天津市南开区南大附中 2018年 八年级数学上册 轴对称与等腰三角形 培优练习卷(含答案)
- 格式:doc
- 大小:175.00 KB
- 文档页数:10
一、选择题1.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠2.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒3.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF 4.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( )A .2B .9C .13D .155.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°6.如图,1∠等于( )A .40B .50C .60D .707.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90° 8.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2m B .3m C .5m D .7m 9.正十边形每个外角等于( ) A .36° B .72° C .108° D .150° 10.内角和与外角和相等的多边形是( )A .六边形B .五边形C .四边形D .三角形 11.下列长度的三条线段,能组成三角形的是( )A .3,5,6B .3,2,1C .2,2,4D .3,6,1012.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .4013.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°14.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠ B .12A B C ∠=∠=∠ C .3A B C ∠=∠=∠D .1123A B C ∠=∠=∠ 15.做一个三角形的木架,以下四组木棒中,符合条件的是( ) A .3cm,2cm,1cm B .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm二、填空题16.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;17.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.18.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).19.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=______°.20.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.21.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.22.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.23.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.24.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB ⊥AE ,则∠BFC=75°; ②图 2 中 BD 过点C ,则有∠DAE+∠DCE=45°; ③图 3中∠DAE+∠DFC 等于 135°;④保持重合的顶点不变,改变三角板BAD 的摆放位置,使得D 在边AC 上,则∠BAE=105°.25.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________. 26.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.三、解答题27.在ABC ∆中, ,AB AC CG BA =⊥交BA 的延长线于点G ,点D 是线段BC 上的一个动点. 特例研究:()1当点D 与点B 重合时,过B 作BF AC ⊥交AC 的延长线于点F ,如图①所示,通过观察﹑测量BF 与CG 的长度,得到BF CC =.请给予证明.猜想证明:()2当点D 由点B 向点C 移动到如图②所示的位置时,过D 作DF AC ⊥交CA 的延长线于点F ,过D 作DE BA ⊥交BA 于点E ,此时请你通过观察,测量DE DF 、与CG 的长度,猜想并写出DE DF 、与CG 之间存在的数量关系,并证明你的猜想.拓展延伸:()3当点D 由点B 向点C 继续移动时(不与C 重合) ,过D 作DF AC ⊥交AC 于点F ,过D 作DF BA ⊥交BA (或BA 的延长线)于点E ,如图③,图④所示,请你判断(2)中的猜想是否仍然成立?(不用证明)28.在ABC 中,,20A B C A B ∠+∠=∠∠-∠=︒, (1)求A ∠,B ,C ∠的度数;(2)ABC 按角分类,属于什么三角形ABC 按边分类,属于什么三角形? 29.如图,在ABC 中,AD 平分BAC ∠,E 为AD 上一点,过点E 作EF AD ⊥交BC 的延长线于点F .(1)若40B ∠=︒,70ACB ∠=︒,求F ∠的度数;(2)请直接写出F ∠与B ,ACB ∠之间的数量关系:______.30.如图,AD 、AE 分别是ABC 的高和角平分线. (1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β),请用含α,β的代数式表示∠DAE ,并证明.。
一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm C解析:C【分析】 利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN 垂直平分线段AD ,∴AC=DC ,AE+ED=AD=10cm ,∵AB+BC+AC=15cm ,∴AB+BC+DC=15cm ,∴△ABD 的周长=AB+BC+DC+AD=15+10=25cm ,故选:C .【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A .16B .32C .64D .128C解析:C【分析】 根据三角形的外角性质以及等边三角形的判定和性质得出OA 1=B 1A 1=1,OA 2=B 2A 2=2,OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而得出答案.【详解】如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠2=60°,∵∠MON=30°,∴∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1= A 1A 2=1,∵△A 2B 2A 3是等边三角形,同理可得:OA 2=B 2A 2=2,同理;OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,OA 5=B 5A 5=4216=,…,以此类推:所以OA 7=B 7A 7=6264=,故选:C .【点睛】本题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出OA 2=B 2A 2=2, OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而发现规律是解题的关键.3.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A 13B 32C 40D 20解析:A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE ,然后根据等边对等角可得∠ECD=∠A ,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D 是AC 的中点,ED AC ⊥交AB 于点E ,∴ED 垂直平分AC ,∴AE=CE ,∴∠ECD=∠A ,∵∠A=36°,∴∠ECD=36°,∵AB=AC ,∠A=36°,∴∠B=12(180°-36°)=72°, ∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC ,∴BC=CE ,∵AE=CE ,ED ⊥AC ,∴CD=12AC =3, 在Rt △CED 中,∴故选A .【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.4.若a ,b 是等腰ABC 的两边长,且满足()2370a b -+-=,此三角形的周长是( )A .13B .13或17C .17D .20C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a 和b 的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵ ()2370a b -+-=,∴ a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C.【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;.5.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为()A.75°B.90°C.105°D.120°或20°D解析:D【分析】设两内角的度数为x、4x,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x、4x,当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;因此等腰三角形的顶角度数为20°或120°.故选:D.【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.4,3-,点P在x轴上,且使6.如图,在平面直角坐标系xOy中,点A的坐标为()AOP为等腰三角形,符合题意的点P的个数为().A.2 B.3 C.4 D.5C解析:C【分析】以O为圆心,AO长为半径画圆可得与x轴有2个交点,再以A为圆心,AO长为半径画圆可得与x轴有1个交点,然后再作AO的垂直平分线可得与x轴有1个交点.【详解】解:如图所示:点P在x轴上,且使△AOP为等腰三角形,符合题意的点P的个数共4个,故选:C .【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.7.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .5B 解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD , ∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.8.平面直角坐标系中,已知()1,1A ,()2,0B .若在x 轴上取点C ,使ABC 为等腰三角形,则满足条件的点C 的个数是( )A .2个B .3个C .4个D .5个C解析:C【分析】分三种情况:当AB=AC 时,当BA=BC 时,当AC=AB 时,根据等腰三角形两边相等的性质分别作图即可得解.【详解】当AB=AC 时,点C 与点O 重合;当BA=BC 时,以点B 为圆心,AB 长为半径画弧,与x 轴有两个交点;当AC=AB 时,作线段AB 的垂直平分线,与x 轴有一个交点,共有4个点C ,故选:C . .【点睛】此题考查等腰三角形的性质,直角坐标系中作等腰三角形的方法,熟记等腰三角形的性质并利用其作图是解题的关键.9.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=()A.22017B.22018C.22019D.22020B解析:B【分析】根据等边三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=2,a3=4a1=22,a4=8a1=32,a5=16a1=42,,以此类推:a2019=22018.故选:B.【点睛】此题主要考查了等边三角形的性质以及含30度角的直角三角形的性质,根据已知得出a 3=4a 1=4,a 4=8a 1=8,a 5=16…进而发现规律是解题关键.10.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm D解析:D【分析】 要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒.【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =.∴腰长为5 1.68cm ⨯=故选D .【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.二、填空题11.如图,在ABC 中,90ACB ︒∠=,30B ,6AC =,P 为BC 边的垂直平分线DE 上一个动点,则ACP △周长的最小值为________.18【分析】因为BC 的垂直平分线为DE 所以点C 和点B关于直线DE 对称所以当点动点P 和E 重合时则△ACP 的周长最小值再结合题目的已知条件求出AB 的长即可【详解】解:如图∵P 为BC 边的垂直平分线DE 上一解析:18【分析】因为BC 的垂直平分线为DE ,所以点C 和点B 关于直线DE 对称,所以当点动点P 和E 重合时则△ACP 的周长最小值,再结合题目的已知条件求出AB 的长即可.【详解】解:如图,∵P 为BC 边的垂直平分线DE 上一个动点,∴点C 和点B 关于直线DE 对称,∴当点动点P 和E 重合时则△ACP 的周长最小值,∵∠ACB=90°,∠B=30°,AC=6,∴AB=2AC=12,∵AP+CP=AP+BP=AB=12,∴△ACP 的周长最小值=AC+AB=18,故答案为:18.【点睛】本题考查了轴对称-最短路线的问题以及垂直平分线的性质,正确确定P 点的位置是解题的关键,确定点P 的位置这类题在课本中有原题,因此加强课本题目的训练至关重要. 12.如图,等腰ABC 的周长为36,底边上的高12AD ,则ABD △的周长为________.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC 为等腰三角形AD 为底边上的高∴AB=ACBD=DC ∵△ABC 的周长等于36∴AB+BD+DC+A解析:30【分析】根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD △的周长.【详解】∵△ABC 为等腰三角形,AD 为底边上的高,∴AB=AC ,BD=DC ,∵△ABC 的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD 的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.13.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.14.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论【详解】解:连接DAEA 如图∵∠BAC=135°∴∠B+∠C=180°-135°=45°∵DF 是AB 的垂直平分线EG 是AC 的垂直平解析:90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:连接DA 、EA ,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF 是AB 的垂直平分线,EG 是AC 的垂直平分线,∴DA=DB ,EA=EC ,∴∠B=∠DAB ,∠C=∠EAC ,∴∠DAB +∠EAC =∠B+∠C=45°,∴∠DAE=∠BAC –(∠DAB +∠EAC)=135°-45°=90°.故答案为:90°.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握线段的垂直平分线的性质. 15.如图,在正方形网格中,分别将①②③④四个网格涂上阴影,能与原阴影部分构成一个轴对称图形的有____________.(填网格序号)②③【分析】根据轴对称图形的概念求解【详解】解:有2个使之成为轴对称图形分别为:②③故答案是:②③【点睛】此题主要考查了轴对称图形的概念正确把握轴对称图形的概念是解题关键解析:②③.【分析】根据轴对称图形的概念求解.【详解】解:有2个使之成为轴对称图形,分别为:②,③.故答案是:②③.【点睛】此题主要考查了轴对称图形的概念,正确把握轴对称图形的概念是解题关键. 16.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.【分析】连接BP 过点E 作EF ⊥BC 根据可得PQ+PR=EF 结合等腰直角三角形三边长的关系即可求解【详解】连接BP 过点E 作EF ⊥BC ∵∴=BC×PQ+BE×PR=BC×(PQ+PR)=BC×EF ∴PQ 解析:2【分析】连接BP ,过点E 作EF ⊥BC ,根据BCE BPE BPC S S S =+,BE BC =,可得PQ+PR=EF ,结合等腰直角三角形三边长的关系,即可求解.【详解】连接BP ,过点E 作EF ⊥BC ,∵BE BC =,∴BCE BPE BPC SS S =+ =12BC×PQ+12BE×PR =12BC×(PQ+PR) =12BC×EF , ∴PQ+PR=EF ,∵ABC 是等腰直角三角形,∴∠B=45°,∴EFB △是等腰直角三角形,且BE=BC=2,∴EF=BE÷2=2÷2=2,∴PQ PR +=2,故答案是:2.【点睛】本题主要考查等腰直角三角形的性质,掌握“等积法”是解题的关键.17.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.【分析】过C 作CE ⊥AB 于E 交AD 于F 连接BF 则BF+EF 最小证△ADB ≌△CEB 得CE=AD=b 即BF+EF=b 再根据等边三角形的性质可得BE=a 从而可得结论【详解】解:过C 作CE ⊥AB 于E 交AD解析:+a b【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=b ,即BF+EF=b ,再根据等边三角形的性质可得BE=a ,从而可得结论.【详解】解:过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,∵△ABC 是等边三角形,∴BE=12AB a = ∵等边△ABC 中,BD=CD ,∴AD ⊥BC ,∴AD 是BC 的垂直平分线(三线合一),∴C 和B 关于直线AD 对称,∴CF=BF ,即BF+EF=CF+EF=CE ,∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.18.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是_________________.2:3:4【分析】将△APB绕A点逆时针旋转60°得△AP′C显然有△AP′C≌△APB连PP′证△AP′P是等边三角形PP′=AP所以△P′CP 的三边长分别为PAPBPC;由∠APB:∠BPC:∠解析:2:3:4.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,证△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;由∠APB:∠BPC:∠CPA=5:6:7,设∠APB=5xº,∠BPC=6xº,∠CPA=7xº,5x+6x+7x=360,x=20,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=40°,∠P′PC=80°,∠PCP′=60°即可.【详解】如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB ,∴△P′CP 的三边长分别为PA ,PB ,PC ,∵∠APB+∠BPC+∠CPA=360°,∠APB :∠BPC :∠CPA=5:6:7,设∠APB=5xº,∠BPC=6xº,∠CPA=7xº,∴5x+6x+7x=360,∴18x=360,∴x=20,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C -∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C :∠PCP′:∠P′PC=40°:60°:80°=2:3:4.故答案为:2:3:4.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.利用方程来解角成比例问题,三角形的内角和,用角度的和差计算解决问题.19.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD △与ABC 全等,点D 的坐标是______.或【分析】分情况:当△ABC ≌△ABD 时△ABC ≌△BAD 时利用全等三角形的性质解答即可【详解】分两种情况:当△ABC ≌△ABD 时AB=ABAD=ACBD=BC ∵点AB 在y 轴上∴△ABC 与△ABD 关 解析:()4,3-或()4,2-【分析】分情况:当△ABC ≌△ABD 时,△ABC ≌△BAD 时,利用全等三角形的性质解答即可.【详解】分两种情况:当△ABC ≌△ABD 时,AB=AB ,AD=AC ,BD=BC ,∵点A 、B 在y 轴上,∴△ABC 与△ABD 关于y 轴对称,∵C (4,3),∴D (-4,3);当△ABC ≌△BAD 时,AB=BA ,AD=BC ,BD=AC ,作DE ⊥AB ,CF ⊥AB ,∴DE=CF=4,∠AED=∠BFC=90︒,∴△ADE ≌△BCF ,∴AE=BF=4-3=1,∴OE=OA+AE=1+1=2,∴D (-4,2),故答案为:()4,3-或()4,2-.【点睛】此题考查全等三角形的判定及性质,确定直角坐标系中点的坐标,轴对称的性质,熟记全等三角形的性质是解题的关键.20.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.100【分析】连接AO 延长交BC 于D 根据线段垂直平分线的性质可得OB=OA=OC 再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A 即可求解【详解】解:连接AO 延长交BC 于D ∵O 为△A 解析:100【分析】连接AO 延长交BC 于D ,根据线段垂直平分线的性质可得OB=OA=OC ,再根据等腰三角形的等边对等角和三角形的外角性质可得∠BOC=2∠A ,即可求解.【详解】解:连接AO 延长交BC 于D ,∵O 为△ABC 三边垂直平分线的交点,∴OB=OA=OC ,∴∠OBA=∠OAB ,∠OCA=∠OAC ,∵∠BOD=∠OBA+∠OAB=2∠OAB ,∠COD=∠OCA+∠OAC=2∠OAC ,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC ,∵∠BAC=50°,∴∠BOC=100°.故答案为:100.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键.三、解答题21.如图1,点A 是射线OE :y x =-(x≥0)上的一点,已知232OA =,过点A 作x 轴的垂线,垂足为B ,过点B 作OE 的平行线交∠AOB 的平分线于点C .(1)求点A 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由.②在①的条件下,在平面内另有三点1(8,8)P -、2P (4,32-)、3(8484)P +-,,请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)解析:(1)(4,4)A -;(2)见解析;(3)①存在,P (8,-4);②满足全等的点有P 1、P 2、P 3,见解析.【分析】(1)根据题意,设(,)A a a -,在Rt △AOB 中,利用勾股定理,解得a 的值,即可解得点A 的坐标;(2)过点C 作CM ⊥x 轴于M ,由平行线的性质得到∠MBC=∠ABC ,结合角平分线上的点到角两边的距离相等可得CM= CH ,据此可证明CG =CH ;(3)①先计算∠BDC 的度数,再根据角平分线及平行线性质可证明∠BOC=∠BCO ,由等角对等边可解得BO=BC=AB ,继而得到∠ACP=∠BDC ,接着证明△APB 为等腰直角三角形,解答AP 的长,据此解题;②根据全等三角形的判定方法,分别证明1()BCD PCA AAS ≅、2()BCD P CA AAS ≅、3()BCD P AC AAS ≅即可解题.【详解】(1)∵AB ⊥x 轴∴∠ABO=90°∵A 在y x =-上∴设(,)A a a -则AB=OB=a即△ABO 为等腰直角三角形在Rt △AOB 中∵222AB OB OA +=∴2232a a +=∴a=±4(负值舍去)∴(44)A -,(2)如图,过点C 作CM ⊥x 轴于M∵BC//OE∴∠MBC=∠BOA=45°,∠ABC=∠OAB=45°∴∠MBC=∠ABC∵CM ⊥x 轴,CG ⊥AB∴CM= CG∵OC 平分∠AOB ,CM ⊥x 轴 CH ⊥OE∴CM= CH∴CG =CH(3)①存在点P易证∠BDC=∠BOD+∠OBD=22.5°+90°=112.5° ∵OC 平分∠AOB ,BC ∥OE ∴∠BOC=∠COA ,∠BCO=∠COA ∴∠BOC=∠BCO ∴BO=BC=AB 又∠ABC =45°∴∠BAC=∠BCA=67.5° ∴∠ACP=112.5° ∴∠ACP=∠BDC 又∠BAC=∠CDA=67.5°∴CA=CD∴当CP=BD 时,△ACP ≌△CDB ∴∠APC=∠DBC=45° ∴△APB 为等腰直角三角形 ∴AP=AB=OB=4 ∴P (8,-4) ②如图,满足全等的点有P 1、P 2、P 3理由如下, 1(8,8)P - ∴点1P 在射线(0)OE x x =-≥:y 上,84<1P ∴在线段OA 上, 连接1CP,45CG AB CBG ⊥∠=︒BCG ∴是等腰直角三角形,CG BG ∴=(4,4)A -4OB ∴=BC OB =222216BC BG CG OB ∴=+==4BG CG BC ∴===(4C ∴+-144CP ∴=+=11,//CP BC CP x ∴=轴145CP A BOA CBD ∴∠=∠=∠=︒190,PGA ∠=︒ 145P AG ∴∠=︒1167.545112.5CAP CAG P AG ∴∠=∠+∠=︒+︒=︒在BCD △与1PCA 中 111BDC P AC CP A CBD BC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩1()BCD PCA AAS ∴≅ 2P 的横坐标为4,点(4,4)4A OB -=,2P ∴在BA 的延长线上,连接22,AP CP67.5BAC ∠=︒2180112.5CAP BAC ∴∠=︒-∠=︒2CAP BDC ∴∠=∠ 2P的纵坐标为2BP ∴==2BG =22GP BP BG ∴=-=CG ∴=2GP CG ∴=CG AB ⊥245AP C ∴∠=︒2AP C ABC ∴∠=∠在BCD △与2P CA 中,22BDC P AC ABC AP C CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩2()BCD P CA AAS ∴≅3P,点C的横坐标为4,3CP ∴所在的直线垂直于x 轴,AB x ⊥轴3//CP AB ∴连接33CP AP 、,过点A 作3AQ CP ⊥交3P C 的延长线于点Q ,3//CP AB3180BAC ACP ∴∠+∠=︒3180112.5ACP BAC ∴∠=︒-∠=︒3ACP BDC ∴∠=∠(4,4)A -3444(4)AQ PQ ∴=-==--=3AQ PQ ∴= 3AQ PQ ⊥ 345APQ ∴∠=︒ 3APQ ABC ∴∠=∠ 在BCD △与3P AC 中33BDC PCA APC ABC CD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩3()BCD P AC AAS ∴≅故答案为:123P P P 、、 .【点睛】本题考查等腰直角三角形、全等三角形的判定与性质、平行线的性质、角平分线的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (−4,5),B (﹣3,1),C (−2,3).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1,其中点B 1的坐标是________;(2)若点M 是x 轴上的动点,在图中画出使△B 1CM 周长最小时的点M .解析:(1)图形见解析;B 1(3,2);(2)见解析【分析】(1)分别找到A 、B 、C 点关于y 轴的对称点,然后连接即可;(2)找C 关于x 轴的对称点C′,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【详解】解:(1)111A B C △如图所示;根据图形可知B 1(3,2),故答案为:(3,2);(2)如图所示:找C 关于x 轴的对称点C′,则C′(-2,-3),CM C M '=,连接1B C '交x 轴于一点M ,根据两点之间线段最短,可知此时的M 即为使1B CM △周长最小时的点M .【点睛】本题考查作图-轴对称、最短路径问题,解题的关键是熟练掌握基础知识.23.在等边三角形ABC 中,点E 为线段AB 上一动点,点E 与A ,B 不重合,点D 在CB 的延长线上,且ED =EC .(1)当E为边AB的中点时,如图1所示,确定线段AE与BD的大小关系,并证明你的结论;(2)如图2,当E不是边AB的中点时,(1)中的结论是否成立?若不成立,请直接写出EF BC交AC于点F)BD与AE的数量关系;若成立,请给予证明;(提示:过E作//(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,ABC 的边长为1,AE=2,请直接写出CD的长.解析:(1)AE=BD;见解析;(2)成立;AE=BD;见解析;(3)CD的长为3或1.【分析】(1)根据等边三角形三线合一的性质证得∠ECB=30°,由DE=CE,求出∠D=∠ECB=30°得到∠DEB=30°,推出BD=BE,根据AE=BE证得结论;(2)过E作EF∥BC交AC于点F,得到△AEF是等边三角形,推出BE=CF,利用∠DBE=∠EFC=120°,∠BED=∠ECF,证得△DEB≌△ECF(AAS),得到BD=EF=AE;(3)作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,利用∠CEF=∠EDB,EB=CF=3,∠F=∠B=60°,证得△CEF≌△EDB(AAS),得到BD=EF=2,求出CD=BD-BC =1,同理可得CD=3【详解】解:(1)AE=BD;证明:∵△ABC为等边三角形,AE=BE,∴CE平分∠ACB,∴∠ECB=30°.∵DE=CE,∴∠D=∠ECB=30°.∵∠ABC=∠D+∠DEB=60°,∴∠DEB=30°,∴∠D=∠DEB,∴BD=BE.∵AE=BE,∴AE=BD;(2)当E为边AB上任意一点时,AE=BD仍成立;证明:如图1,过E作EF∥BC交AC于点F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,∴△DEB≌△ECF(AAS),∴BD=EF,∴AE=BD;(3)CD的长为3或1如图2,作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,∴AF=AE=EF=2,∠BEF=60°,∴∠CEF=60°+∠BEC.∵∠EDC=∠ECD=∠B+∠BEC=60°+∠BEC,∴∠CEF=∠EDB.又∵EB=CF=3,∠F=∠B=60°,∴△CEF≌△EDB(AAS),∴BD=EF=2,∴CD=BD-BC=1,如图3,同理可得CD=3,综上所述,CD的长为3或1【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,平行线的性质,等腰三角形等边对等角的性质,熟练掌握三角形的知识并熟练应用是解题的关键.24.在平面直角坐标系中,点A 在x 轴正半轴上,以OA 为边在x 轴上方作等边OAC . (1)如图1,在AC 的右上方作线段AD ,点D 在y 轴正半轴上,10DAC ∠=︒,以AD 为边在AD 右侧作等边ADE ,则AEC ∠=______.(2)如图2,点P 是x 轴正半轴上且在点A 右侧的一动点,PAM △为等边三角形,OM 与PC 交于点F .求证:AF MF PF +=.(3)如图3,点P 是x 轴正半轴上且在点A 右侧的一动点,CPM △为等边三角形,MA 的延长线交y 轴于点N ,请直接写出线段AM 、AP 、AN 的数量关系______.解析:(1)20°;(2)证明见解析;(3)12AM AN AP =+. 【分析】 (1)借助等边三角形的性质可证明△CAE ≌△OAD ,再利用直角三角形两锐角互余即可得出结论;(2)在OM 上截取EM=PF ,证明△FAP ≌△EAM ,得出AE=AF ,∠EAM=∠FAP ,再利用角的和差可得∠EAF=∠MAP=60°,即△AEF 为等边三角形,继而得出结论;(3)证明△CAM ≌△COP 可得AM=OP=OA+AP ,利用三角形内角和定理和对顶角相等可得∠OAN=60°,∠ONA=30°,根据直角三角形30°角所对边是斜边的一半可得12OA AN =,继而可得12AM AN AP =+. 【详解】解:(1)∵△AOC 和△DAE 是等边三角形,∴AC=AO ,AE=AD ,∠OAC=∠EAD=60°,∵10DAC ∠=︒, 6070CAE DAO DAC ∴∠=∠=︒+∠=︒,在△CAE 和△OAD 中∵AC AO CAE OAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△CAE ≌△OAD (SAS ),∴∠AEC=∠ADO ,∵∠ADO=90°-∠DAO=20°,∴∠AEC=20°,∴故答案为:20°;(2)与(1)同理可证,△OAM ≌△CAP ,∴∠OMA=∠CPA ,AM=AP ,如下图,在OM 上截取EM=PF ,在△FAP 和△EAM 中,∵PF ME OMA CPA AP AM =⎧⎪∠=∠⎨⎪=⎩,∴△FAP ≌△EAM (SAS ),∴∠EAM=∠FAP ,EA=FA ,∵∠EAF=∠EAM-∠FAM ,∠MAP=∠FAP-∠FAM ,∴∠EAF=∠MAP=60°,∴△AEF 为等边三角形,EF=AF ,∴AF MF EF MF EM PF +=+==,即AF MFPF +=;(3)与(1)同理可证△CAM ≌△COP ,∠MCP=60°,∴AM=OP=OA+AP ,∠AMC=∠OPC ,∵OP=OA+AP ,∴AM=OA+AP ,∵∠CEM=∠AEP ,∠AMC=∠OPC ,∴∠PAM=∠MCP=60°,∴∠OAN=60°,∠ONA=30°, ∴12OA AN =, ∴12AM AN AP =+, 故答案为:12AM AN AP =+. 【点睛】 本题考查全等三角形的性质和判定,等边三角形的性质和判定.(1)中理解等边三角形三边相等,三角都等于60°是解题关键;(2)能根据“截长补短”作出辅助线构造全等三角形是解题关键;(3)中根据三角形内角和定理和对顶角相等得出∠OAN=60°是解题关键. 25.如图,ABC 和ADE 均为等边三角形,连接BD 并延长,交AC 于点F ,连接CD 并延长,交AB 于点G ,连接CE .(1)求证:ABD ACE △≌△;(2)若ADG CED ∠=∠,求证:AG CF =.解析:(1)证明见详解;(2)证明见详解.【分析】 (1)根据等边三角形的性质得,,AB AC AD AE BAC DAE ==∠=∠,CAD ∠为公共角得出BAD CAE ∠=∠,根据SAS 可证全等.(2)根据全等三角形的性质,,ACE ABD ADB AEC ==∠∠∠∠联立题目条件ADG CED ∠=∠可得60BDG AED ==∠∠,根据三角形外角的性质得到AGD BFC ∠=∠证明()AGC BFC AAS ≅,即可证AG CF =.【详解】(1)∵ABC 和ADE 均为等边三角形,∴,,AB AC AD AE BAC DAE ==∠=∠, ∵CAD ∠为公共角,∴BAD CAE ∠=∠∴()ABD ACE SAS ≅△△(2)∵ABD ACE ≅,∴,,ACE ABD ADB AEC ==∠∠∠∠ ∵ADG CED ∠=∠,∴60BDG AED ==∠∠,∴GBD GDB GBD BAF +=+∠∠∠∠,即AGD BFC ∠=∠,在AGC 与BFC △中AGD BFC GAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AGC BFC AAS ≅∴AG CF =【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形外角的性质等知识点;解题的关键是熟练掌握以上知识点.26.已知:如图,MON ∠为锐角,点A 在射线OM 上.求作:射线AC ,使得//AC ON .小静的作图思路如下:①以点A 为圆心,AO 为半径作弧,交射线ON 于点B ,连接AB ;②作MAB ∠的角平分线AC .射线AC 即为所求的射线.(1)使用直尺和圆规,按照小静的作图思路补全图形(保留作图痕迹);(2)完成下面的证明.证明:OA AB =,O ABO ∴∠=∠(__________).MAB ∠是AOB 的一个外角,MAB ∴∠=∠_________+∠__________.12ABO MAB ∴∠=∠. AC 平分MAB ∠,12BAC MAB ∴∠=∠. ABO BAC ∴∠=∠.//AC ON ∴(__________).解析:(1)见解析;(2)等边对等角;O ;ABO ;内错角相等,两直线平行【分析】(1)按照步骤作图即可;(2)由作法知,OA=AB ,AC 是∠MAB 的平分线,然后根据等腰三角形的性质,三角形外角的性质,以及角平分线的定义说明即可.【详解】 解:(1)作图如下:(2)证明:OA AB =,O ABO ∴∠=∠(等边对等角).MAB ∠是AOB 的一个外角,MAB O ABO ∴∠=∠+∠12ABO MAB ∴∠=∠. AC 平分MAB ∠,12BAC MAB ∴∠=∠. ABO BAC ∴∠=∠.//AC ON ∴(内错角相等,两直线平行).故答案为:等边对等角;O ;ABO ;内错角相等,两直线平行.【点睛】本题考查了作一条线段等于已知线段,作角的角平分线,以及等腰三角形的性质,三角形外角的性质,以及角平分线的定义等知识,熟练掌握各知识点是解答本题的关键. 27.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.28.已知:点A 在直线DE 上,点B 、C 都在PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分CAD ∠,且ABC BAC ∠=∠.(1)如图1,求证://DE PQ ;(2)如图2,点K 为AB 上一点,连接CK ,若2EAC ACK ∠=∠,求AKC ∠的度数; (3)在(2)的条件下,点F 在直线DE 上,连接FK ,且DAB AFK KCB ∠=∠+∠,若13FKA AKC ∠=∠,则ACB ∠的大小为_________.(要求:在备用图中画出图形,并直接写出答案) 解析:(1)见解析;(2)90AKC ∠=︒;(3)60ACB ∠=︒或20ACB ∠=︒【分析】(1)根据角平分线定义和平行线的判定方法求解;(2)根据平行线的性质和等腰三角形的性质可以得到解答;(3)分F 在A 左边和F 在A 右边两种情况讨论 .【详解】(1)∵AB 平分CAD ∠,∴DAB BAC ∠=∠,∵ABC BAC ∠=∠,∴DAB ABC ∠=∠,∴//DE PQ ;(2)∵//PQ DE ,∴EAC ACB ∠=∠,∵2EAC ACK ∠=∠, ∴1122ACK BCK EAC ACB ∠=∠=∠=∠, ∵∠ABC=∠BAC,∴△CAB 是等腰三角形,。
2018-2019学年天津市南开大学附中八年级(上)第二次月考数学试卷一、选择题(每小题3分,共36分)1.(3分)一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F2.(3分)下列多项式的乘法中,能用平方差公式计算的是()A.(﹣m+n)(m﹣n)B.(a+b)(b﹣a)C.(x+5)(x+5)D.(3a﹣4b)(3b+4a)3.(3分)如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是()A.15cm B.13cm C.11cm D.9cm4.(3分)下列各式由左边到右边的变形,是因式分解的是()A.3x(x+y)+3x2+3xy B.﹣2x2﹣2xy=﹣2x(x+y)C.(x+5)(x﹣5)=x2﹣25D.x2+x+1=x(x+1)+15.(3分)已知a m=6,a n=3,则a2m﹣3n的值为()A.B.C.2D.96.(3分)如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍7.(3分)如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°8.(3分)平面直角坐标系中,点A(m,﹣2)、B(1,n﹣m)关于x轴对称,则m、n的值为()A.m=1,n=1B.m=﹣1,n=1C.m=1,n=3D.m=1,n=﹣39.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④10.(3分)若m+n=7,mn=12,则m2+n2的值是()A.1B.25C.2D.﹣1011.(3分)把分式方程﹣1=化为整式方程,正确的是()A.2(x+1)﹣1=﹣x B.2(x+1)﹣x(x+1)=﹣xC.2(x+1)﹣x(x+1)=﹣1D.2x﹣x(x+1)=﹣x12.(3分)下列各式从左到右的变形正确的是()A.=1B.=C.=x+y D.=二、填空题(每题3分,共24分)13.(3分)0.1252016×(﹣8)2017=.14.(3分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.15.(3分)当x时,分式无意义.16.(3分)5k﹣3=1,则k﹣2=.17.(3分)若x2﹣mx+25是完全平方式,则m=.18.(3分)如图,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=度.19.(3分)在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是.20.(3分)如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P到OB的距离是.三、解答题(共40分)21.(8分)计算:+﹣.22.(8分)计算(﹣2x2y﹣1)2÷(2x3y﹣3).23.(8分)解方程:﹣=1.24.(8分)化简求值:,其中a=3.25.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A =∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.参考答案与试题解析一、选择题(每小题3分,共36分)1.解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.2.解:由平方差公式的特点可知:选项B中第一个多项式的b和第二个多项式的b符号相同,第一个多项式的a和第二个多项式的﹣a符号相反,故满足平方差公式,其他选项没有此特点.故选:B.3.解:∵AB=AC,∴∠ABC=∠C.∵DE∥AB,∴∠DEC=∠ABC=∠C,∠ABD=∠BDE,∴DE=DC,∵BD是∠ABC的平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE,∴BE=DE=DC=5cm,∴△CDE的周长为DE+DC+EC=5+5+3=13(cm),故选:B.4.解:A、是整式的乘法,故A错误;B、是把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、没是把一个多项式转化成几个整式积的形式,故D错误;故选:B.5.解:∵a m=6,a n=3,∴原式=(a m)2÷(a n)3=36÷27=,故选:A.6.如果把分式中的m和n都扩大3倍,那么分式的值不变,故选:A.7.解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.8.解:∵点A(m,﹣2)、B(1,n﹣m)关于x轴对称,∴m=1,n﹣m=2,解得m=1,n=3.故选:C.9.解:选②AD=BE;③AF=BF,不能证明△ADF与△BEF全等,所以不能证明∠1=∠2,故不能判定△ABC是等腰三角形.故选:C.10.解:∵m+n=7,mn=12,∴原式=(m+n)2﹣2mn=49﹣24=25,故选:B.11.解:﹣1=,两边乘x(x+1)得到,2(x+1)﹣x(x+1)=﹣x,故选:B.12.解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选:A.二、填空题(每题3分,共24分)13.解:原式=()2016×(﹣8)2016×(﹣8)=1×(﹣8)=﹣8故答案为:﹣814.解:实际车牌号是K62897.故答案为:K62897.15.解:根据题意得:x+4=0,解得:x=﹣4.故答案是:=﹣4.16.解:根据题意知,k﹣3=0,解得,k=3,则k﹣2=3﹣2=.故答案是:.17.解:∵x2﹣mx+25是完全平方式,∴m=±10,故答案为:±1018.解:∵BD=BC,∠ACE=25°∴∠BDC=∠C=25°∴∠ABD=50°∵AD=BD∴∠A=∠ABD=50°∴∠ADE=∠A+∠C=75°.故填75.19.解:过点E作EF⊥AD于F,∵DE 平分∠ADC ,∴CE =EF ,∵E 是BC 的中点,∴CE =BE ,∴BE =EF ,∴AE 是∠BAD 的平分线,∵∠CED =35°,∴∠AEB =90°﹣∠CED =90°﹣35°=55°,∵∠B =90°,∴∠EAB =90°﹣55°=35°.故答案为:35°.20.解:如图,过点P 作PE ⊥OB ,∵OC 是∠AOB 的平分线,点P 在OC 上,且PD ⊥OA ,PE ⊥OB ,∴PE =PD ,又PD =2,∴PE =PD =2.故答案为2.三、解答题(共40分)21.解:原式===.22.解:(﹣2x 2y ﹣1)2÷(2x 3y ﹣3)=4x 4y ﹣2÷2x 3y ﹣3=2xy .23.解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.24.解:原式=••=••=,当a=3时,原式=.25.证明:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)∵△ABE≌△DCF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴AB=BE,∴△ABE是等腰三角形,∴∠D=.。
2018年 高考数学 数列解答题 专题培优练习1、已知数列{a n }满足a n =2a n-1+2n -1(n ∈N *,n ≥2)且a 1=5.(1)求a 2,a 3的值;(2)若数列{n n a 2λ+}为等差数列,请求出实数λ; (3)求数列{a n }的通项公式及前n 项和为S n .2、已知数列{a n }是非常值数列,且满足a n+2=2a n+1-a n (n ∈N *),其前n 项和为S n .,若S 5=70, a 2,a 7,a 22成等比数列.(1)求数列{a n }的通项公式;(2)设数列{nS 1}的前n 项和为Tn ,求证:8361≤≤n T .3、已知数列{a n }的前项和为S n ,且-1,S n,a n+1成等差数列,n ∈N *,a 1=1,函数f(x)=log 3x.(1)求数列{a n }的通项公式;(2)设数列{b n }满足]2)()[3(1++=n n a f n b ,记数列{b n }的前n 项和为T n , 试比较T n 与31252125+-n 的大小.4、设数列{a n }的前项积为T n ,且T n +2a n =2(n ∈N *).(1)求证:数列{nT 1}是等差数列. (2)设bn=(1-a n )(1-a n+1),求数列{b n }的前n 项和S n .5、已知数列{a n }与{b n }满足a n+1-a n =2(b n+1-b n )(,n ∈N).(1)若a 1=1,b n =3n+5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n (n ∈N *)且λa n >2n +n+2λ对一切n ∈N *恒成立,求λ的取值范围.6、已知数列{a n }中,a1=2,an+1=2-n a 1,数列{b n }中,11-=n n a b ,其中n ∈N *; (1)求证:数列{b n }是等差数列;(2)若S n 是数列{b n }的前n 项和,求nS S S S 1...111321++++的值.7、已知数列{a n }和{b n }满足a1a2a3...an=n b )2((n ∈N *),若{a n }为等比数列,且a 1=2,b 3=b 2+6.(1)求a n 与b n ;(2)对于任意自然数n ,求使不等式232120...321λλ-<++++n b b b b n 恒成立的λ的取值范围.8、已知数列{a n }的前n 项和是S n ,且S n +21a n =1(n ∈N *). (1)求数列{a n }的通项公式;(2)设*))(1(log 13N n S b n n ∈-=+,求适合方程51251...1113221=++++n n b b b b b b 的正整数n 的值.9、已知数列{a n}的首项.(1)求证:数列为等比数列;(2) 记,若,求最大正整数n.10、已知各项均为正数的等比数列{a n}前n项和S n,,.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.11、等差数列{a n}中,,(1)求{a n}的通项公式;(2)若,且T n为{b n}的n项和,求T50的值.12、等差数列的前n项和为S n,且.(1)求{a n}的通项公式;(2)求值.13、设数列{a n}的前项和为S n,且,.(1)求证:数列为等比数列;(2)设数列{S n}的前n项和为T n,证明:.14、{a n}为等差数列,公差d>0,S n是数列{a n}前n项和,已知a1a4=27,S4=24.(1)求数列{a n}的通项公式a n;(2)令b n=a n•2n,求数列{b n}的前n项和T n.15、已知等差数列{a n }中,a 5=12,a 20=-18.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n .16、已知数列{a n }满足a 1=1,且a n =2a n ﹣1+2n (n ≥2,且n ∈N *)(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项之和S n ,求证:322->n S nn .17、若数列{a n}是递增等差数列,其中a3=5,且a1,a2,a5成等比数列,(1)求{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.(3)是否存在自然数m,使得对一切n∈N*恒成立?若存在,求出m的值;若不存在,说明理由.参考答案1、解:2、解:3、解:4、解:5、解:7、解:8、解:10、解:(Ⅰ) ;(Ⅱ) .11、解:12、解:(1)设数列的公差为d,由a3+a5=a4+7,得2a1+6d=a1+3d+7①.由,得②得a1=1,d=2,所以a n=a1+(n-1)d=2n-1.(2)新数列依然等差,公差6,首项1,共30项,原式=30×1+14、解:(1)∵a1a4=27,S4=24.∴,解得a1=3,d=2.∴a n=3+2(n-1)=2n+1.(2)b n=a n•2n=(2n+1)•2n.∴数列{b n}的前n项和T n=3×2+5×22+…+(2n+1)•2n,2T n=3×22+5×23+…+(2n-1)•2n+(2n+1)•2n+1,∴-T n=6+2×(22+23+…+2n)-(2n+1)•2n+1=2+2×-(2n+1)•2n+1=-2+(1-2n)•2n+1,∴T n=(2n-1)•2n+1+2.15、解:(1)设等差数列{a n}的公差为d,∵a5=12,a20=-18.∴,解得a1=20,d=-2.∴a n=20-2(n-1)=22-2n.(2)数列{a n}的前n项和S n==21n-n2.16、解:。
一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°3.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA5.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等6.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒7.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA 9.到ABC 的三条边距离相等的点是ABC 的( )A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点 10.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A.SAS B.AAS C.SSS D.HL∠=∠,E、D、F分别是AB、BC、AC上的点,且11.如图,在ABC中,B C=,BD CFBE CD=,若104∠=︒,则EDFA∠的度数为()A.24°B.32°C.38°D.52°12.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长,分别交AC,AB于点F,E,则图中全等三角形共有()A.2对B.3对C.4对D.5对13.如图,C是∠AOB的平分线上一点,添加下列条件不能判定△AOC≌△BOC的是()A.OA=OB B.AC=BC C.∠A=∠B D.∠1=∠214.如图,要判定△ABD≌△ACD,已知AB=AC,若再增加下列条件中的一个,仍不能说明全等,则这个条件是()A.CD⊥AD,BD⊥AD B.CD=BD C.∠1=∠2 D.∠CAD=∠B AD15.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个二、填空题16.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.17.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D .若3BC =,且:5:4BD DC =,5AB =,则ABD △的面积是______.18.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.19.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .20.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .21.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.22.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.23.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____24.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)25.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.26.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.三、解答题27.在ABC 中,AD 是ABC 的高,30B,52C ︒∠=(1)尺规作图:作ABC 的角平分线AE(2)求DAE ∠的大小.28.如图,点B 、E 、C 、F 在同一条直线上,A D ∠=∠,//AB DE ,BE CF =.求证://AC DF .29.如图,∠ACB 和∠ADB 都是直角,BC =BD ,E 是AB 上任意一点. (1)求证:△ABC ≌△ABD .(2)求证:CE =DE .30.如图,点E ,F 在BC 上,A D ∠=∠,AF DE =,AFC DEB ∠=∠.求证:BE CF =.。
2017-2018学年八年级数学上册因式分解培优练习卷1、分解因式:6xy2-9x2y-y3.2、分解因式:1-16y4.3、分解因式:4+12(x-y)+9(x-y)2.4、分解因式:(a-3)(a-5)+1.5、分解因式:4(a-b)2-9(a+b)2.6、分解因式:x3-4x2-45x.7、分解因式:(a2+b2)2-4a2b2.8、分解因式:(a+b)2-4b(a+b)+4b2.9、分解因式:(m+n)2-4m(m+n)+4m210、分解因式:x4-y411、分解因式:(x+2)(x+4)+x2-4.12、分解因式:(a+1)(a-1)-8.13、分解因式:4x3y+4x2y2+xy3.14、分解因式:4-12(x+y)+9(x+y)2.15、分解因式:x2-2xy+y2-z2.16、分解因式:36a2-(a2+9)2.17、分解因式:2a2-8axy+8ay2.18、分解因式:10b(x-y)2-5a(y-x)2;19、分解因式:x2-2xy+y2-9.20、分解因式:(x2+y2)2-4x2y2.21、分解因式:(a 2+1)2-4a222、分解因式:(1-x2)(1-y2)-4xy.23、分解因式:(x2+y2-z2)2-4x2y2.24、分解因式:a2(x-2a)2+a(2a-x)3.25、分解因式:(a+2b)2-10(a+2b)+25.26、分解因式:x n+4-169x n+2 (n是自然数);27、分解因式:9(2a+3b)2-4(3a-2b)2.28、分解因式:9(m+n)2-4(m-n)2.29、分解因式:8(x2-2y2)-x(7x+y)+xy30、分解因式:a2-b2+4b-4.31、分解因式:-4x3y+16x2y2-16xy3.32、分解因式:2x3(a-1)+8x(1-a).33、分解因式:81x4-72x2y2+16y434、分解因式:3a3-6a2b+3ab235、分解因式:(m2+3m)2-8(m2+3m)-20;36、分解因式:4x3-4x2y-(x-y)37、分解因式:(x2-3)2-12(x2-3)+36.38、分解因式:(a-b)m2+(b-a)n2;39、分解因式:(x2+x)2-8(x2+x)+12.40、分解因式:x2-2x+1-y2.参考答案1、原式=-y(3x-y)2.2、原式=(1+4y2)(1+2y)(1-2y).3、原式=(3x-3y+2)2.4、原式=(a-4)2.5、原式=-(5a+b)(a+5b).6、原式=x(x-9)(x+5).7、原式=(a+b)2(a-b)2.8、原式=(a-b)2.9、原式=(-m+n)210、原式=(x2+y2)(x2-y2)11、原式=2(x+2)(x+1).12、原式=(a+3)(a-3).13、原式=xy(2x+y)2.14、原式=(2+3x-3y)2.15、原式=(x-y+z)(x-y-z).16、原式=-(a-3)2(a+3)2.17、解:原式=2a(x-2y)218、原式=5(x-y)2(2b-a).19、原式=(x-y+3)(x-y-3).20、原式=(x+y)2(x-y)221、原式=(a+1)2(a-1)222、原式=(xy-1+x+y)(xy-1-x-y).23、原式=(x+y+z)(x+y-z)(x-y+z)(x-y-z).24、原式=a(x-2a)2(3a-x).25、原式=(a+2b-5)2.26、原式=x n+2(x+13)(x-13).27、原式=13b(12a+5b).28、原式=(5m+n)(m+5n).29、原式=(x+4y)(x-4y).30、原式=(a+b-2)(a-b+2);31、原式=-4xy(x-2y)2.32、原式=2x(a-1)(x-2)(x+2).33、原式=(3x+2y)2(3x-2y)2.34、原式=3a(a-b).35、原式=(m+5)(m-2)(m+2)(m+1).36、原式=(x-y)(2x-1)(2x+1).37、原式=(x-3)2(x+3)2.38、原式=(a-b)(m+n)(m-n).39、原式=(x+2)(x-1)(x+3)(x-2).40、原式=(x-1+y)(x-1-y).。
八年级数学上册期末模拟试卷一、选择题:1.下列运算正确的是( )A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=12.以下图形中对称轴的数量小于3的是()3.下列式子中,与分式的值相等的是( )A.B.C.D.4.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°5.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120°D.115°7.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处8.如图,把一副三角尺叠放在一起,若AB∥CD,则∠1的度数是()A.75°B.60°C.45°D.30°9.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()11.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()12.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.二、填空题13.点P(﹣1,3)关于y轴的对称点的坐标是.14.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.15.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.16.若4x2+2(k-3)x+9是完全平方式,则k=______.17.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.19.化简:(x+y)2﹣(x+y)(x﹣y) 20. (x2+y2)2﹣4x2y2.21.化简:22.解分式方程:23.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.25.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.a2-b2=(a+b)(a-b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;②计算:27.如图,已知△ABC是等边三角形,D为AC边上的一点,DG∥AB,延长AB到E,使BE=GD,连接DE交BC于F.(1)求证:GF=BF;(2)若△ABC的边长为a,BE的长为b,且a,b满足(a﹣7)2+b2﹣6b+9=0,求BF的长.参考答案1.B.2.D3.A4.B5.C6.B7.C8.A.9.A10.B11.B.12.D13.答案为:(1,3).14.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.15.答案为:20°.16.答案为:9或﹣3 .17.答案为:或.18.答案为:15.19.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.21.原式====.22.去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;23.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.24.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.25.26. (1)B;(2)①,4;②;27.⑴证明:△DGF≌△EBF,GF=BF;⑵∵(a-7)2+b2-6b+9=0,∴a=7,b=3, BF=2.。
天津市南开中学八年级上册压轴题数学模拟试卷及答案一、压轴题1.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 为ABC ∆内一点,且BD AD =.(1)求证:CD AB ⊥;(2)若15CAD ∠=︒,E 为AD 延长线上的一点,且CE CA =.①求BDC ∠的度数.②若点M 在DE 上,且DC DM =,请判断ME 、BD 的数量关系,并说明理由. ③若点N 为直线AE 上一点,且CEN ∆为等腰∆,直接写出CNE ∠的度数.2.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACF S S 的值.3.探究:如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =30°,则∠ACD 的度数是 度;拓展:如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别在CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP ,垂足分别为D 、E ,若∠CBE =70°,求∠CAD 的度数;应用:如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D、E在射线CP上,连接AD、BE,若∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB=度.4.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=度(直接写出结果);②∠BDC的度数为(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).∆中,线段AM为BC边上的中线.动点D在直线AM上时,以5.如图,在等边ABC∆,连结BE.CD为一边在CD的下方作等边CDE∠的度数;(1)求CAM∆≅∆;(2)若点D在线段AM上时,求证:ADC BEC∠是否(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB为定值?并说明理由.6.请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D .(简单应用)(2)如图2,AP 、CP 分别平分∠BAD 、∠BCD ,若∠ABC=20°,∠ADC=26°,求∠P 的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE , 若∠ABC=36°,∠ADC=16°,猜想∠P 的度数为 ;(拓展延伸)(4)在图4中,若设∠C=x ,∠B=y ,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P ) ;(5)在图5中,AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,猜想∠P 与∠B 、D 的关系,直接写出结论 .7.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.8.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?9.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①.(1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)10.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N :∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.11.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式. 12.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有________条对称轴,非正方形的长方形有________条对称轴,等边三角形有___________条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.13.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,试确定线段AE 与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E 为AB 的中点时,如图(2),确定线段AE 与DB 的大小关系,请你写出结论:AE _____DB (填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系是:AE _____DB (填“>”,“<”或“=”).理由如下:如图(3),过点E 作EF ∥BC ,交AC 于点F .(请你将剩余的解答过程完成) (3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).14.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的. 例:已知:2114x x =+,求代数式x 2+21x的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z +的值. 解:令2x =3y =4z =k (k ≠0) 则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c ++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.15.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。
天津南开区2018-2019学度初二上年末数学重点试卷含解析【一】选择题〔本大题共12小题,每题3分,共36分、在每题给出旳四个选项中,只有一个选项是符合题目要求旳〕1、以下四个图形中,对称轴条数最多旳一个图形是〔〕A、 B、C、D、2、假设式子在实数范围内有意义,那么x旳取值范围是〔〕A、x>3B、x≥3C、x>﹣3D、x≥﹣33、如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF、不能添加旳一组条件是〔〕A、∠B=∠E,BC=EFB、∠A=∠D,BC=EFC、∠A=∠D,∠B=∠ED、BC=EF,AC=DF4、以下约分正确旳选项是〔〕A、 B、=﹣1C、=D、=5、假设x,y旳值均扩大为原来旳2倍,那么以下分式旳值保持不变旳是〔〕A、B、C、D、6、如图,△ABC中,AB+BC=10,AC旳垂直平分线分别交AB、AC于点D和E,那么△BCD旳周长是〔〕A、6B、8C、10D、无法确定7、等腰三角形旳一个角是80°,那么它旳底角是〔〕A、50°B、80°C、50°或80°D、20°或80°8、将以下多项式分解因式,结果中不含因式x﹣1旳是〔〕A、x2﹣1B、x〔x﹣2〕+〔2﹣x〕C、x2﹣2x+1D、x2+2x+19、计算旳结果是〔〕A、6B、C、2D、10、以下运算正确旳选项是〔〕A、a2•a3=a6B、〔a2〕3=a5C、2a2+3a2=5a6D、〔a+2b〕〔a﹣2b〕=a2﹣4b211、如图,MN是线段AB旳垂直平分线,C在MN外,且与A点在MN旳同一侧,BC交MN于P点,那么〔〕A、BC>PC+APB、BC<PC+APC、BC=PC+APD、BC≥PC+AP12、请你计算:〔1﹣x〕〔1+x〕,〔1﹣x〕〔1+x+x2〕,…,猜想〔1﹣x〕〔1+x+x2+…+x n〕旳结果是〔〕A、1﹣x n+1B、1+x n+1C、1﹣x nD、1+x n【二】填空题〔本大题共6小题,每题3分,共18分〕13、点P〔﹣1,3〕关于y轴旳对称点旳坐标是、14、某红外线遥控器发出旳红外线波长为0.00000094m,用科学记数法表示那个数是m、15、当x=2时,分式旳值是、16、三角形旳三边长分别为,,,那么那个三角形旳周长为cm、17、观看以下等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:〔1〕请写出第n个等式:an=;〔2〕a1+a2+a3+…+an=、18、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB旳长为半径做弧,两弧相交于点P和Q、②作直线PQ交AB于点D,交BC于点E,连接AE、假设CE=4,那么AE=、【三】计算题〔本大题共1小题,共8分〕19、〔1〕计算:〔4+3〕2〔2〕分解因式:3m〔2x﹣y〕2﹣3mn2、【四】解答题〔本大题共4小题,共30分〕20、〔1〕请先将下式化简,再选择一个适当旳数代入求值、〔1﹣〕﹣÷、〔2〕解方程:=+、21、如图,点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D、求证:AB=DE、22、:如图,△ABC和△BDE差不多上等边三角形,且A,E,D三点在一直线上、请你说明DA﹣DB=DC、23、王师傅检修一条长600米旳自来水管道,打算用假设干小时完成,在实际检修过程中,每小时检修管道长度是原打算旳1.2倍,结果提早2小时完成任务,王师傅原打算每小时检修管道多少米?【五】综合题〔本大题共1小题,共8分〕24、〔1〕如图〔1〕,:在△ABC中,∠BAC=90°,AB=AC,直线m通过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E、证明:DE=BD+CE、〔2〕如图〔2〕,将〔1〕中旳条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,同时有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角、请问结论DE=BD+CE是否成立?如成立,请你给出证明;假设不成立,请说明理由、〔3〕拓展与应用:如图〔3〕,D、E是D、A、E三点所在直线m上旳两动点〔D、A、E三点互不重合〕,点F为∠BAC平分线上旳一点,且△ABF和△ACF均为等边三角形,连接BD、CE,假设∠BDA=∠AEC=∠BAC,试推断△DEF旳形状、2016-2017学年天津市南开区八年级〔上〕期末数学模拟试卷参考【答案】与试题【解析】【一】选择题〔本大题共12小题,每题3分,共36分、在每题给出旳四个选项中,只有一个选项是符合题目要求旳〕1、以下四个图形中,对称轴条数最多旳一个图形是〔〕A、 B、C、D、【考点】轴对称图形、【分析】依照图形旳组合特点和对称轴旳概念,确定每个图形旳对称轴旳条数、【解答】解:A、有2条对称轴;B、有4条对称轴;C、不是轴对称图形;D、有1条对称轴、应选B、2、假设式子在实数范围内有意义,那么x旳取值范围是〔〕A、x>3B、x≥3C、x>﹣3D、x≥﹣3【考点】二次根式有意义旳条件、【分析】依照被开方数大于等于0列式进行计算即可得解、【解答】解:依照题意得,x+3≥0,解得x≥﹣3、应选:D、3、如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF、不能添加旳一组条件是〔〕A、∠B=∠E,BC=EFB、∠A=∠D,BC=EFC、∠A=∠D,∠B=∠ED、BC=EF,AC=DF 【考点】全等三角形旳判定、【分析】将所给旳选项逐一推断、分析,即可解决问题、【解答】解:不能添加旳一组条件是B;理由如下:在△ABC与△DEF中,∵∠A=∠D,BC=EF,AB=DE,即在两个三角形中满足:有两边和其中一边所对旳对应角相等,∴这两个三角形不一定全等,应选B、4、以下约分正确旳选项是〔〕A、 B、=﹣1C、=D、=【考点】约分、【分析】依照约分旳步骤把分子与分母中约去公因式,分别对每一项进行推断即可、【解答】解:A、不能约分,故本选项错误;B、=1,故本选项错误;C、不能约分,故本选项错误;D、=,故本选项正确;应选D、5、假设x,y旳值均扩大为原来旳2倍,那么以下分式旳值保持不变旳是〔〕A、B、C、D、【考点】分式旳差不多性质、【分析】依照分式旳差不多性质,x,y旳值均扩大为原来旳2倍,求出每个式子旳结果,看结果等于原式旳即是、【解答】解:依照分式旳差不多性质,可知假设x,y旳值均扩大为原来旳2倍,A、==;B、=;C、;D、==、故A正确、应选A、6、如图,△ABC中,AB+BC=10,AC旳垂直平分线分别交AB、AC于点D和E,那么△BCD旳周长是〔〕A、6B、8C、10D、无法确定【考点】等腰三角形旳判定与性质;线段垂直平分线旳性质、【分析】垂直平分线可确定两条边相等,然后再利用线段之间旳转化进行求解、【解答】解:∵DE是AC旳垂直平分线,∴AD=DC,△BCD旳周长=BC+BD+DC=BC+BD+AD=10应选C、7、等腰三角形旳一个角是80°,那么它旳底角是〔〕A、50°B、80°C、50°或80°D、20°或80°【考点】等腰三角形旳性质;三角形内角和定理、【分析】因为题中没有指明该角是顶角依旧底角,那么应该分两种情况进行分析、【解答】解:①当顶角是80°时,它旳底角==50°;②底角是80°、因此底角是50°或80°、应选C、8、将以下多项式分解因式,结果中不含因式x﹣1旳是〔〕A、x2﹣1B、x〔x﹣2〕+〔2﹣x〕C、x2﹣2x+1D、x2+2x+1【考点】因式分解-提公因式法;因式分解-运用公式法、【分析】分别将各选项利用公式法和提取公因式法分解因式进而得出【答案】、【解答】解:A、x2﹣1=〔x+1〕〔x﹣1〕,故A选项不合题意;B、x〔x﹣2〕+〔2﹣x〕=〔x﹣2〕〔x﹣1〕,故B选项不合题意;C、x2﹣2x+1=〔x﹣1〕2,故C选项不合题意;D、x2+2x+1=〔x+1〕2,故D选项符合题意、应选:D、9、计算旳结果是〔〕A、6B、C、2D、【考点】二次根式旳加减法、【分析】依照二次根式加减旳一般步骤,先化简,再合并、【解答】解:=2﹣=,应选:D、10、以下运算正确旳选项是〔〕A、a2•a3=a6B、〔a2〕3=a5C、2a2+3a2=5a6D、〔a+2b〕〔a﹣2b〕=a2﹣4b2【考点】平方差公式;合并同类项;同底数幂旳乘法;幂旳乘方与积旳乘方、【分析】依照同底数幂旳乘法,可推断A,依照幂旳乘方,可推断B,依照合并同类项,可推断C,依照平方差公式,可推断D、【解答】解:A、底数不变指数相加,故A错误;B、底数不变指数相乘,故B错误;C、系数相加字母部分不变,故C错误;D、两数和乘以这两个数旳差等于这两个数旳平方差,故D正确;应选:D、11、如图,MN是线段AB旳垂直平分线,C在MN外,且与A点在MN旳同一侧,BC交MN于P点,那么〔〕A、BC>PC+APB、BC<PC+APC、BC=PC+APD、BC≥PC+AP【考点】线段垂直平分线旳性质、【分析】从条件进行考虑,依照垂直平分线旳性质可得PA=PB,结合图形知BC=PB+PC,通过等量代换得到【答案】、【解答】解:∵点P在线段AB旳垂直平分线上,∴PA=PB、∵BC=PC+BP,∴BC=PC+AP、应选C、12、请你计算:〔1﹣x〕〔1+x〕,〔1﹣x〕〔1+x+x2〕,…,猜想〔1﹣x〕〔1+x+x2+…+x n〕旳结果是〔〕A、1﹣x n+1B、1+x n+1C、1﹣x nD、1+x n【考点】平方差公式;多项式乘多项式、【分析】各项利用多项式乘以多项式法那么计算,归纳总结得到一般性规律,即可得到结果、【解答】解:〔1﹣x〕〔1+x〕=1﹣x2,〔1﹣x〕〔1+x+x2〕=1+x+x2﹣x﹣x2﹣x3=1﹣x3,…,依此类推〔1﹣x〕〔1+x+x2+…+x n〕=1﹣x n+1,应选:A【二】填空题〔本大题共6小题,每题3分,共18分〕13、点P〔﹣1,3〕关于y轴旳对称点旳坐标是〔1,3〕、【考点】关于x轴、y轴对称旳点旳坐标、【分析】依照关于y轴对称旳点,纵坐标相同,横坐标互为相反数,可得【答案】、【解答】解:P〔﹣1,3〕关于y轴旳对称点旳坐标是〔1,3〕,故【答案】为:〔1,3〕、14、某红外线遥控器发出旳红外线波长为0.00000094m,用科学记数法表示那个数是9.4×10﹣7m、【考点】科学记数法—表示较小旳数、【分析】绝对值小于1旳正数也能够利用科学记数法表示,一般形式为a×10﹣n,与较大数旳科学记数法不同旳是其所使用旳是负指数幂,指数由原数左边起第一个不为零旳数字前面旳0旳个数所决定、【解答】解:0.00000094=9.4×10﹣7;故【答案】为:9.4×10﹣7、15、当x=2时,分式旳值是1、【考点】分式旳值、【分析】将x=2代入分式,即可求得分式旳值、【解答】解:当x=2时,原式==1、故【答案】为:1、16、三角形旳三边长分别为,,,那么那个三角形旳周长为5cm、【考点】二次根式旳应用;三角形三边关系、【分析】三角形旳三边长旳和为三角形旳周长,因此那个三角形旳周长为++,化简合并同类二次根式、【解答】解:那个三角形旳周长为++=2+2+3=5+2〔cm〕、故【答案】为:5+2〔cm〕、17、观看以下等式:==﹣1,第1个等式:a1第2个等式:a 2==﹣,第3个等式:a 3==2﹣,第4个等式:a 4==﹣2,按上述规律,回答以下问题:〔1〕请写出第n 个等式:a n ==﹣;;〔2〕a 1+a 2+a 3+…+a n =﹣1、 【考点】分母有理化、【分析】〔1〕依照题意可知,a 1==﹣1,a 2==﹣,a 3==2﹣,a 4==﹣2,…由此得出第n 个等式:a n ==﹣;〔2〕将每一个等式化简即可求得【答案】、【解答】解:〔1〕∵第1个等式:a 1==﹣1,第2个等式:a 2==﹣,第3个等式:a 3==2﹣,第4个等式:a 4==﹣2,∴第n 个等式:a n ==﹣;〔2〕a 1+a 2+a 3+…+a n=〔﹣1〕+〔﹣〕+〔2﹣〕+〔﹣2〕+…+〔﹣〕=﹣1、故【答案】为=﹣;﹣1、18、如图,在△ABC 中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A ,B 为圆心,以大于AB 旳长为半径做弧,两弧相交于点P 和Q 、 ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE 、假设CE=4,那么AE=8、【考点】作图—复杂作图;线段垂直平分线旳性质;含30度角旳直角三角形、 【分析】依照垂直平分线旳作法得出PQ 是AB 旳垂直平分线,进而得出∠EAB=∠CAE=30°,即可得出AE旳长、【解答】解:由题意可得出:PQ是AB旳垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8、故【答案】为:8、【三】计算题〔本大题共1小题,共8分〕19、〔1〕计算:〔4+3〕2〔2〕分解因式:3m〔2x﹣y〕2﹣3mn2、【考点】二次根式旳混合运算;提公因式法与公式法旳综合运用、【分析】〔1〕利用完全平方公式计算;〔2〕先提公因式3m,然后利用平方差公式分解、【解答】解:〔1〕原式=16+24+45=61+24;〔2〕原式=3m[〔2x﹣y〕2﹣n2]=3m〔2x﹣y+n〕〔2x﹣y﹣n〕、【四】解答题〔本大题共4小题,共30分〕20、〔1〕请先将下式化简,再选择一个适当旳数代入求值、〔1﹣〕﹣÷、〔2〕解方程:=+、【考点】解分式方程;分式旳化简求值、【分析】〔1〕依照分式旳混合运算顺序和法那么即可得出结果;注意因式分解;〔2〕把分式方程去分母转化为整式方程,求出整式方程旳解得到x旳值,经检验即可得到分式方程旳解、【解答】解:〔1〕〔1﹣〕﹣÷=﹣×=﹣=〔2〕去分母得:42x=12x+96+10x,移项合并得:20x=96,解得:x=4.8,经检验x=4.8是分式方程旳解;因此,原方程旳解为x=4.8、21、如图,点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D、求证:AB=DE、【考点】全等三角形旳判定与性质、【分析】首先得出BC=EF,利用平行线旳性质∠B=∠DEF,再利用AAS得出△ABC ≌△DEF,即可得出【答案】、【解答】证明:∵BE=CF,∴BC=EF、∵AB∥DE,∴∠B=∠DEF、在△ABC与△DEF中,,∴△ABC≌△DEF〔AAS〕,∴AB=DE、22、:如图,△ABC和△BDE差不多上等边三角形,且A,E,D三点在一直线上、请你说明DA﹣DB=DC、【考点】全等三角形旳判定与性质;等边三角形旳性质、【分析】依照等边三角形旳性质,可得AB与BC旳关系,BD、BE、DE旳关系,依照三角形全等旳判定,可得△ABE与△CBD旳关系,依照全等三角形旳性质,可得对应边相等,依照线段旳和差,等量代换,可得证明结果、【解答】证明:△ABC和△BDE差不多上等边三角形,∴AB=BC,BE=BD=DE〔等边三角形旳边相等〕,∠ABC=∠EBD=60°〔等边三角形旳角是60°〕、∴∠ABC﹣∠EBC=∠EBD﹣∠EBC∠ABE=CBD〔等式旳性质〕,在△ABE和△CBD中,,∴△ABE≌△CBD〔SAS〕∴AE=DC〔全等三角形旳对应边相等〕、∵AD﹣DE=AE〔线段旳和差〕∴AD﹣BD=DC〔等量代换〕、23、王师傅检修一条长600米旳自来水管道,打算用假设干小时完成,在实际检修过程中,每小时检修管道长度是原打算旳1.2倍,结果提早2小时完成任务,王师傅原打算每小时检修管道多少米?【考点】分式方程旳应用、【分析】设原打算每小时检修管道为xm,故实际施工每天铺设管道为1.2xm、等量关系为:原打算完成旳天数﹣实际完成旳天数=2,依照那个关系列出方程求解即可、【解答】解:设原打算每小时检修管道x米、由题意,得﹣=2、解得x=50、经检验,x=50是原方程旳解、且符合题意、答:原打算每小时检修管道50米、【五】综合题〔本大题共1小题,共8分〕24、〔1〕如图〔1〕,:在△ABC中,∠BAC=90°,AB=AC,直线m通过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E、证明:DE=BD+CE、〔2〕如图〔2〕,将〔1〕中旳条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,同时有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角、请问结论DE=BD+CE是否成立?如成立,请你给出证明;假设不成立,请说明理由、〔3〕拓展与应用:如图〔3〕,D、E是D、A、E三点所在直线m上旳两动点〔D、A、E三点互不重合〕,点F为∠BAC平分线上旳一点,且△ABF和△ACF均为等边三角形,连接BD、CE,假设∠BDA=∠AEC=∠BAC,试推断△DEF旳形状、【考点】全等三角形旳判定与性质;等边三角形旳判定、【分析】〔1〕依照BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,依照等角旳余角相等得∠CAE=∠ABD,然后依照“AAS”可推断△ADB≌△CEA,那么AE=BD,AD=CE,因此DE=AE+AD=BD+CE;〔2〕与〔1〕旳证明方法一样;〔3〕由前面旳结论得到△ADB≌△CEA,那么BD=AE,∠DBA=∠CAE,依照等边三角形旳性质得∠ABF=∠CAF=60°,那么∠DBA+∠ABF=∠CAE+∠CAF,那么∠DBF=∠FAE,利用“SAS”可推断△DBF≌△EAF,因此DF=EF,∠BFD=∠AFE,因此∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,依照等边三角形旳判定方法可得到△DEF为等边三角形、【解答】证明:〔1〕∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA〔AAS〕,∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;〔2〕成立、∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA〔AAS〕,∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;〔3〕△DEF是等边三角形、由〔2〕知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF〔SAS〕,∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形、2017年2月8日。
天津南开区2018-2019学度初二上年中数学试题及解析初二年级试卷一选择题:本大题共12小题,每题3分,共36分。
在每题给出旳四个选项中,只有一项为哪一项符合题目旳要求旳。
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形旳是〔〕2.以下四个等式从左到右旳变形,是多项式因式分解旳是〔〕A.(a+3)(a-3)=a 2-9B.x 2+x-5=x(x+1)-5C.x 2+x=x(x+x1)D.a 2b+ab 2=ab(a+b) 3.以下运算正确旳选项是〔〕A.-a(a-b)=-a 2-abB.(2ab)2+a 2b=4abC.2ab ∙3a=6a 2bD.(a-1)(1-a)=a 2-14.分解因式x 2y-y 3结果正确旳选项是〔〕A.y(x+y)2B.y(x-y)2C.y(x 2-y 2)D.y(x+y)(x-y)5.长方形旳面积为4a2-6ab+2a,假设它旳一边长为2a,那么它旳周长为〔〕A.4a-3bB.8a-6bC.4a-3b+1D.8a-6b+26.如下图,有A 、B 、C 三个居民小区旳位置构成三角形,现决定在三个小区之间修建一个超市,使它到三个小区旳距离相等,那么超市应建在〔〕A.在AC 、BC 两边高线旳交点处B.在AC 、BC 两边中线旳交点处C.在AC 、BC 两边垂直平分线旳交点处D.在∠A 、∠B 两内角平分线旳交点处7.假设(x+y)2=11,(x-y)2=7,那么xy 和(x 2+y 2)旳值分别为〔〕A.4,18B.1,18C.1,9D.4,98.2016×2016-2016×2018-2018×2018+2018×2018旳值为〔〕A.1B.-1C.4032D.40319.依照以下条件,能画出唯一旳△ABC 旳是〔〕A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=300C.∠A=600,∠B=450,AB=4D.∠C=900,AB=610.如图,△ABC 中,AD=BD,AC=4,H 是高AD 和BE 旳交点,那么线段BH 旳长度为〔〕 A.6B.4C.32 D.511.如图,△ABC 中,AB=AD,D 是BC 旳中点,AC 旳垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,那么图中全等三角形旳对数是〔〕A.1对B.2对C.3对D.4对12.如图,△ABE 和△ADC 分别沿着边AB 、AC 翻折1800形成旳,假设∠BCA:∠ABC:∠BAC=28:5:3,BE 与DC 交于点F,那么∠EFC 旳度数为〔〕A.200B.300C.400D.450二填空题〔每题3分,共18分〕13.假如点P(-2,b)和点Q(a,-3)关于x 轴对称,那么a+b 旳值是.14.如图,△ABC 旳周长为19cm ,AC 旳垂直平分线DE 交AC 于点E,E 为垂足,AE=3cm ,那么△ABD 旳周长为.15.如图,AE//DF,AB=DC,不再添加辅助线和字母,要使△EAC ≌△FDB,需添加旳一个条件是〔只写一个条件即可〕16.在点O 在△ABC 内,且到三边旳距离相等,假设∠A=500,那么∠BOC=.17.假设x 2-(m-1)x+36是一个完全平方式,那么m 旳值为.18.阅读下文,查找规律,计算:4323221)1)(1(,2)1)(1(,1)1)(1(x x x x x x x x x x x x -=+++--=++--=+-,...,(1)观看上式,并猜想)...1)(1(2n x x x x ++++-=;(2)依照你旳猜想,计算:n 3...333132+++++=(其中n 是正整数)三解答题:19.在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC 关于y 轴旳对称△A 1B 1C 1;(2)写出△ABC 关于x 轴对称△A 2B 2C 2旳各顶点坐标;A 2;B 2;C 2.20.先化简,再求值:.91),1(5)13)(13()12(2-=-+-+--x x x x x x 21.因式分解:(1)18axy-3ax 2-27ay 2(2)(a 2+4)2-16a 2(3)c(a-b)-2(a-b)2c+(a-b)3c22.如图,B 是AC 中点,∠F=∠E,∠1=∠2.证明:AE=CF.23.如图,∠BAC 旳角平分线与BC 旳垂直平分线DG 交于点D,DE ⊥AB,DF ⊥AC,垂足分别为E 、F.(1)求证:BE=CF;(2)假设AF=5,BC=6,求△ABC 旳周长.24.阅读理解:〔1〕如图1,在△ABC 中,假设AB=10,AC=6,求BC 边上旳中线AD 旳取值范围;解决此能够用如下方法:延长ADD 到点E 使DE=AD,再连接BE(或将△ACD 绕着点D 逆时针旋转1800得到△EBD),把AB 、AC 、2AD 集中在△ABE 中,利用三角形三边旳关系即可推断.中线AD 旳取值范围是;〔2〕问题解决:如图2,在△ABC 中,D 是BC 边上旳中点,DE ⊥DF 于点D,DE 交AB 于点E,DF 交AC 于点F,连接EF.求证: BE+CF>EF.(3)问题拓展:如图3,在四边形ABCD 中,∠B+∠D=1800,CB=CD,∠BCD=1400,以C 为顶点作一个700角,角旳两边分别交AB 、AD 于E 、F 两点,连接EF ,探究线段BE 、DF 、EF 之间旳数量关系,并加以证明.1.A2.D3.C4.D5.D6.C7.C8.D9.C10.B11.D12.B 13.114.1315.AE=DF(【答案】不唯一)16.115017.-11或1318.〔1〕1-x n+1〔2〕2131-+n 19.。
2018年八年级数学上册轴对称与等腰三角形培优练习卷一、选择题:1、下面四个QQ表情图案中,不是轴对称图形的是()A. B. C. D.2、已知两点的坐标分别是(﹣2,3)和(2,3),则下列情况:①两点关于x轴对称.②两点关于y轴对称.③两点之间距离为4.其中都正确的有()A.①②B.①③C.②③D.①②③3、下列四个说法中:①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个角相等的等腰三角形是等边三角形.不正确的有( )A.0个B.1个C.2个D.3个4、如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05B.20:01C.20:10D.10:025、点P(1,-2)关于x轴对称的点的坐标是().A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)6、如下图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥7、如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C△BCD=AB+BC;④△ADM≌△BCD.正确的有()A.①②B.①③C.②③D.③④8、等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°9、如图,在△ABC中,∠CAB=130°,AB、AC的垂直平分线分别交BC于点E、F则∠EAF等于()A.60°B.70°C.80°D.90°10、在△ABC中,AB=AC,D、E分别在BC、AC上,AD=AE,∠CDE=20°,则∠BAD的度数为()A.36°B.40°C.45°D.50°11、△ABC中,AB=AC≠BC,在△ABC所在平面内有点P,且使得△ABP、△ACP、△BCP均为等腰三角形,则符合条件的点P共有()A.1个B.4个C.6个D.8个12、如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2),作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为()A. (2,0)B. (0,2)C. (0,﹣2)D. (﹣2,0)二、填空题:13、已知等腰三角形的两边长分别为3和7,则它的周长等于.14、等腰三角形一个内角的大小为50°,则其顶角的大小为度.15、如图,在△ABC中,BC的垂直平分线交AB于点E,若△ABC的周长为10,BC=4,则△ACE的周长是16、如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=53°,则∠P=______°.17、如图,△ABC的边AB,AC的垂直平分线相交于点P,连接PB,PC,若∠A=70°,则∠PBC的度数是______度.18、如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.三、作图题:19、如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.四、解答题:20、在ΔABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D点,交AC于点E.(1)若∠ABE=38°,求∠EBC的度数;(2)若ΔABC的周长为36cm,一边为13cm,求ΔBCE的周长.21、如图,已知△ABC,AB=AC,AD是△ABC角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,O,F.若∠CAD=20°,求∠OCD的度数.22、如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠MNA的度数是.(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC 的周长最小值;若不存在,说明理由.23、(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.24、如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为,连接,在点P运动的过程中,∠的度数是否会发生变化,若不变,请求出∠的度数,若改变,请说明理由。
参考答案1、答案为:D2、答案为:C3、答案为:B4、答案为:B5、答案为:A6、答案为:B7、答案为:B8、答案为:D.9、答案为:C10、答案为:B11、答案为:C12、答案为:A13、答案为:17;14、答案为:50°或80°15、答案为:616、答案为:53°17、答案为:2018、答案为:5019、解:(1)如图所示;(2)连接CA1,交直线DE于点Q,则点Q即为所求点.20、∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=38°∵AB=AC,∴∠ABC=∠C=71°∴∠EBC=∠ABC-∠ABE=71°-38°=33°由ΔABC的周长为36cm AB>BC AB=AC可知AB=AC=13cm BC=10cmΔBCE的周长=BE+CE+BC=AC+BC=13+10=23(cm)21、50°22、(1) 50(2) ①∵MN垂直平分AB.∴NB=NA,又∵△NBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.②当点P与点N重合时,由点P、B、C构成的△PBC的周长值最小,最小值是14cm.23、解:(1)如图1,作C关于直线AB的对称点C′,连接C′D交AB于点P.则点P就是所要求作的点.理由:在l上取不同于P的点P′,连接CP′、DP′.∵C和C′关于直线l对称,∴PC=PC′,P′C=P′C′,而C′P+DP<C′P′+DP′,∴PC+DP<CP′+DP′∴CD+CP+DP<CD+CP′+DP′即△CDP周长小于△CDP′周长;(2)如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,∵PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DE′,∴CE+EF+DF<CE′+E′F′+DF′,′∴PE+EF+PF<PE′+PF′+E′F′;(3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.24、解:(1)过点B作BC⊥x轴于点C,如图1所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.t=4÷1=4(秒),故t的值为4.(2)点M的坐标为(4,7), (6,-4), (10,-1), (0,4)(3)答:∠=45°∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.在△PAO和△BPC中,,∴△PAO≌△BPC,∴AO=PC,BC=PO.∵点A(0,4),点P(t,0)∴PC=AO=4,BC=PO=t,CO=PC+PO=4+ t∴点B(4+t,t)∴点B在直线y=x﹣4上又∵点A关于x轴的对称点为(0,-4)也在直线y=x﹣4上,∴∠=45°.。