熔融态向玻璃态转化是可逆和渐变的☐连续性:熔融态向玻璃态转变时物理化学性质随温度变化是连续的传统陶瓷1、定义:指所有以粘土等无机非金属矿物为原料的工业产品,是陶器和瓷器的总称2、原料条件:粘土(高岭石、叶蜡石、蒙脱土等)3、设备装置:高温窑4、常见传统陶瓷:陶瓷器皿、建筑陶瓷、卫生洁具、工艺陶器5、传统陶瓷的生产流程:配料→原料混合→成型→干燥→烧制→冷却→陶瓷制品釉料制备及施釉⏹传统陶瓷的分类☐日用陶瓷☐艺术陶瓷☐建筑卫生陶瓷⏹传统陶瓷共性☐耐腐蚀☐易碎,抗压强度大,而抗拉、抗弯、抗冲击强度较小☐耐高温☐表面特性⏹耐火材料⏹定义:是由多种不同化学成分及不同结构矿物组成的非均质体,由较高熔点的化合物组成⏹功能:抵抗高温,满足高温使用条件⏹组成:颗粒相及基质相⏹分类☐按化学特性、化学成分分类,分为硅铝系耐火制品、碱性耐火制品、含锆耐火制品、含碳耐火制品☐按制造工艺和烧制方法分类,分为定形耐火材料、不定形耐火材料、隔热耐火材料和特殊耐火材料等☐也可分为非氧化物系和氧化物系匣钵推板三明治棚板铸管、套管新型无机非金属材料:⏹新型玻璃:⏹人工晶体:⏹新型陶瓷:专题报告⏹纳米材料:专题报告⏹多孔材料:⏹无机(光学)纤维:⏹薄膜(涂层)材料:专题报告⏹生物材料:自学⏹半导体材料:自学⏹新能源材料:自学新型玻璃材料⏹新型玻璃是指除平板玻璃和日用器皿玻璃以外的,采用精确、高纯或新型原料,采用新工艺在特殊条件下或严格控制形成过程制得的具有特殊功能或特殊用途的玻璃⏹新型玻璃的特点1、成分:(硅、硼、磷、锗、铅)酸盐、卤族、硫族等2、形状:板状、薄膜、纤维3、玻璃态:单一玻璃态、乳浊玻璃、微晶玻璃、泡沫玻璃4、功能:光、电、磁、声、生物等5、制备工艺:坩埚、池窑、电加热、真空熔炼等⏹新型玻璃材料的分类光学纤维、激光玻璃、红外玻璃1. 光学玻璃材料:SiO22. 电磁玻璃材料:液晶显示器用导电玻璃、磁性玻璃3. 热学玻璃材料:抗热震性、耐热、导热、透明微晶玻璃4. 力学及机械玻璃材料:云母切削微晶玻璃、氧氮玻璃等5. 生物化学玻璃材料:生物微晶玻璃、自清洁玻璃、多孔玻璃⏹新型玻璃材料的制备常规方法:原料混合→高温融制→成型→冷却→热处理(退火或核化晶化)→后精加工(镀膜)新方法:溶胶-凝胶法、气相沉积法、高速冷却法等新型玻璃材料(光导纤维)处于高温下的光导纤维光缆新型玻璃材料(微晶玻璃)微晶玻璃轴承计算机硬盘基板天文望远镜镜坯LCD面板微晶玻璃装饰板电器配套面板人工晶体材料⏹人工晶体定义是指采用人工合成技术及方法制备的晶体。
放射免疫分析摘要:放射免疫技术(radio immunoassay ,RIA)类型主要包括经典的放射免疫分析(radioimmunoassay, RIA)和免疫放射分析或免疫放射度量分析( immunoradiometric assay,IRMA)。
由于受接触放射性物质,损害操作人员的身体,测定完成后放射性材料的处置等问题的存在,再加上80年代初出现的非同位素标记技术得到了极大的发展和广泛应用,放射免疫技术的应用有下降的趋势。
0引言:放射性核素依衰变方式分α、β、γ三种,用于放射性标记的有β和γ两类;分别用液体闪烁计数器及γ计数器测定。
目前常用的是γ型放射性核素,如125I、131I、51Cr和60Co,以125I最常用;β型放射性核素有3H、14C和32P,以3H最常用。
关键词:结构,原理,临床应用1检测的基本结构原理、结构及其探测原理核射线探测仪器由射线探测器和后续电子学单元两大部分组成。
核射线探测器是个能量转化器,其检测原理是当射线作用于闪烁体,闪烁体吸收了射线的能量而引起闪烁体中的原子或分子激发,当受激的原子或分子退激时,则发出光子进入光电倍增管光阴极,转换为光电子,光电子在光电倍增管电场作用下到达阳极,形成电脉冲。
转换模式是放射能→光能→电能→脉冲。
液体闪烁测量是在闪烁杯内进行的,放射性样品主要被溶剂和闪烁剂分子包围,射线能量先被溶剂分子吸收,受激溶剂分子退激时释放出能量激发闪烁剂,当激发态回到基态时释放出光子到达光阴极,光阴极产生光电子,在光电倍增管的电场作用下,在阳极获得大量电子,形成脉冲信号,输入后读分析电路形成数据信号,最后由计算机数据处理,求出待测抗原含量。
放射性活度测定方法放射免疫分析中经抗原抗体反应和B、F分离后通过检测放射性量来反映待测物的含量。
放射性量的检测需特殊的仪器,放射免疫分析仪实际上就是进行放射性量测定的仪器。
测量仪器有两类,即晶体闪烁计数仪(主要用于检测γ射线,如125I、131I、57Cr等)和液体闪烁计数仪(主要用于检测β射线,如3H、32P、14C等)。
Lu2O3-SiO2体系闪烁体材料研究进展赵曼;钟玉荣;徐宝龙【摘要】闪烁体材料是一类吸收X-射线或α,β-射线等高能光子后发出可见光的光功能材料,在高能物理、核医学、地质勘探等领域应用广泛.综述了Lu2O3-SiO2体系闪烁体材料的最新研究进展,包括闪烁晶体、闪烁陶瓷、闪烁粉体和闪烁薄膜的研究现状,并对Lu2O3-SiO2体系闪烁体材料的应用和发展进行了总结.【期刊名称】《化学与生物工程》【年(卷),期】2013(030)012【总页数】4页(P1-4)【关键词】闪烁体;Lu2O3-SiO2体系;闪烁晶体;闪烁陶瓷;闪烁粉体;闪烁薄膜【作者】赵曼;钟玉荣;徐宝龙【作者单位】烟台大学光电信息科学技术学院,山东烟台264005;烟台大学光电信息科学技术学院,山东烟台264005;烟台大学光电信息科学技术学院,山东烟台264005【正文语种】中文【中图分类】TQ174在X-射线或α,β-射线等高能粒子的照射下发出紫外或可见光的功能材料被称为闪烁体材料[1,2]。
闪烁体可分为有机闪烁体和无机闪烁体,有机闪烁体主荧光效率比较高,体积却不易过大;无机闪烁体根据应用范围不同,可分为闪烁晶体、闪烁陶瓷、闪烁粉体和闪烁薄膜等不同形态。
近年来,稀土掺杂含镥(Lu)氧化物、硅酸盐闪烁体因其优异的发光性能越来越受到人们的关注[3]。
作者在此对Lu2O3-SiO2体系闪烁体材料的晶体、陶瓷、粉体、薄膜4种形态材料的研究现状和进展进行了总结。
1 闪烁晶体的研究进展随着地质勘探、高能物理和核医学技术方面要求的提高,闪烁体材料由于具有光输出率高、衰减速度快、无余辉等优良闪烁特性而受到广泛关注[4]。
特别是Lu2SiO5:Ce和Lu2Si2O7:Ce是 Lu2O3-SiO2体系中最稳定的化合物,具有成为优秀闪烁体材料的潜质[5]。
Lu2SiO5:Ce(LSO:Ce)晶体的密度为7.4g·cm-3,光输出较高,衰减时间为40ns,发光波长为420nm,特别适合用于高能γ-射线的快速探测。
第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。
同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。
中国石油大学 近代物理实验 实验报告 成 绩:班级:应用物理学09-2班 姓名:王国强 同组者:庄显丽 教师:NaI 晶体谱仪及γ全能谱分析【实验目的】1、了解闪烁探测器的结构、工作原理。
2、掌握NaI (Tl )单晶γ闪烁能谱仪的几个性能指标和测试方法.3、观测及分析γ全能谱。
4、了解核电子学仪器的数据采集、记录方法和数据处理原理。
【实验原理】一、闪烁能谱仪测量γ能谱的原理闪烁能谱仪是利用某些荧光物质在带电粒子作用下被激发或电离后,能发射荧光(称为闪烁)的现象来测量能谱的。
这种荧光物质常称为闪烁体。
1、闪烁体的发光机制有机闪烁体包括有机晶体闪烁体、有机液体闪烁体和有机塑料闪烁体等。
最常用的无机晶体是铊激活的碘化钠单晶闪烁体,常记为NaI (Tl ),属离子型晶体。
在碘化钠晶体中掺入铊原子,其关键作用是可以在低于导带和激带的禁带中形成一些杂质能级。
这些杂质原子会捕获一些自由电子或激子到达杂质能级上,然后以发光的形式退激到价带,这就形成了闪烁过程的发光,而这种光因能量小于禁带宽度而不再被晶体吸收,不再会产生激发或电离。
这说明只有加入少量激活杂质的晶体,才能成为实用的闪烁体。
对于NaI (Tl )单晶闪烁体而言,其发射光谱最强的波长是415 nm 的蓝紫光,其强度反映了进人闪烁体内的带电粒子能量的大小。
2、γ射线与物质的相互作用 γ射线光子与物质原子相互作用的机制主要有以下三种方式,如图9-1-1所示。
(1)光电效应当能量为E γ的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失。
发射出去的电子称为光电子,这种过程称为光电效应。
发射光电子的动能为i e B E E -=γ (9-1-1)B i 为束缚电子所在壳层的结合能。
原子内层电子脱离原子后留下空位形成激发原子,其外部壳层的电子会填补空位并放出特征X 射线。
这种X 射线在闪烁体内很容易再产生一次新的光电效应,将能量又转移给光电子,所以闪烁体得到的能量是两次光电效应产生的光电子能量之和。
第43卷第7期2015年7月硅酸盐学报Vol. 43,No. 7July,2015 JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI:10.14062/j.issn.0454-5648.2015.07.06石榴石系列闪烁晶体的研究进展汪超1,2,任国浩2(1. 中国科学院大学,北京100864;2. 中国科学院上海硅酸盐研究所,上海200050)摘要:主要对石榴石系列闪烁晶体近10多年的研究和发展情况进行了梳理。
介绍了Pr、Ce掺杂的(Lu,Y)AG晶体中不同发光中心的发光机理、能量的传递、载流子再束缚过程等;阐述了反位缺陷(antisite defect, AD)对发光中心发光性能的影响及其作用机制;用带隙工程理论分析了Gd、Ga掺入可以消除AD缺陷副作用的机理。
展示了新型石榴石晶体Gd3(Ga5–x Al x)O12:Ce(GGAG:Ce)晶体的光产额和能量分辨率,预计这类多组分掺杂将把石榴石晶体的发展引入一个新的阶段。
关键词:石榴石晶体;闪烁性能;反位缺陷;掺杂中图分类号:O78; O734 文献标志码:A 文章编号:0454–5648(2015)07–0882–10网络出版时间:2015–05–27 18:47:31 网络出版地址:/kcms/detail/11.2310.TQ.20150527.1847.023.htmlRecent Studies on Garnet Scintillation CrystalsWANG Chao1,2, REN Guohao2(1. University of Chinese Academy of Sciences, Beijing 100864, China;2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China)Abstract: Recent development on garnet scintillation crystals studies was reviewed. Pr or Ce-doped (Lu,Y)AG crystals are introduced from structure, growth and scintillation characteristics. The scintillation mechanism, energy transfer and carriers-retrapping process of activators as well as the influence of antisite defects on their characterization were depicted. Antisite defects, which are suggested to be responsible for the slow components, were found to result from the high growth temperature, and could be eliminated by the incorporation of Gd and Ga ions. A compound of Gd3(Ga5–x Al x)O12:Ce presents an optimum light yield and a superior energy resolution among the existing oxide scintillators. The multi-components promote the development of garnet single crystal scintillators.Key words:garnet crystal; scintillation property; antisite defects; doping effect无机闪烁晶体材料在高能粒子探测、核物理、医学成像设备如X-CT及正电子断层扫描仪(PET)等方面有很广泛的应用[1]。
. . . . . . 无机闪烁晶体、塑料闪烁体简介
无机闪烁晶体、塑料闪烁体简介
一无机闪烁晶体 1 闪烁晶体与辐射探测 X射线、CT、核医学放射性核素成像、环境辐射监测、高能射线探测,其原理都是利用光子流作为射线源,射线穿透人体或物质,再从人体或物质中发射出来或射线直接被探测器接收而形成影像。所以探测器系统对射线的接收程度就成为关键的因素之一,常用的技术有:气体电离室探测、半导体材料探测、闪烁晶体探测等。而闪烁晶体因其固有的吸收射线辐射发光的特性就成为测量射线能量和强度的良好材料。无机闪烁晶体主要应用领域有高能物理、核物理、核医学(如XCT、PET以及g相机)、工业应用(工业CT)、地质勘探、石油测井等。闪烁晶体在射线的激发下能发出位于可见光波段的光波,不同的闪烁体最大闪烁发射波长、光产额、闪烁衰减时间、辐射长度、辐照硬度及密度、熔点、硬度、吸潮性等物理性质都有所不同。现实中没有任何一种闪烁体能满足全部使用要求,每种闪烁晶体都有各自的优缺点,使用中需根据具体要求及应用领域选择不同的材料。一般来说无机闪烁晶体用于辐射探测时基本应具备以下几个条件: <1>对探测粒子有较大的阻止本领,使入射粒子在晶体中的损耗量较大,为此闪烁体的密度及有效原子序数应较大。 <2>具有较高的发光效率及较好的能量分辨率。 <3>在自身发光波段无吸收,即有较高的透过率。 <4>较短的发光衰减时间(时间分辨好)。 <5>发射光与光探测元件光谱响应相匹配。 <6>较大的辐照硬度(抗辐射损伤)。 <7>较好的热稳定性( 发光效率受温度影响小)。 <8>易于加工成各种形状和尺寸。 <9>较好的化学稳定性(不吸潮)。 现已开发的无机闪烁体如下:NaI(Tl) .CsI. CsI(Na) .CsI(Tl) .LiF(Eu) .CaF2(Eu) .CdF2、
BaF2.CeF3 .BGO(Bi3Ge4O12) .ZWO(ZnWO4) .CWO(CdWO)4 .PWO(PbWO4) .GSO:Ce(Gd2SiO2O5:Ce) .LAP:Ce(LaAlO3:Ce) .YAP:Ce
(Y AlO3:Ce).LSO:Ce(Lu2Si2O5:Ce)等。
2 无机闪烁晶体特性及应用领域 NaI和BGO是目前应用较多的闪烁晶体,NaI(Tl)光输出大。对NaI(Tl)光输出的界定是以最早的塑料闪烁体--蒽(C14H10)来标定,相对于蒽,NaI(Tl)的相对光输出为230%。 NaI(Tl) 晶体密度较低(3.65g/cm3), BGO有较高的密度(7.13g/cm3),但光输出较低(只有NaI(Tl)的8%)。现处于较前沿的闪烁晶体有:GSO(Ce)、YAP (Ce)、LAP(Ce)、LSO(Ce)等。这些晶体光输出较高,如LSO(Ce)约为NaI(Tl)的75%,且衰减时间快、密度高。因其优良的性能,尽管造价昂贵,但仍不失为高能探测的理想材料。 2.1碘化钠NaI(Tl)晶体 NaI(Tl)晶体的发光效率在所有与光电倍增管耦合的闪烁晶体中是最高的,光产额为38000 (光子数/MeVγ),其余晶体的发光效率常以其相对于NaI(Tl)的百分数来表示。NaI(Tl)因具有很高的光产额且受温度的影响相对较小(可在170℃时使用),且成本低廉,所以较早应用于地质勘探及核医学中作为探测X射线、γ射线的敏感元件,迄今仍在广泛使用。常见有NaI(Tl)单晶及热锻NaI(Tl)闪烁晶体,Table .1为NaI(Tl)单晶及热锻NaI(Tl)闪烁晶体性能。 Table .1 Scintillation Properties of NaI(Tl) and POLYSCIN NaI(Tl) Crystal Density [g/cm3] 3.67 Melting point [K] 924 Thermal expansion coefficient [K-1] 47.4 x 10-6 Cleavage plane (100) . . . . . . Hardness (Mho) 2 Hygroscopic yes Wavelength of emission maximum [nm] 415 Refractive index at emission maximum 1.85 Primary decay time [µs] 0.25 Temperature coefficient of light yield 0.3% K-¹ Light yield [photons/MeV γ] 38 x 103 2.1.1 NaI(Tl)单晶 NaI(Tl)单晶是以NaI为基质材料掺以适当浓度的TlI生长而成的闪烁晶体材料。Fig.1是NaI(Tl)晶体的发光光谱,其最大发射波长在415nm,可以与光电倍增管的光阴极很好的匹配。Fig.2表示了温度对晶体光输出的影响。可以看出,相对于CsI和BGO晶体,NaI(Tl)在高温时具有更高的发光强度,这使其在环境温度较高的场合有更强的适应性,例如油井或空间探测。NaI(Tl)晶体易受辐射损伤,若长时间暴露在高强度的辐照下则会降低其闪烁性能,一般在射线强度高于102rad时就会观察到辐射损伤。所以晶体不要暴露在来自荧光灯或太的紫外线辐照下。
2.1.2 热锻NaI(Tl)闪烁晶体 热锻NaI(Tl)晶体是以NaI(Tl)单晶为毛坯,在一定的温度和压力下通过塑性形变而成。晶体在发生塑性形变后,由于位错的不断交互和增殖,形成了位错多边化和亚晶粒结构,改善了原单晶易沿(100)面解理的特性,从而提高了其抗冷热冲击和机械震动的能力,而闪烁性能却不受影响。此外,通过热锻工艺更易于制备各种复杂几何形状和大尺寸的晶体,如六边形、正方形、矩形等晶体器件以及长度超过200mm的晶体。目前热锻NaI(Tl)已广泛应用于空间研究、石油测井、地质勘探及核医学等领域。在探测仪器下井过程中,由于井深及地质情况复杂和不同探测条件的要求,晶体还必须具有较好的抗震等机械特性,尤其是在有冲击环境下的测井,晶体的抗震要求更高。抗震性晶体的研制在这个领域里有较大的发展前景。但NaI(Tl)密度较低(3.65g/cm3)易于潮解,衰减较慢(230ns),在高能探测时无优势。 2.1.3主要性能指标 (a) 能量分辨率 NaI(Tl)晶体测试图谱 N 入射线能量E0
N/2 ΔV
O V0 V Fig.3 放射源137Cs 对于一定能量E0的入射线,探测器输出信号的幅度是服从统计规律的,它围绕V0呈Fig.3分布。横坐标表示输出光子的信号幅度,纵坐标表示相应幅度时的对应计数率。希望在V0处这个曲线分布越窄越好,这样越能将能量相近的两种射线分开。通常用能量分辨率R来表示闪烁体对射线的分辨能力,R=(ΔV/ V0)×100%。对于NaI(Tl)晶体,它对不同能量的射线其分辨率并不是一个常数,通常所说的能量分辨率是指对于137Cs峰(0.66Mev)而言(如Fig.3所示),NaI(Tl) . . . . . . 晶体137Cs的分辨率一般在7—11%之间,其百分数越小晶体分辨率越高,但随晶体长径比增大,能量分辨率会有所下降,不同的应用场合,晶体长径比有不同的要求。能量分辨率与晶体质量(透明性、均匀性)、晶体尺寸、封装质量、使用温度等都有关系,这个指标在进行射线能量测试时很重要。 (b )计数率 在一定时间(一般为100秒),闪烁体发出的光子数称为计数率,在进行射线强度测量时常要求此指标。计数率主要与晶体尺寸有关,尺寸越大计数率越高。 (c)发光效率 发光效率指闪烁体将所吸收的核辐射能量转变为光的本领,实际测试场合中采用与标准闪烁体相比较的相对值(百分数)来表示。NaI(Tl)晶体的发光效率在所有与光电倍增管耦合的闪烁晶体中是最高的,故常将其作为100%。其余晶体的发光效率均以其相对于NaI(Tl)的百分数来表示,如CsI(Tl)的发光效率为45%, CsI(Na)的发光效率为85%。绝对光输出指晶体相对于1MeV所发出光子的数目,如Table .1中的38000 (光子数/MeVγ) 。
2.1.4晶体封装 NaI(Tl)晶体易潮解,必须密封使用。封装是防止晶体潮解并保证光子能从一个端面透出,这就需要解决晶体和玻璃窗之间的耦合问题,以实现晶体的最大光输出。
Fig.4 Schematic diagram of encapsulating the crystal 1.window 2.coupling 3.reflecting matter 这样对玻璃窗、耦合材料、晶体三者之间的材料性能都有一定的匹配要求。封装质量的好坏,直接影响到晶体的闪烁性能,Fig.4是NaI(Tl)晶体的封装简图。
2.1.5 主要规格: 端窗圆柱系列:φ19mm×200mm ~φ64mm×300mm 异形晶体:三角柱、四方柱、六棱柱等。 薄片晶体:φ1mm×3mm ~φ170mm×20mm 侧窗圆柱系列:φ37mm×120mm ~φ50mm×150mm 2.1.6 产品性能特点 1 能量分辨率 晶体尺寸Φ20mm×50mm,Cs137能量分辨率6.5%~8% 晶体尺寸Φ50mm×300mm,Cs137能量分辨率8.5%~12%。能量分辨率均匀性〈4%。 2 探测效率 晶体直径>40 mm的闪烁体,探测效率>10%; 晶体直径<40 mm的闪烁体,探测效率> 5%。 3 闪烁体本底计数<180/秒 。 4晶体使用温度: 120℃~175℃。
2.2 碘化铯(CsI)系列闪烁晶体 CsI闪烁晶体可分为Tl激活、Na激活和纯碘化铯三种,它们均为无色透明的立方晶体。CsI(Tl)晶体的光输出可达NaI(Tl)晶体的45%,发光主峰位在550nm(如Fig.5所示),能与硅光电二极管很好地匹配,显示系统简化。它的衰减时间与入射粒子的电离本领有关,特别适宜于在强γ辐射本底下探测重带电粒子。另外,掺铊碘化铯晶体抗热冲击能力强,并具有一定的可塑性,易于加工成不同形状的探测单元。CsI(Na)的发光效率与NaI(Tl) 接近,发射光谱的主峰位在420nm,更容易与光电倍增管配合,温度效应好,适合于在高温环境和空间科学研究中使用。它的缺点是在低能(20keV)下发光效率很快下降,潮解作用比CsI(Tl)厉害。 纯CsI晶体发射光谱中含有一个波长在305nm的快分量(10ns) 和波长