第四章 DC-AC变换器(无源逆变电路)3
- 格式:ppt
- 大小:2.73 MB
- 文档页数:26
DC/AC逆变器,DC/AC逆变器的基本原理背景知识:DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。
DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。
DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT 和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。
由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。
但转换输出的波形却很差,是含有相当多谐波成分的方波。
而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。
基本原理:常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。
具体如下:DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。
1,Buck型DC/AC逆变器Buck型DC/AC逆变器电路基本拓扑如图所示。
采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。
它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。
滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。
通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。
由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。
DC/AC逆变器,DC/AC逆变器的基本原理背景知识:DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。
DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。
DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT 和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。
由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。
但转换输出的波形却很差,是含有相当多谐波成分的方波。
而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。
基本原理:常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。
具体如下:DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。
1,Buck型DC/AC逆变器Buck型DC/AC逆变器电路基本拓扑如图所示。
采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。
它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。
滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。
通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。
由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。
dc-ac原理
直流到交流(DC-AC)变换器是一种电路或装置,用于将直流电源转换为交流电源。
它由一个直流输入端和一个交流输出端组成。
该原理基于使用电子器件,如晶体管、MOSFET(金属氧化物半导体场效应晶体管)或IGBT(绝缘栅双极性晶体管)等,通过控制开关来实现电源电压的变换。
在原理中,直流电源首先经过一个称为逆变器的电路,将其转换为交流电压。
这个逆变器电路通常由一组开关元件构成,例如MOSFET或IGBT,它们按照特定的时序被打开和关闭。
这样的开关操作导致直流电源输出的电压和电流在一段时间内在正负值之间变化。
这种时序开关的操作形成了一个波形,可以看作是一系列频率和幅度可调节的方波。
通过控制开关元件的时序,可以产生所需的交流输出波形。
通常,一个控制电路被用来确定开关的状态,以便在适当的时间点打开或关闭逆变器电路。
这样,交流输出的频率和幅度可以在设计的范围内进行调整。
由于DC-AC变换器的设计复杂且需要精确的控制,因此通常使用微控制器或数字信号处理器(DSP)等集成电路来实现控制功能。
这些控制器可以根据用户的需求对输出进行调整,并保证系统的稳定性和可靠性。
总的来说,DC-AC变换器的原理是通过逆变器电路和精确的控制来将直流电源转换为所需的交流电源。
这种变换器在许多
应用中都起着重要的作用,例如太阳能发电系统、家用电器和工业控制系统等。
dc转ac逆变器原理
直流(DC)到交流(AC)逆变器是一种电子装置,它将直流电源转换为交流电源。
它的原理基于使用电子开关将直流电压转换为交流信号。
主要原理如下:
1. 步骤1:整流:在直流输入端使用整流电路将交流电源转换为直流电压。
2. 步骤2:滤波:使用滤波电路将整流后的直流信号的波动降低,使其转换为平滑的直流电压。
3. 步骤3:逆变:使用逆变电路将平滑的直流电压转换为交流信号。
逆变电路通常使用可控开关(如晶体管或场效应管)来切换电流流向和极性,根据所需的输出电压和频率来生成所需的交流信号。
4. 步骤4:输出滤波:通过输出滤波电路去除逆变器产生的交流信号中的杂波和谐波,使其成为纯净的交流电源。
总体原理是通过整流-滤波-逆变-输出滤波的步骤将直流电源转换为交流电源。
这使得直流电源可以被用来驱动交流设备,如电动机、电器等。