8 高速铁路牵引网故障测距系统
- 格式:pdf
- 大小:851.95 KB
- 文档页数:11
高速铁路牵引供电系统故障测距方法的研究和修正汪洋发表时间:2019-07-24T13:45:55.253Z 来源:《电力设备》2019年第5期作者:汪洋[导读] 摘要:近年来,我国的高速铁路工程建设越来越多,在高速铁路牵引供电系统中,故障测距系统对牵引供电系统故障区段快速准确定位起着至关重要的作用,本文对京沪高铁所采用的故障测距方法进行介绍和研究,实时采集每日动态检测车线路位置公里标及供电臂上牵引供电所亭的分布电流,并结合GPS卫星时钟实时对时系统对所采集的公里标和电流进行准确标定,从而实现Q-L分段数据表的修正,提高故障测距精度。
(中国铁路上海局集团有限公司杭州供电段杭州 310000)摘要:近年来,我国的高速铁路工程建设越来越多,在高速铁路牵引供电系统中,故障测距系统对牵引供电系统故障区段快速准确定位起着至关重要的作用,本文对京沪高铁所采用的故障测距方法进行介绍和研究,实时采集每日动态检测车线路位置公里标及供电臂上牵引供电所亭的分布电流,并结合GPS卫星时钟实时对时系统对所采集的公里标和电流进行准确标定,从而实现Q-L分段数据表的修正,提高故障测距精度。
关键词:高速铁路;故障测距;动态检测车;公里标引言面对新的发展形势,高速铁路牵引供电系统传统的运维方式存在一些棘手问题,如牵引变压器利用效率不高、部分易老化设备寿命周期过短、运营维护成本过高、迅猛发展的牵引供电系统规模与运维人员短缺矛盾突出等。
以上问题急需一种长效的运维管理模式予以解决,以提高高速铁路牵引供电设备管理水平和资产运营效率,进而达到“提质增效”目的。
1主要牵引供电制式电气化铁路采用单相交流牵引供电,但是各国的牵引供电制式有所不同。
德国等中、北欧国家因历史原因采用16.7Hz单相交流供电制式,法国、英国等国家电网电压等级高、短路容量大,采用单相变压器为铁路供电,而日本受某些地区薄弱电网影响采用Scott平衡变压器为铁路供电。
我国电气化铁路采用单相工频交流牵引供电方式,受地区电网特点影响,变压器接线形式多样。
专业研讨672019年第19期电气化铁道供电牵引网故障测距分析◎.方小飞/吉林铁道职业技术学院摘要:随着我国高速铁道的不断发展,电气化铁道成为了铁路动力的发展趋势,并以行驶密度大、速度快的优势成为了我国未来铁路发展的主力军。
而该种动力方式要求牵引功率高,因此选择正确的供电方式可以有效提升输送功率。
AT、BT 供电方式为告诉铁路提供了大功率的电力输出,但在其运行的过程中,依然存在供电牵引网故障问题,因此,本文通过分析供电牵引网故障测距,提出了几点解决方案,以更好地保证供电方式的正常运作。
关键词:电气化铁道供电;牵引网;故障测距一、AT 供电方式(一)AT 供电方式的测距原理在我国的电气化铁道供电系统中,AT 供电方式得到了很好的应用及发展。
就目前来说,在电气化铁路系统中,所使用的AT 供电线路,如图1所示,一般采用的是SP(末端分区亭)并联运行或者是单线运行方式。
因此在正常维修时,要求在SSP(开闭所)处实施并联。
在天窗运行方式时,AT 在F 与T 线之间存在并联,使牵引网阻抗距离关系呈非线性,因此该种供电方式不能应用于直接供电线路中的电控测距中。
图1 AT供电牵引网示意图如图2所示,全并联AT 供电牵引网的AT 方式上下共用,并联所有AT 处所处的上下行钢轨(R),正馈线(F)及接触网(T)。
其中上、下行线路接触网分别为T1、T2;钢轨分别为R1、R2;正馈线分别为F1、F2;双极断路器分别为CB1、CB2;AT 所及分区所的自耦变压器分别为AT1、AT2;Tr 为带中心抽头的单相变压器。
在目前的AT 供电牵引网中,普遍采用AT 中性点吸上电流比测距进行故障测距。
图2 全并联AT供电牵引网示意图图3所示为新型AT 供电牵引网,当供电网发生金属性短路时,牵引网阻抗即为端口阻抗。
一般情况下,AT 电牵引网由于横连线与AT 的存在,所有上、下行线纵向元件在线路参数上不完全对称。
但从图3的新型AT 供电牵引网中可以看出,上、下行的F 、T 线路呈相互对称的两项,具有一定的对称性。
复杂牵引网全并联AT供电故障测距方案的探讨摘要:以某高速铁路牵引变电所为例,开展铁路牵引网供电臂较复杂(有T 接)情况下的故障测距及保护整定方案的研究。
重点分析T接情况下故障测距方式选择、测距精度调整中存在问题的解决方法,进而达到缩短故障点查找时间,提高供电可靠性的目的。
关键词:牵引变电所;AT供电;故障测距;馈线保护Abstract: Taking a high-speed railway traction substation as an example, the fault location and protection setting scheme of railway traction network with T-connection of power supply arm are studied. This paper mainly analyzes the solutions to the problems existing in the selection of fault location mode and the adjustment of location accuracy under the condition of T-connection, so as to improve the reliability of power supply.Key words: traction substation; auto transformer supply system; fault location; feeder protection引言为了提高接触网T接线路跳闸后保护可靠性和测距精度,缩短实际故障点的查找时间。
结合现场实际情况,对高速铁路某牵引变电所215、216馈线改造后的历次跳闸数据和管段内其他线路跳闸数据进行分析,进一步的提出更加具有针对性的故障测距方案,其数据和结论对复杂线路条件下的测距方式选择具有较好的借鉴意义。
牵引网故障测距华东交通大学电气学院07铁道电气化3班韩佳顺电气化铁道牵引供电系统是指从牵引变电所经馈电线到牵引网再到电力机车的工作系统。
我国电气化铁道采用工频单相交流牵引制式。
牵引变电所一般用于将三相110 kV的电能变换成27.5 kV(牵引网额定电压为25 kV)的电能并按单相分配给机车用户。
根据牵引网不同供电方式的要求及牵引变电所为抑制单相牵引负荷造成电力系统的不对称影响,常采用不同接线方式与结构的主变压器,并以此将变电所区分为三相牵引变电所(一般用Y0/△-11变压器,二次侧△的C相接地,由A、B相向两侧供电,形成左右两侧供电臂。
)、单相牵引变电所、三相两相牵引变电所(如Scott接线主变压器、平衡变压器等),供电原理如图2所示。
而前面提到的“牵引网不同供电方式”一般可分为直接供电(direct feeding)、BT(booster transfor- mer)供电和AT(auto-transformer)供电方式。
上述不同的牵引变电所形式、不同的牵引网供电方式及针对单复线电气化区段,对故障测距均有不同的要求。
因此,有必要研究针对不同类型牵引网的故障测距算法。
电力牵引负荷的特点从故障测距涉及的因素来考查电力牵引负荷的特点,会发现它有以下一些特点值得关注。
(1)一段牵引网一般只由1台变压器从单端供电,形成明显的线路首端和末端,并且没有分支;在线路的首端,可将变压器看成它的电源;(2)单台机车功率相对于变电所容量较大,因此,机车的各种工况导致的负荷电流波动较大;电流的变化以突变(阶跃)居多;(3)负荷峰、谷值相差悬殊;(4)滑动取流的机车受电弓由于离线产生电弧及机车的频繁调级、投切(变压器空载),导致在系统中产生丰富的谐波(高次及分次);(5)系统的回流(经回流轨、地或回流线)杂乱。
简便起见,下文中关于以上特点的引用将直接使用其序号。
各种测距方法在牵引网中应用的比较按照故障测距原理,输电线故障测距一般可分为阻抗法、故障分析法和行波法。
牵引网故障测距系统第一节牵引网故障测距电气化铁路牵引供电系统的故障大多数发生在接触网,故障致使保护动作而跳闸,中断供电,这类故障往往产生电弧,对绝缘器件和导线有较大损害,如不及时排除,故障可能再次发生。
为了提高牵引供电的可靠性,目前几乎所有牵引变电所都装有接触网故障测距装臵。
这种装臵能在接触网发生短路故障时,自动测量出故障点的距离,对于及时发现和排除故障,特别是发现和排除许多难以发现的瞬时性故障具有十分重要的意义。
目前,应用于牵引供电系统的故障点测距装臵主要有电抗型和电流型两种。
电抗型是通过测量短路电抗值的方法来量度故障点的距离。
电流型是用于AT供电方式中,它是通过测量故障点两侧AT变“吸上电流比值”的方法量度故障点的距离,复线区段供电臂末端并联的用“上下行电流比值”的方法量度故障点的距离,单线区段用“吸馈电流比值”的方法量度故障点的距离。
目前,AT测距原理主要有“AT中性点吸上电流比原理”、“吸馈电流比”和“复线上下行电流比原理”,前者适用于单、复线T-R、T-PW、F-PW、F-R等短路故障下的测距,不适合T-F短路故障测距;后者适用于复线下各种类型短路故障测距,不适用单线下故障测距,第二节 BT和直供系统故障点测距BT和直供系统故障点测距多用电抗型故障点测距装臵,是通过测量牵引变电所至故障点短路电抗的方法来反应故障点的距离,由于测量数值只反应线路电抗值,因而测量值不受过渡电阻变化的影响,相对误差较少。
无论是直供还是BT牵引供电系统,由于接触网结构、线路结构沿线的变化,变电所出口处可能安装有抗雷圈、串联电容补偿等设备,使供电臂内单位长度阻抗不可能均匀分布,且电抗—距离曲线不一定通过原点,因此在实际构成故障点测距装臵时通常将电抗---距离特性根据实际供电臂情况做分段线性化处理,以消除测量误差。
即采用分段线性电抗逼近法测距原理,最多可分为10段,整定时输入线路各分段点对应的公里数及该分段内的单位电抗值,针对复线直供考虑互感的影响。
牵引网故障测距曾振华(华东交通大学,电气与电子工程学院,江西南昌330013)摘要:我国电气化铁道采用工频单相交流牵引制式,根据牵引网不同供电方式的要求及牵引变电所为抑制单相牵引负荷造成电力系统的不对称影响,常采用不同接线方式与结构的主变压器,在高压输电线中利用故障电流分量消除过渡电阻影响的阻抗测距原理及将其用于牵引网馈线故障测距的计算,采用该方法可以极大提高牵引网故障测距的测量精度。
最后,提出根据AT变压器投入情况进行整定值切换的方法,以保证距离保护的可靠性。
关键字:牵引网;故障测距;阻抗法;故障分量法;AT供电系统;馈线保护策略中图分类号:U223.8 文献标识码:A目前,电气化铁道存在多种供电方式,主要有直接供电方式、带回流线的直接供电方式、BT供电方式、AT供电方式等,应用于电气化铁道的故障测距装置大多数是基于阻抗测距原理的单端测距装置。
在双边供电方式下这种测距方法在原理上受过渡电阻的影响较大,因此要保证良好而稳定的测距精度将是十分困难的。
上述不同的牵引变电所形式、不同的牵引网供电方式及针对单复线电气化区段,对故障测距均有不同的要求。
因此,有必要研究针对不同类型牵引网的故障测距算法。
电力牵引负荷的特点:从故障测距涉及的因素来考查电力牵引负荷的特点,会发现它有以下一些特点值得关注。
(1)一段牵引网一般只由1台变压器从单端供电,形成明显的线路首端和末端,并且没有分支;在线路的首端,可将变压器看成它的电源;(2)单台机车功率相对于变电所容量较大,因此,机车的各种工况导致的负荷电流波动较大;电流的变化以突变(阶跃)居多;(3)负荷峰、谷值相差悬殊;(4)滑动取流的机车受电弓由于离线产生电弧及机车的频繁调级、投切(变压器空载),导致在系统中产生丰富的谐波(高次及分次);(5)系统的回流(经回流轨、地或回流线)杂乱。
各种测距方法在牵引网中应用的比较,按照故障测距原理,输电线故障测距可分为阻抗法、故障分析法,行波法和AT距离保护法。
高速铁路客运牵引网故障测距研究摘要:加快中国的高速铁路快速发展,特别是加快高铁客运专线的建设,是解决铁路运输的一个有效措施。
牵引网是保障高铁客运专线安全运输的输电设备。
当牵引网发生故障后能快速测量出故障点的距离是具有重要意义的。
目前广泛采用的电抗测距法更适用于直供或BT供电方式,不适合于采用AT供电方式的高铁客运专线,本文提出一个新的故障测距方案—行波测距法,对其测量原理及其可行性进行研究。
关键词:客运专线;牵引网;行波测距;故障测距近年来,虽然中国高速铁路发展迅速,但铁路运输供需矛盾依然突出。
解决这个问题的有效办法就是加快铁路电气化建设,尤其是高铁客运专线建设。
牵引供电系统是客运专线系统的重要组成部分。
牵引网的最大缺点是可靠性较差且无备用,一旦出现停电故障,将直接影响正常的行车秩序,甚至旅客人身安全。
因此,牵引网发生故障后能得到及时的排查处理,是保障铁路安全运输的必要条件。
传统的人力排查工作量大,且不能满足实际需要,因此研究高铁客运专线牵引网故障测距方案对铁路运输的高效运行具有一定的实际价值。
目前几乎所有牵引变电所都装有牵引网故障测距装置用以提高供电的可靠性。
在牵引网发生短路故障时,装置能自动测量出故障点的距离,对于及时发现和排除故障,特别是发现和排除许多难以发现的瞬时性故障具有十分重要的意义。
目前已有的牵引网故障测距装置中,广泛采用阻抗法进行测距。
目前在牵引供电系统中,对于BT和直接供电系统牵引网故障测距普遍采用电抗法。
阻抗法即利用故障时测量到的工频电压和电流量来计算故障回路的阻抗值,再根据阻抗公式,线路长度与短路阻抗值成正比,从而求出观测点到故障点的距离。
但电抗法却不适用于AT牵引供电系统,主要是由于AT牵引供电系统结构复杂,运行方式繁多,且故障时阻抗—距离曲线呈非线性,采用阻抗法误差极大。
高铁客运专线牵引供电系统考虑AT供电方式在提高牵引网供电能力、改善电磁环境、减少电分相和降低外部电源投资等方面具有明显的优势,所以采用了AT供电方式。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。