介质访问控制
- 格式:ppt
- 大小:231.50 KB
- 文档页数:25
介质访问控制方法1 介质访问控制方法介质访问控制(Media Access Control,MAC)是一种网络控制协议,负责处理节点之间的数据传输,确保网络以有序、有效的方式发挥作用。
它的实现机制可以用来建立、维护和配置网络连接、传输信息和资源管理等。
2 工作原理MAC是一种底层协议,通过决定何时发送和接收报文,控制实体进入总线或介质,以确保数据传输的稳定性。
它是一种半双工收发机制,只允许实体通过访问介质的权限进行数据传输。
只有在有效的媒介控制码(Media Access Control Code,MAC)的情况下,实体才能够得到控制权,并且只有实体之间有正确的传出授权时,传输才可以正确完成。
3 类型介质访问控制方法有两种:随机介质访问控制法(CSMA / CA)和相位播放介质访问控制法(CSMA / CD)。
其中,CSMA / CA是一种半双工协议,它主要利用节点之间双向无线传输的特性,并在发送端采用介质访问控制技术,防止出现多个节点同时占用信道的现象;而CSMA / CD是一种介质访问控制的极大竞争系统,它主要利用了信道上传播延迟的特性,提供了一种有效的信息传输机制,使得网络可以以有序、有效的方式进行数据传输。
4 优缺点采用介质访问控制方法,可以保证网络的稳定性和有效性,使终端能够优先接收到信息,减少了网络冲突。
然而,MAC机制也存在一些缺点,比如,在短时间内可能会出现信道占用和冲突,这样会有可能影响数据传输的顺利进行。
此外,由于它的实现机制稍微复杂,会给网络通信带来一定的效率降低。
介质访问控制方法是保证网络稳定和有效的一种重要手段,但是要避免繁琐的操作步骤,有时还需要结合其它管理机制,如网络层或应用层协议,才能有效地实现介质访问控制。
介质访问控制技术嘿,同学们!今天咱们来聊聊一个有点复杂但又很有意思的东西,叫介质访问控制技术。
那啥是介质访问控制技术呢?听着好像很厉害的样子,其实啊,咱们可以把它想象成一个在操场上玩游戏的规则。
咱们先来说说啥是介质。
介质呢,就像是咱们传递消息的一个工具。
比如说,在电脑和电脑之间传递信息,就需要有个东西来帮忙,这个东西就可以算是介质。
可以把它想象成咱们在操场上传话用的小纸条。
那为啥要有访问控制技术呢?这就好比咱们在操场上玩游戏。
如果大家都乱哄哄地抢着说话,那谁也听不清谁的,游戏就没法玩了。
在电脑的世界里也是一样,如果大家都随便地用那个介质来传递信息,那就会乱套啦。
比如说,有好几台电脑都想通过一条线来发送信息。
要是没有规矩,那这些信息就会挤在一起,谁也走不了,就像咱们在门口挤成一团,谁也出不去一样。
所以呢,就有了介质访问控制技术。
这个技术就像是一个小交警,指挥着信息该怎么通过介质。
一种常见的介质访问控制技术叫载波侦听多路访问。
哎呀,这名字听起来好复杂,其实也不难理解。
就好像咱们在操场上,大家想说话的时候,先听听有没有别人在说话。
如果听到别人在说话,那就等一会儿,等别人说完了自己再说话。
电脑也是这样,一台电脑想发送信息的时候,先看看介质上有没有别的信息在传输。
如果有,那就等一等,等介质空了再发送自己的信息。
还有一种叫令牌环访问控制技术。
这个就有点像咱们玩接力游戏。
有一个“令牌”在电脑之间转来转去。
只有拿到这个“令牌”的电脑才能发送信息。
等它发送完了,就把“令牌”传给下一台电脑。
这样大家就不会乱抢着发送信息啦。
介质访问控制技术可重要啦。
要是没有它,咱们上网的时候就会很慢很慢,或者根本就上不了网。
就像咱们在操场上玩游戏,如果没有规则,那游戏肯定玩不下去。
同学们,你们想想看,咱们在生活中也有很多像介质访问控制技术这样的规则呢。
比如在教室里,大家不能同时大声说话,要一个一个地发言。
在排队的时候,也不能乱插队,要按照顺序来。
三种介质访问控制方法
介质访问控制方法是指控制多个结点利用公共传输介质发送和接收数据的方法。
常见的介质访问控制方法包括以下几种:
1. 强制访问控制 (MAC):MAC 方法通过在传输介质上加密数据来确保只有授权用户才能访问数据。
这种方法通常是通过物理隔离或网络隔离来实现的。
例如,在局域网中,管理员可以配置网络适配器的物理位置,以确保只有授权设备才能访问网络。
2. 自愿访问控制 (VAC):VAC 方法允许用户自愿选择是否共享其访问权限。
这种方法通常用于需要访问敏感数据的用户和应用程序之间。
例如,在企业中,高级管理员可以授予普通员工访问某些数据的权限,但普通员工可以选择不共享其访问权限。
3. 基于角色的访问控制 (RBAC):RBAC 方法基于用户的角色来分配访问权限。
这种方法可以确保只有授权用户才能访问特定数据或应用程序。
例如,在企业中,管理员可以配置部门经理可以访问所有部门数据,但普通员工无法访问。
以上是常见的三种介质访问控制方法,每种方法都有其优缺点和适用范围。
强制访问控制通常用于保护敏感数据或防止未经授权的访问,自愿访问控制可以让用户自由决定是否共享其访问权限,而基于角色的访问控制可以确保只有授权用户才能访问特定数据或应用程序。
介质访问控制方法
介质访问控制方法是保护信息和资源安全的重要手段之一。
它通过限制和控制谁可以访问特定信息或资源,确保只有合法用户能够获得访问权限。
以下是几种常见的介质访问控制方法:
1. 用户名和密码:这是最常见的访问控制方法之一。
用户需要输入正确的用户名和相应的密码才能获得访问权限。
为了增强安全性,密码应该设置为强密码,并定期更换。
2. 双因素认证:除了用户名和密码,双因素认证还需要用户提供额外的验证因素,如指纹、面部识别、手机验证码等。
这种方法提供了更高的安全性,因为除了知识因素(密码)外,还需要用户的身体特征或拥有的物品。
3. 令牌访问控制:令牌是一种可移动的设备,类似于硬件密钥或智能卡。
用户需要插入或携带令牌设备才能获得访问权限。
令牌设备可以生成一次性密码,提供更高的安全性。
4. 角色基础访问控制(RBAC):在RBAC方法中,用户被分配到不同的角色,每个角色具有一组特定的权限。
用户根据自己的角色来确定访问权限。
RBAC方法可以简化权限管理,并且更容易适应组织中不同用户的需求。
5. 访问控制列表(ACLs):ACLs是一种基于规则的访问控制方法。
它使用规则列表来定义谁可以访问某些特定资源。
对于每个资源,ACLs指定了允许或拒绝访问的用户或用户组。
这些是常见的介质访问控制方法,组织可以根据自己的需求选择适合的方法来保护其信息和资源的安全。
介质访问控制方法介质访问控制(MAC)是一种用于管理计算机系统或网络中设备对资源访问的安全机制。
它通过对设备、用户或进程的身份进行验证和授权,来限制其对系统资源的访问权限。
在现代网络环境中,介质访问控制方法扮演着至关重要的角色,它不仅可以保护系统免受未经授权的访问和攻击,还可以确保敏感数据的保密性和完整性。
本文将介绍几种常见的介质访问控制方法,以及它们的优缺点和应用场景。
一、基于身份验证的介质访问控制。
基于身份验证的介质访问控制是最常见的一种方法,它通过验证用户或设备的身份来确定其对系统资源的访问权限。
常见的身份验证方式包括密码、数字证书、生物特征识别等。
在这种方法中,用户需要提供有效的身份凭证,系统根据凭证的有效性来决定是否允许其访问资源。
这种方法的优点是实现简单,易于管理,但缺点是可能存在密码泄露、生物特征伪造等安全问题。
二、基于访问控制列表(ACL)的介质访问控制。
ACL是一种用于限制对资源访问的列表,它包含了一系列的访问规则,用于控制特定用户或设备对资源的访问权限。
ACL可以根据用户、用户组、时间、位置等条件来进行访问控制,管理员可以根据实际需求对ACL进行灵活配置。
这种方法的优点是精细化的权限控制,但缺点是管理复杂,容易产生访问冲突。
三、基于角色的介质访问控制。
基于角色的介质访问控制是一种将用户与角色进行关联,再将角色与权限进行关联的访问控制方法。
通过将用户与角色进行解耦,可以简化权限管理的复杂性。
管理员只需管理角色的权限,而不需要管理每个用户的权限,这样可以降低管理成本,提高系统的安全性。
但是,这种方法也存在角色权限划分不清、角色滥用等问题。
四、基于动态访问控制的介质访问控制。
基于动态访问控制的介质访问控制是一种根据实际情况动态调整访问权限的方法。
它可以根据用户的身份、行为、环境等动态因素来进行访问控制,从而更加灵活地应对各种访问场景。
这种方法的优点是能够及时应对安全威胁,但缺点是实现复杂,可能会影响系统性能。
简述常见的介质访问控制方法的基本原理
常见的介质访问控制方法包括CSMA/CD、CSMA/CA、令牌环、令牌总线、纯ALOHA和时隙ALOHA等。
以下是它们的基本原理:
1. CSMA/CD:这是一种分布式控制技术,各节点在竞争的基础上访问传输介质。
具体来说,每个节点在发送数据之前先监听信道,如果总线上没有其他站点发送信号,则该站点发送数据;否则,需等待一段时间后再重新监听,再根据情况决定是否发送数据。
发送数据的同时检测信道上是否有冲突发生,若有,则采用截断二进制数退避算法等待一段时间后再重发。
2. CSMA/CA:该方法用于无线网络,特别是WiFi。
与CSMA/CD不同,CSMA/CA使用确认和重传机制来确保数据的可靠传输。
3. 令牌环和令牌总线:这两种方法中,数据传输的权利由一个称为“令牌”的特殊标记来控制。
令牌环既可用于环形结构也可用于总线形结构。
4. 纯ALOHA:此协议中,各站点不监听信道,也不按时间槽发送数据。
当冲突发生时,站点会随机重发数据。
5. 时隙ALOHA:这种方法下,站点不监听信道,但会按照预定的时间槽发送数据。
当发生冲突时,站点同样会随机重发数据。
这些控制方法在计算机网络中被广泛使用,各有其适用场景和优缺点。
介质访问控制方法介质访问控制方法是指对数据传输介质进行访问控制的技术手段,通过对数据传输介质的访问进行管理和控制,可以有效地保护数据的安全性和完整性。
在网络通信和信息传输过程中,介质访问控制方法起着非常重要的作用,它可以有效地防止未经授权的用户或设备对数据传输介质的非法访问,从而保障数据传输的安全和可靠性。
介质访问控制方法主要包括物理层介质访问控制和数据链路层介质访问控制两种方式。
物理层介质访问控制是指通过对数据传输介质的物理特性进行管理和控制,来实现对数据传输的访问控制。
常见的物理层介质访问控制技术包括载波侦听多址接入(CSMA)、载波侦听多址接入/碰撞避免(CSMA/CA)和载波侦听多址接入/碰撞检测(CSMA/CD)等。
这些技术可以有效地避免数据传输介质上的冲突和碰撞,保证数据传输的顺利进行。
数据链路层介质访问控制是指通过对数据链路层的协议和技术进行管理和控制,来实现对数据传输的访问控制。
常见的数据链路层介质访问控制技术包括逻辑链路控制(LLC)、介质访问控制子层(MAC)和逻辑拓扑控制等。
这些技术可以有效地控制数据传输的访问权限和优先级,保证数据传输的安全和可靠。
除了物理层和数据链路层的介质访问控制方法外,还可以通过网络层和应用层的安全协议和技术来实现对数据传输介质的访问控制。
例如,网络层的IPsec协议可以对数据传输进行加密和认证,从而保护数据的安全性;应用层的访问控制列表(ACL)可以对数据传输的访问进行精细化控制,实现对特定用户或设备的访问权限管理。
总的来说,介质访问控制方法是保障数据传输安全的重要手段,它通过对数据传输介质的访问进行管理和控制,可以有效地防止未经授权的用户或设备对数据传输的非法访问,从而保障数据传输的安全和可靠。
在实际应用中,我们可以根据具体的网络环境和安全需求,选择合适的介质访问控制方法来保护数据的安全性和完整性。
介质访问控制方法介质访问控制是指通过特定的手段和技术,对介质(如网络、存储设备等)进行访问控制,以保护系统和数据的安全。
在当今信息化社会,介质访问控制方法显得尤为重要,本文将介绍几种常见的介质访问控制方法。
首先,基于身份验证的介质访问控制方法是最常见的一种。
它通过验证用户的身份信息,如用户名、密码、指纹等,来确定用户是否有权限访问介质。
这种方法简单易行,但也存在一定的安全风险,比如密码被盗用、指纹被模仿等问题。
其次,基于访问控制列表(ACL)的介质访问控制方法也是一种常见的方式。
ACL是一种用于控制用户或系统对资源访问权限的列表,它可以精确地控制谁可以访问资源、以及对资源的具体操作权限。
这种方法可以细致地控制每个用户的权限,但管理起来可能会比较繁琐。
另外,基于角色的访问控制(RBAC)也是一种比较流行的介质访问控制方法。
RBAC是一种基于角色的访问控制模型,它将用户分配到不同的角色,每个角色拥有特定的权限,用户通过角色来获取相应的权限。
这种方法简化了权限管理的复杂性,提高了系统的安全性和管理效率。
此外,基于加密技术的介质访问控制方法也是一种重要的手段。
通过对介质进行加密,可以有效地保护介质的安全性,防止未经授权的访问和篡改。
加密技术可以应用于各种介质,如网络数据传输、存储数据、数据库访问等,是保护介质安全的重要手段之一。
最后,基于审计和监控的介质访问控制方法也是不可或缺的。
通过对介质访问进行审计和监控,可以及时发现异常行为和安全事件,保障介质的安全。
审计和监控可以记录用户的访问行为、检测异常操作、及时响应安全事件,是介质访问控制中的重要环节。
综上所述,介质访问控制方法多种多样,每种方法都有其特点和适用场景。
在实际应用中,可以根据具体的需求和安全要求,选择合适的介质访问控制方法,从而保障系统和数据的安全。
同时,介质访问控制方法也需要不断地与时俱进,结合最新的安全技术和手段,不断提升介质访问控制的能力和效果。
介质访问控制(Medium Access Control,MAC)是计算机网络中的一个重要的数据链路层协议,用于控制网络中多个终端设备在共享网络介质(如以太网)时的访问权限。
以下是一些基本的相关概念的词汇解释:
1. 帧:是数据链路层通信中的基本数据单位,包含数据部分和控制信息部分。
2. CSMA/CD:是介质访问控制协议的一种方法,用于减少数据冲突,提高数据传输效率。
3. 令牌桶:是一种流量控制算法,用于限制网络中一段时间内的数据发送速率,防止网络拥塞。
4. 媒体访问控制地址(MAC地址):是一个物理地址,由网卡厂商唯一制定,用于标识网络中各个终端设备的身份。
5. 帧同步:是为了确保接收方能够正常解析数据帧,发送方在发送数据帧前需要先发送一组特定的同步信号,以确保数据的同步。
6. Token Ring:是一种介质访问控制协议,用于控制局域网
中各节点对网络介质的访问权限和流量控制。
7. MAC层协议数据单元(MPDU):是网络中数据链路层的数据传输单元,是由MAC层处理和传输的数据单元,通常包含一定的控制信息和纠错编码,用于控制数据在传输过程中的可靠性。
以上是介质访问控制相关的一些基本概念的解释,希望对您理解介质访问控制协议有所帮助。
【计算机⽹络】介质访问控制【背景】今天讲介质访问控制,介质访问控制是针对局域⽹的,因为局域⽹是⼀种⼴播式⽹络。
这就意味着局域⽹中所有联机的计算机都共享⼀个公共信道,所以需要⼀种⽅法能够有效的分配传输介质的使⽤权,使得两对节点之间的通信不会互相⼲扰的情况,这种功能就叫介质访问控制。
频分多路复⽤信道划分介质访问控制时分多路复⽤波分多路复⽤码分多路复⽤介质访问控制ALOHA协议随机访问介质访问控制CSMA协议CSMA/CD协议CSMA/CA协议轮询访问介质访问控制令牌传递协议信道划分介质访问控制信道划分介质访问控制将使⽤介质的每个设备与来⾃同⼀通信信道上的其他设备的通信隔离开来,把时域和频域资源合理地分配给⽹络上的设备。
信道划分的实质就是通过分时、分频、分波,分码等⽅法把原来的⼀条⼴播信道,逻辑上分为⼏条⽤于两个结点之间通信的互不⼲扰的⼦信道,实际上就是把⼴播信道转变为点对点信道。
信道划分介质访问控制分为以下4 种:频分多路复⽤(Frequency division multiplexing FDM)频分多路复⽤是⼀种将多路基带信号调制到不同频上,再叠加形成⼀个复合信号的多路复⽤ 技术。
每个⼦信道分配的带宽可不相同,但它们的总和必须不超过信道的总带宽。
在实际应⽤中,为了防⽌⼦信道之间的⼲扰,相邻信道之间需要加⼊“保护频带”。
频分多路复⽤的优点在于充分利⽤了传输介质的带宽,系统效率较⾼;由于技术⽐较成熟,实现也较容易。
缺点在于⽆法灵活地适应站点数及其通信量的变化。
时分多路复⽤(Time division multiplexing TDM)时分多路复⽤是将⼀条物理信道按时间分成若⼲时间⽚,轮流地分配给多个信号使⽤。
每个时间⽚ 由复⽤的⼀个信号占⽤。
就某个时刻来看,时分多路复⽤信道上传送的仅是某⼀对设备之间的信号;就某段时间⽽⾔,传送的是按时间分割的多路复⽤信号。
但由于计算机数据的突发性,⼀个⽤户对已经分配到的⼦信道的利⽤率⼀般不⾼。
介质访问控制方法介质访问控制(Media Access Control,MAC)方法是计算机网络中用于协调多个节点对共享媒体的访问的一种技术。
它定义了在共享媒体上的数据传输的协议规则和机制,以确保多个节点之间能够有效地进行通信。
介质访问控制方法对于网络的性能、吞吐量和公平性都起着重要的作用。
常见的介质访问控制方法包括随机接入方法、非均匀间隔时间划分多路复用方法和载波侦听多址方法等。
1. 随机接入方法:随机接入方法的核心思想是在发送数据前随机选取一个时间槽进行发送。
其中最常见的随机接入方法是ALOHA协议和CSMA/CA(CSMA with Collision Avoidance)协议。
ALOHA协议是最早提出的一种随机接入方法。
它将传输时间划分为若干个相等的时间间隔,在每个时间间隔内,节点根据需要发送数据,然后等待反馈。
如果反馈收到,说明数据发送成功;如果反馈未收到,则会在下一个时间间隔内重新发送。
ALOHA协议简化了访问控制的过程,但由于没有进行冲突检测,可能会造成冲突。
CSMA/CA协议是一种改进的随机接入方法,它引入了冲突避免机制。
节点在发送数据之前,先进行载波侦听,如果检测到其他节点正在发送数据,则等到传输完成后再发送。
这样可以避免冲突,提高了传输效率。
2. 非均匀间隔时间划分多路复用方法:非均匀间隔时间划分多路复用方法将传输时间划分为多个时间片段,每个时间片段内的传输权由各节点根据一定的规则确定。
常见的非均匀间隔时间划分多路复用方法有轮流传输法、位图法和字典法等。
轮流传输法是一种简单的时间划分方法,各节点按照一定的顺序依次获得传输权。
这种方法简化了传输冲突的处理,但也可能导致传输时间不均衡。
位图法是一种用位图表示回应传输权的方法。
每个节点都拥有一个位图,当某个节点需要传输时,它将自己的位图中相应位置为1,其他节点根据位图的内容来获取传输权。
位图法可以根据实际需要进行调整,具有较好的灵活性和可扩展性。
介质访问控制方法名词解释介质访问控制方法(Medium Access Control, MAC)是用于控制在共享传输媒体上的多个节点之间的数据传输的一种技术。
它定义了节点如何在共享介质上发送和接收数据的规则和协议。
以下是一些常见的介质访问控制方法的名词解释:1. 轮询(Polling):在轮询方法中,一个主节点负责控制其他从节点的访问共享介质。
主节点按顺序询问每个从节点是否有数据要发送,如果有,它会分配时间片给该从节点进行数据传输。
这种方法可以确保每个节点都有机会访问介质,但是在节点数量较多时会产生较大的延迟。
2. 随机接入(Random Access):随机接入方法中,每个节点都有平等的机会访问共享介质。
当一个节点想要发送数据时,它会先进行竞争,即发送一个随机的接入请求。
如果多个节点同时发送请求,会发生冲突。
当发生冲突时,节点会等待随机的时间后重新发送请求,通过随机的时间可以减少冲突。
这种方法具有较好的响应时间,但在高负载情况下可能会导致更多的冲突。
3. 信标(Token):信标方法中,网络中存在一个信标(token),节点只有在获得信标时才能发送数据。
当一个节点发送完数据后,它会将信标传递给下一个节点。
这种方法可以确保一个节点在任何时候都只有一个信标,从而避免了冲突。
然而,信标方法可能会导致较长的延迟,特别是在网络中的节点数量较多时。
4. CSMA/CD(Carrier Sense Multiple Access with Collision Detection):CSMA/CD方法是一种在以太网中广泛使用的介质访问控制方法。
在该方法中,节点在发送数据之前会先“听”共享介质是否正在被其他节点占用。
如果介质空闲,节点就可以发送数据;如果介质正在被其他节点使用,则节点会等待一段随机的时间后再次尝试。
当多个节点同时发送数据导致冲突时,它们会通过冲突检测来检测到冲突,并停止发送数据。
CSMA/CD方法能够减少冲突的发生,但在高负载情况下仍然可能会出现冲突,因此会导致一些重传。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。