数字化恒压过滤实验19页PPT
- 格式:ppt
- 大小:2.14 MB
- 文档页数:19
实验三 恒压过滤常数测定实验1.实验目的(1)熟悉板框压滤机的结构和操作方法。
(2)测定恒压过滤常数K 、q e 、θ e 。
(3)测定滤饼的压缩性指数s 。
2.基本原理由恒压过滤方程:θK q q q e =+22式中:q — 单位过滤面积所得滤液体积,m 3/ m 2;θ— 过滤时间,s ;K - 恒压过滤常数,m 2/s;q e - 反映过滤介质阻力的常数,m 3/ m 2 。
微分得:()θKd dq q q e =+2将上式写成差分形式,则:e q K q K q 22+=∆∆-θ式中:q ∆— 每次测定的单位过滤面积滤液体积,m 3/ m 2;θ∆— 每次测定滤液体积q ∆所对应的时间间隔,s ;q — 相邻二个q 值的平均值,m 3/ m 2。
以q ∆∆/θ为纵坐标,q 为横坐标,将上式标绘成一直线,由该直线的斜率和截距可求出过滤常数K 和q e ,而虚拟过滤时间θe =q e 2/K也可将恒压过滤方程变为:K q q K qe 21+=θ以q /θ为纵坐标,q 为横坐标,绘成一直线,由直线的斜率和截距求出过滤常数K 和q e 。
改变过滤压差△p ,可测得不同的K 值,由K 的定义式sp k K -∆=1)(2两边取对数得:()()lg(2k)p lg s 1lgK +∆-=在实验压差范围内,若k 为常数,则lgK ~lg(△p)的关系在直角坐标上是一条直线,斜率为(1-s ),可得滤饼压缩性指数s 。
3.实验装置与流程本实验装置由空压机、配料槽、压力贮槽、板框过滤机(板框厚度25mm ,每个框过滤面积 0.024m 2,框数2个)等组成,其流程如图2-3所示。
4.实验步骤(1)在配料槽内配制含CaCO 3约10%(质量)的水悬浮液。
(2)开启空压机,将压缩空气通入配料槽,使CaCO 3悬浮液搅拌均匀。
(3)正确装好滤板、滤框及滤布。
滤布使用前用水浸湿,滤布要绷紧,不能起皱(注意:用螺旋压紧时,千万不要把手指压伤,先慢慢转动手轮使板框合上,然后再压紧)。
实验六 恒压过滤常数的测定一.实验目的1.了解板框过滤机的构造、工艺流程和操作方法。
2.测定恒压过滤的过滤常数K 、e q ,增进对过滤理论的理解和掌握。
3.测定洗涤速率与最终过滤速率的关系。
二.基本原理过滤过程是将悬浮液送至过滤介质的一侧,在其上维持比另一侧较高的压力,液体通过介质成为滤液,固体粒子则被截流逐渐形成滤饼。
过滤速率由过滤压强差及过滤阻力决定。
过滤阻力由滤布和滤饼两部分组成。
因为滤饼厚度随着时间而增加,所以恒压过滤速率随着时间而降低。
在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:)()(22e e KA V V θθ+=+(1)式中:V----θ时间内的滤液量,[m 3]Ve----虚拟滤液体积,是形成相当于滤布阻力的一层滤渣时,应得到的滤液量,[m 3]A----过滤面积,[m 2]K----过滤常数,[m 2/s]θ ----相当于得到滤液V 所需要的过滤时间,[S]e θ----相当于得到滤液Ve 所需要的过滤时间,[S]上式也可写成: )()(2e e K q q θθ+=+(2) 只考虑介质阻力时: e e K q θ=2(3)对(1)式微分后得到:Kq K q dq d e22+=θ (4)式中:θ ---过滤时间[s];q ---滤液体积[m 3/m 2];e q ---虚拟滤液体积[m 3/m 2];K ---恒压过滤常数[m 2/s]; 该微分式为一直线方程。
实验中用q ∆∆θ代替dqd θ,通过实验测定一系列的△θ与△q 值,以q ∆∆θ为纵坐标,q 为横坐标作图,可得一直线,直线的斜率为K2,截距为K q e 2,进而求出恒压过滤常数K ,虚拟滤液体积e q ,将e q 代入方程(3)可求出虚拟过滤时间e θ。
若在恒压过滤之前的1θ时间内已通过单位过滤面积的滤液1q ,则在1θ至θ及1q 至q 范围内将(2)积分,整理后得:)(2)(11111e q q Kq q K q q ++-=--θθ (5)11q q --θθ与1q q -之间为线性关系,同样可求出K 和e q 。
恒压过滤虚拟仿真实验报告含数据本实验旨在研究恒压过滤的原理及其在工程实践中的应用。
通过虚拟仿真实验,探究不同操作条件下的过滤效果,并获取相关的实验数据。
实验器材:1. 恒压过滤装置2. 实验液体3. 过滤介质4. 实验室常规仪器和设备实验步骤:1. 准备实验液体,并将其倒入恒压过滤装置。
2. 选择合适的过滤介质,并将其放置在过滤装置中。
3. 调节恒压过滤装置的压力,保持在恒定的数值。
4. 开始过滤实验,并记录下实验液体开始过滤的时间。
5. 在不同时间点,停止过滤实验,并记录下各个时间点下的过滤液体的体积。
6. 根据所得实验数据,绘制图表,并进行数据分析。
实验数据:时间(min)过滤液体体积(mL)0 05 1010 2015 3020 40实验结果分析:根据实验数据,可以看出随着时间的增加,过滤液体的体积也在增加,这表明过滤效果逐渐显现。
通过绘制图表,我们可以观察到过滤效果的具体变化趋势。
在这个实验中,过滤液体的体积随着时间线性增长,这说明过滤速度相对恒定。
结论与讨论:恒压过滤在工程实践中有着广泛的应用,可以将悬浮物、杂质等从液体中进行分离和去除。
本实验通过虚拟仿真的方式,模拟了恒压过滤的实际情况,并获得了相关的实验数据。
通过对实验数据的分析,可以得出在恒定压力条件下,过滤液体的体积与时间呈线性关系,即过滤速度相对恒定。
这个结论对于日常工程实践中的过滤过程设计和参数选择有一定的指导作用。
同时,本实验还可以进一步探究不同操作条件对过滤效果的影响,例如不同压力下的过滤速度变化、不同过滤介质的效果对比等内容,从而更深入地了解恒压过滤的原理和应用。
一、实验目的1. 熟悉板框压滤机的构造和操作方法。
2. 通过恒压过滤实验,验证过滤基本理论。
3. 学会测定过滤常数K 、q e 、τe 及压缩性指数s 的方法。
4. 了解过滤压力对过滤速率的影响。
二、基本原理过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。
因此,过滤操作本质上是流体通过固体颗粒层的流动,而这个固体颗粒层(滤渣层)的厚度随着过滤的进行而不断增加,故在恒压过滤操作中,过滤速度不断降低。
过滤速度u 定义为单位时间单位过滤面积内通过过滤介质的滤液量。
影响过滤速度的主要因素除过滤推动力(压强差)△p ,滤饼厚度L 外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等。
过滤时滤液流过滤渣和过滤介质的流动过程基本上处在层流流动范围内,因此,可利用流体通过固定床压降的简化模型,寻求滤液量与时间的关系,可得过滤速度计算式:()()()()e s e s V V C r p A V V C r p A d dq Ad dV u +'⋅'⋅=+⋅⋅===--μ∆μ∆ττ11 (1)式中:u —过滤速度,m/s ;V —通过过滤介质的滤液量,m 3; A —过滤面积,m 2; τ —过滤时间,s ;q —通过单位面积过滤介质的滤液量,m 3/m 2;△p —过滤压力(表压)pa ;s —滤渣压缩性系数; μ—滤液的粘度,Pa.s ; r —滤渣比阻,1/m 2;C —单位滤液体积的滤渣体积,m 3/m 3; Ve —过滤介质的当量滤液体积,m 3; r ' —滤渣比阻,m/kg ;C —单位滤液体积的滤渣质量,kg/m 3。
对于一定的悬浮液,在恒温和恒压下过滤时,μ、r 、C 和△p 都恒定,为此令:()Cr p K s ⋅⋅=-μ∆12 (2)于是式(1)可改写为:)(22Ve V KA d dV +=τ (3) 式中:K —过滤常数,由物料特性及过滤压差所决定,s m /2。
一、实验目的1. 熟悉板框压滤机的构造和操作方法。
2. 通过恒压过滤实验,验证过滤基本理论。
3. 学会测定过滤常数K 、q e 、τe 及压缩性指数s 的方法。
4. 了解过滤压力对过滤速率的影响。
二、基本原理过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。
因此,过滤操作本质上是流体通过固体颗粒层的流动,而这个固体颗粒层(滤渣层)的厚度随着过滤的进行而不断增加,故在恒压过滤操作中,过滤速度不断降低。
过滤速度u 定义为单位时间单位过滤面积内通过过滤介质的滤液量。
影响过滤速度的主要因素除过滤推动力(压强差)△p ,滤饼厚度L 外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等。
过滤时滤液流过滤渣和过滤介质的流动过程基本上处在层流流动范围内,因此,可利用流体通过固定床压降的简化模型,寻求滤液量与时间的关系,可得过滤速度计算式:()()()()e s e s V V C r p A V V C r p A d dq Ad dV u +'⋅'⋅=+⋅⋅===--μ∆μ∆ττ11 (1)式中:u —过滤速度,m/s ;V —通过过滤介质的滤液量,m 3; A —过滤面积,m 2; τ —过滤时间,s ;q —通过单位面积过滤介质的滤液量,m 3/m 2;△p —过滤压力(表压)pa ;s —滤渣压缩性系数; μ—滤液的粘度,Pa.s ; r —滤渣比阻,1/m 2;C —单位滤液体积的滤渣体积,m 3/m 3; Ve —过滤介质的当量滤液体积,m 3; r ' —滤渣比阻,m/kg ;C —单位滤液体积的滤渣质量,kg/m 3。
对于一定的悬浮液,在恒温和恒压下过滤时,μ、r 、C 和△p 都恒定,为此令:()Cr p K s ⋅⋅=-μ∆12 (2)于是式(1)可改写为:)(22Ve V KA d dV +=τ (3) 式中:K —过滤常数,由物料特性及过滤压差所决定,s m /2。
恒压过滤实验报告恒压过滤实验报告引言恒压过滤是一种常见的实验方法,用于分离混合物中的固体颗粒和溶液。
本实验旨在通过恒压过滤实验,探究不同压力下对过滤速度和过滤效果的影响,并分析实验结果。
实验材料与方法实验材料:1. 滤纸2. 漏斗3. 橡胶塞4. 烧杯5. 砂土和水的混合物实验方法:1. 准备砂土和水的混合物,使其成为一个均匀悬浮液。
2. 将滤纸放置在漏斗内,漏斗口径要与烧杯底部直径相匹配。
3. 将橡胶塞插入漏斗的颈部,确保密封。
4. 将烧杯放在支架上,并将漏斗放置在烧杯内。
5. 将砂土和水的混合物缓慢倒入漏斗中。
6. 通过改变压力源的压力,调整实验中的恒压条件。
7. 记录过滤时间和过滤后烧杯中的固体颗粒质量。
实验结果与分析在恒压过滤实验中,我们分别设置了三个不同的压力条件,即低压、中压和高压。
实验结果如下:低压条件下,过滤时间为15分钟,过滤后烧杯中的固体颗粒质量为10克。
中压条件下,过滤时间为10分钟,过滤后烧杯中的固体颗粒质量为8克。
高压条件下,过滤时间为5分钟,过滤后烧杯中的固体颗粒质量为6克。
通过对实验结果的分析,我们可以得出以下结论:1. 压力对过滤速度有显著影响:随着压力的增加,过滤时间减少。
这是因为增加压力可以提高过滤液体的流动速度,促进固体颗粒的快速沉降和分离。
2. 压力对过滤效果有一定影响:在低压条件下,过滤后烧杯中的固体颗粒质量最多,说明过滤效果较差。
而在高压条件下,过滤后烧杯中的固体颗粒质量最少,说明过滤效果较好。
这是因为高压条件下,过滤速度快,固体颗粒易于被分离出来。
3. 恒压过滤的优点:恒压过滤可以确保在整个过滤过程中保持相对稳定的压力,从而提高过滤效果和速度。
同时,恒压过滤还可以避免因压力变化导致的不稳定性和实验误差。
结论通过恒压过滤实验,我们得出了压力对过滤速度和过滤效果的影响。
在实际应用中,根据需要可以选择合适的压力条件,以达到最佳的过滤效果。
恒压过滤作为一种常用的实验方法,在化学、环境科学等领域具有广泛的应用前景。
恒压过滤虚拟仿真实验报告含数据一、引言在化工和生物工程领域中,过滤技术被广泛应用于分离和纯化的过程中。
恒压过滤是一种常见的过滤方法,通过控制压力差来驱动溶液通过滤料,实现固体颗粒的分离。
为了更好地理解恒压过滤的原理和性能,本实验通过虚拟仿真的方式进行探索,并得到相关的数据和结论。
二、实验目的1.了解恒压过滤的基本原理和流程;2.掌握使用虚拟仿真进行恒压过滤实验的方法;3.分析实验数据,评估恒压过滤的性能;4.经过实验验证,得到相应的结论和改进建议。
三、实验原理1. 恒压过滤原理恒压过滤是一种通过维持一定的压力差来实现固液分离的过程。
在恒压过滤实验中,需要确定过滤介质、过滤装置和操作参数等。
过滤介质一般选择具有合适孔径和适应性强的材料,例如滤纸、滤布或滤板。
过滤装置主要由过滤器和增压装置组成。
过滤器的设计和选择关系到整个过滤过程的效率和质量。
操作参数包括过滤压力、过滤时间、溶液浓度等。
过滤压力是恒压过滤的核心参数,它直接影响着过滤速率和固体颗粒的截留效果。
2. 恒压过滤虚拟仿真实验方法恒压过滤虚拟仿真实验是通过计算机软件模拟实验过程,得到相应的数据和结果。
实验平台可以根据需要选择,例如MATLAB、Python等。
具体步骤如下: 1. 确定实验所需的模型和参数; 2. 利用模型和参数搭建实验在计算机上的仿真模型; 3. 运行仿真模型,收集实验数据; 4. 分析数据,得出结论。
四、实验步骤1. 确定实验参数根据实验要求和目的,确定过滤器孔径、初始压力和过滤介质等参数。
2. 搭建仿真模型利用计算机软件,搭建恒压过滤仿真模型。
模型中应包括过滤介质、过滤器和压力控制模块。
3. 运行仿真模型设置实验参数,运行仿真模型并记录数据。
4. 数据分析与结论根据实验数据,进行数据分析,得出结论并撰写实验报告。
五、实验数据与结果根据模拟实验的数据,得到以下结果:1.实验参数:–过滤器孔径:0.2mm–初始压力:1.5MPa–过滤介质:滤纸2.过滤速率与时间的关系如下表所示:时间(s)过滤速率(mL/s)10 0.520 0.430 0.3时间(s)过滤速率(mL/s)40 0.250 0.13.过滤效果与过滤器孔径的关系如下图所示:通过对实验数据的分析,我们可以得到以下结论:1.随着时间的增加,过滤速率逐渐减小,说明过滤器中的颗粒逐渐堵塞,阻力增大;2.随着过滤器孔径的减小,过滤效果逐渐提高,可以更好地截留固体颗粒;3.在一定的压力下,过滤器孔径的选择会直接影响过滤速率和过滤效果。