电动汽车电源管理系统概述
- 格式:ppt
- 大小:6.40 MB
- 文档页数:67
汽车智能电源控制系统研究汽车智能电源控制系统是现代汽车重要的一个组成部分,其功能包括对汽车电源的监测、管理和控制,以提高汽车的性能、可靠性和节能性。
本文将从汽车智能电源控制系统的基本构成、功能特点、研究现状和发展趋势等方面进行论述。
一、汽车智能电源控制系统的基本构成汽车智能电源控制系统包括发电机、蓄电池、充电系统、供电系统、传感器、控制器和通信系统等七个部分。
其中,发电机是汽车电源的核心部件,主要负责发电并给蓄电池充电;蓄电池则是汽车电源的存储部件,能够向汽车供电并接受来自发电机的充电。
充电系统主要包括发电机、稳压器和电池充电线路,它们通过对电压、电流和电量的管理,控制汽车电源的充电状态。
供电系统包括了汽车的主机电源、从机电源和辅助电源等,它们通过智能控制器的调节,能够根据不同的工作状态和负荷需求,确保汽车始终处于稳定的供电状态。
传感器则是汽车智能电源控制系统的感知部件,能够对车内外的环境变化、驾驶员的行为和汽车本身的状态进行监测。
控制器则是汽车智能电源控制系统的中枢部件,它能够接收传感器数据、分析车载电路的负荷情况、判断各个组件的工作状态和运行需求,进而控制汽车的发电、充电和供电等功能。
通信系统则是汽车智能电源控制系统的“大脑网络”,能够实现控制器与外部设备的信息交互和数据共享。
二、汽车智能电源控制系统的功能特点汽车智能电源控制系统的主要功能特点包括以下方面:1、节能环保:优化发电机充电控制、合理调节供电系统的负荷并提高蓄电池的利用率,降低发电机负载和热损耗等,能够有效提高汽车的燃油经济性和环保性;2、安全可靠:借助传感器实时监测电源工作状态和车载电路的负荷情况,确保安全可靠地供电和充电,避免可能引起的短路、过充或过放等情况;3、智能化控制:通过控制器和通信系统的智能化管理和控制,能够根据不同的工况、环境和驾驶需求,实现汽车电源的智能化、个性化和优化化控制;4、功能扩展:基于通信系统和控制器的可编程性和可升级性,汽车智能电源控制系统具有支持更多智能功能的扩展潜力,例如车载娱乐、智能驾驶等。
电动汽车智能充电桩配电系统设计随着全球对环境保护意识的增强和能源消耗问题的日益突出,电动汽车作为一种环保节能的交通工具,被广泛认可和接受。
为了保证电动汽车的使用便利性和充电效率,一个可靠高效的充电桩配电系统是至关重要的。
本文将介绍一个电动汽车智能充电桩配电系统的设计。
1. 系统概述电动汽车智能充电桩配电系统是用于电动汽车充电的基础设施,它负责将电能从电网传输到充电桩,然后再传输到电动汽车中。
该系统由充电站、充电桩、配电盒和控制中心组成。
充电站作为系统的总控制节点,通过配电盒将电能分配到各个充电桩上,并通过控制中心实现对充电桩进行远程监控和管理。
2. 配电系统设计为了保证系统的安全性和稳定性,配电系统的设计应考虑以下因素:2.1 配电盒设计配电盒是充电桩与电网之间的连接点,它起着分配电能和保护电路的作用。
配电盒应具备足够的电流承载能力和短路保护功能,以确保充电过程中不会发生过载和短路故障。
2.2 充电桩设计充电桩是充电系统的核心设备,它应具备可靠的供电能力和高效的充电效率。
充电桩的设计应考虑以下几个方面:2.2.1 电能负荷管理为了平衡充电桩之间的负荷,充电桩应具备智能的负荷控制功能。
当有多个充电桩同时充电时,系统应根据当前的电网负载情况,动态调整每个充电桩的充电功率,以避免超负荷现象的发生。
2.2.2 充电效率优化为了提高充电效率,充电桩应具备智能充电管理功能。
通过对电动汽车电池进行实时监测和分析,系统可以自动调整充电参数,使充电过程更加高效。
此外,充电桩还应支持快速充电和慢充电两种不同模式,以满足用户不同的充电需求。
2.2.3 安全性保障为了保证用户和设备的安全,充电桩应具备多重安全保护机制。
例如,充电桩应具备漏电保护功能,一旦发生漏电现象,充电桩应能自动断开电源,避免电击事故的发生。
此外,充电桩还应支持过电压和过电流保护,确保充电过程中不会对电动汽车和设备造成损害。
3. 控制中心设计控制中心是系统的核心,它负责对充电桩实时监控和管理。
电动汽车动力电池管理系统(BMS)设计摘要:本文主要从硬件系统设计、软件系统设计两个方面,对电动汽车中动力电池的内部管理系统(BMS)综合设计,进行了深度的分析与研究,以通过不断地实践研究,积极探索出电动汽车中动力电池的内部管理系统(BMS)最具高效性的综合设计方案,以充分提升电动汽车中动力电池的内部管理系统(BMS)的设计水准,确保电动汽车中动力电池的内部管理系统(BMS)各项功能能够满足于电动汽车实际的应用需求,为我国电动汽车行业的长期发展奠定基础。
关键词:电动汽车;动力电池;管理系统(BMS);设计前言:电动汽车(battery electric vehicle;BEV),主要是指以车载类电源为基本动力,利用电机来驱动车轮达到行驶目地,符合于我国安全法规与交管各项规定的车辆。
基于电动汽车有着环保性特征,所以,其在国内的发展前景相对较为良好。
但是,基于国内电动汽车相关技术还处于初步探索阶段,各项技术还不够成熟,若想实现突破性发展还需作出更多的努力。
电动汽车,它与传统汽车最大的不同之处就在于电动汽车内部包含着一种动力的电池。
在一定程度上,通过该动力电池可实现电动汽车节能化、环保化的行使。
那么,为了能够更好地助推我国电动汽车行业的发展,就需从其内部的动力电池入手,对其所在的管理系统(BMS),进行系统化的分析与研究。
从而能够设计出更具有功能特性的动力电池内部管理系统(BMS),为电动汽车提供强大动力电池内部管理系统支持,进一步推动我国电动汽车行业的快速发展,让其可稳步向着新的发展征程迈进。
1、硬件系统设计基于电池组主要是由多节电池的单体并联与串联而成,实现对所有电池单体实时化监控。
因而,如图1所示,电池内部管理系统主要应用了主从结构,以实现灵活性通讯,提升通讯实际速度。
从板均需具有电池单体的温度与电压检测、CAN总线的通讯等各项功能。
图1 BMS系统框图示图1.1 IMCU系统处理器系统处理器主要选用的是Freescale -9S12DT64型号的MCU系统处理器,该型号MCU系统处理器为16位系统的单片机,主要是由CAN系统的总线模块、PWM的调节器(1个)AD的转换器(2个)定时器(1个)外部串口(1个)内部串口(2个)。
BMS电池管理系统说明书讲解BMS电池管理系统说明书BMS Battery Mnagement System Specification概述深圳市沃特玛电池有限公司动⼒电池组OPT电池管理系统(Battery Management System,简称BMS)主要由功能模块(主机模块、采集模块、显⽰屏模块)和附件(线束、霍尔、直流继电器、主控箱等)组成,外加绝缘检测模块做监测装置,完成对动⼒电池的管理和应⽤。
OPT电池管理系统作为电动汽车电源的重要零部件,其主要任务是:监测动⼒蓄电池组的单体电压、温度、总电压和总电流的状态,车体绝缘性能,与整车进⾏数据通讯,预测蓄电池的荷电状态(State Of Charge,简称SOC),与充电机通讯并对充电状态进⾏控制,热管理,存储电池单体电压等运⾏数据、故障报警和继电器控制记录,对电池出现的故障进⾏诊断和报警,最终达到防⽌电池过充和过放,延长其使⽤寿命等功能。
OPT电池管理系统⼀般是由⼀个主机模块,⼀个显⽰屏模块,⼀个绝缘检测模块和多个采集模块组成,各个组成模块之间通过CAN通讯进⾏信息交换和控制管理,每个采集模块能采集12串电池,可根据电池组型号和电池包结构等条件配置采集模块数,采集模块把采集到的单体电压、温度、电流等信号上传到主机模块处理和显⽰屏模块显⽰,显⽰屏模块能显⽰BMS状态信息和进⾏参数配置,主机模块通过CAN总线与整车控制器通讯上报电池组信息和继电器控制状态,并且能在充电时与充电机通讯,控制充电电压和电流进⾏充电管理。
OPT BMS系统运⾏拓扑图如下:图1 OPT BMS拓扑图1.系统结构⽰图OPT电池管理系统⼀般分⼀体箱和分体箱,根据客户需求和电池型号配置⽽设计。
⼀体箱是主机模块、采集模块等组件都放置于同⼀个箱体,统⼀的对外接⼝,⽐较典型的⼀体箱结构⽰意图如下:图2 BMS⼀体箱⽰意图分体箱是由主控箱和电池箱组成,主控箱⼀般配置主机模块、霍尔传感器、控制继电器、保险丝、线束等,主要负责系统控制管理、总电流与总电压采集、系统供电、配电和通讯控制等,以下为典型的⼀个主控箱⽰意图:图3 BMS主控箱结构⽰意图电池箱是根据客户需求和电池型号,配置不同的采集模块和风扇数量,实现采集单体电压、温度并通过CAN总线上报主机,并能进⾏热管理,其中典型的⼀个电池箱结构⽰意图如下:动⼒线接⼝通讯⼝采⽤螺母固定,从车箱底部锁螺丝上来图4 OPT BMS电池箱结构⽰意图2.OPT BMS各部件功能及其接⼝定义3.1 OPT BMS外形尺⼨1、主机模块:130*110*39mm2、采集模块:113mm*96mm*43mm3、GPRS&数据存储上传模块:未定4、CAN盒125*82*27mm5、绝缘检测模块:165.0*80.0*26.5mm6、显⽰模块:160mm*96mm*42mm3.2 OPT BMS主机模块3.2.1 主机模块功能指标Ⅰ. 电池组电压计算与控制接收采集模块上传的电池组的所有单体电压,计算电池总电压并能够选出电池组的最⾼单节电池电压及序号和最低单节电池电压及序号,并能在显⽰屏模块指定位置显⽰,同时可以通过专⽤CAN ⼝上传到汽车仪表总线.Ⅱ. 电池组总电流检测和计算接收主控本⾝或采集模块上传的电池电流采集,根据设定的霍尔传感器额定参数,计算电池组总电流,并能在显⽰屏模块指定位置显⽰。
项目编号:项目名称:电池管理系统(BMS)文档版本:V0.01技术部2015年月日版本履历目录1.前言 (4)2.名词术语 (5)3.概要 (6)4.总体要求 (7)5.系统原理图 (9)6.模块的构成 (10)6.1BMS程序模块图 (10)6.2整体方案图 (10)7.电池串管理单元BCU (11)7.1模块的概述 (11)7.2模块的输入 (11)7.3模块的功能 (11)7.4模块的输出 (11)8.电池检测模块BMU (11)8.1模块的概述 (11)8.2模块的输入 (11)8.3模块的功能 (11)8.4模块的输出 (12)9.绝缘检测模块LDM (12)9.1模块的概述 (12)9.2模块的输入 (12)9.3模块的功能 (12)9.4模块的输出 (12)10.强电控制系统HCS (12)10.1模块的概述 (12)10.2模块的输入 (12)10.3模块的功能 (12)10.4模块的输出 (13)11.电流传感器CS (13)11.1模块的概述 (13)12.显示屏LCD (13)12.1模块的概述 (13)13.后记 (14)14.参考资料 (15)1.前言开发电动汽车电池管理系统,此系统的全面实时监控,具有良好的电池均衡性能,检测精度高。
2.名词术语BMS:电池管理系统BCU:电池串管理单元BMU:电池检测单元LDM:绝缘检测模块HCS:强电控制系统SOC: 电池荷电状态3.概要电动汽车电池管理系统(BMS),管理系统状态用于监测电动汽车的动力电池的工作状态,从而采集动力电池的状态参数,实现动力电池的SOC状态、温度、充放电电流和电压的监控。
电池管理系统主要是BMS通过CAN总线与整车控制器、智能充电器、仪表进行通讯,对电池系统进行安全可靠、高效管理。
电池管理系统包括BCU和BMU,BCU主要作用是:根据动力电池的工作状态,对电池组SOC进行动态估计,通过霍尔电流传感器,实现对充放电回路电流的实时监测,保护电池系统,可以实现与BMU、整车控制器、充电机等进行通信,交互电压、温度、故障代码、控制指令等信息;BMU的功能是通过对各个单体电压的实时监测、对箱体温度的实时监测,通过CAN总线将电池组内各单体的电压、箱体温度以及其他信息传送到BCU,通过与智能充电桩交互数据信息,充电期间实时估算电池模块SOC,对电芯进行充电均衡,提高单节电芯的一致性,提高整组电池使用性能,对电池进行主动式冷热管理,保护电池使用寿命,延长电池寿命。
图1 北汽新能源EV200控制系统网络通讯对于电动汽车动力电池来讲,各个整车厂商的控制策略基本相同,但选用的控制元器件精度、性能有所不同,特别是实现控制策略的算法、应用程序各不相同,因此也成为各个厂家的特色和机密。
各整车厂商在控制软件开发上,会根据使用过程发现的问题不断完善,可以通过刷程序来为车主的爱车升级。
维修人员取得整车厂商的授权,得到控制程序和密码后,就可以通过车辆图2 动力电池管理系统与外部系统CAN通讯关系框图图3 电芯电压检测接点分布从控盒电路板上的检测电路对各个电芯巡回检查,电压数据经隔离后送到电路板计算区域处理,再通过内部CAN线送主控盒分析处理。
主控盒要进一步计算整个电池包的SOC,以及最高电压电芯与最低电压电芯的差值是否超标,是否达到放电截止电压或充电截止电压,然后再做后续控制处理。
电池温度检测一般在电池模组上安置温度传感器检查,温度传感器安置在模组的接线柱附近。
温度传感器的测量引线分别送图4 电芯电压检测线与检测电阻阵列图5 动力电池上下电过程原理图图6 高压回路绝缘检测与继电器开闭状态检测控制盒2.动力电池母线继电器开闭状态检测与高压回路绝缘检测(1)动力电池对外高压上下电过程控制图5是动力电池上下电过程原理图。
动力电池对外部负载上的电指令如下。
驾驶员起动车辆,钥匙置ON位,动力电池负极继电器闭合,全车高压系统各个控制器初始化、自检,完成后通过CAN线通报。
动力电池对内部电芯电压和温度检查合格、母线绝缘检测合格,动力电池主控盒接通预充继电器(预充继电器与预充电阻串联,然后与正极继电器并联)。
动力电池为外部负载所有电容图7 变阻抗网络电路图9 套装在母线上的霍尔电流传感器图7b 变阻抗网络电路图7c 变阻抗网络电路关断时,图7b桥式阻抗网络的等效形式为R g1与串联。
这时,电源电压为U 01,电流为I 1。
R/(R g1+R)) (1)关断时,图7c桥式阻抗网络的等效形式为R g2串联,这时,电源电压为U 02、电流为I 2。
金升阳汽车电子电源选型指南4-电池管理器(BMS)解
决方案
方案总体介绍:
BMS系统是电动汽车和混合电动汽车的核心部件,也是动力的心脏。
主要用于对汽车电池进行在线检测和实时监控,为整车提供动力电池电压、电流、温度、SOC及绝缘状态等信息,同时实时的判断电池的运行状态及电池组离散性,若出现故障,及时向整车发送故障信号并报警。
其整个详细功能如下:
一.故障预测与报警:电池组在运行过程中,经常出现单只电池出现损坏的情况,这种情况若未能及时发现,将导致其他的电池性能受到影响,进而造成整个电池组电池损坏。
电池管理系统可以及时发现并通知维护人员维修或更换电池,从而延长电池组的使用寿命。
二.动均衡功能:电池在制造过程中,不可避免出现不一致的情况,在运行过程中,直接表现为电池的电压不一致,致使容量小的电池在充电过程中经常处于过充状态,寿命缩短。
智能的电池管理系统可以对电池的不平衡进行均衡,减小电池由于过充而造成损坏。
三.剩余容量(SOC)预测:在对电池剩余容量有严格要求的场合,智能管理系统采用高精度、高采样频率的测量系统,对电池的SOC进行预测。
四.远程监控接口:系统带有RS-485、CAN等通讯接口,可以采用监控软件实现远程实时监控,软件操作简单,显示清晰可观。
下面是BMS整体方案框图:
不论是在信号监测、控制过程中,还是在外接通讯方面,我司的
CF0505产品优良的特性都是BMS产品设计的首选。
我司在质量管理体系方面。
新能源电动汽车智能管理系统设计与开发随着社会的发展和环境保护意识的逐渐增强,新能源电动汽车逐渐成为人们的新宠。
而新能源电动汽车的智能管理系统也变得越来越重要。
这个系统可以为车主提供更加便捷的服务,实现智能化的控制,优化车辆的行驶效率和安全。
下面将从设计和开发两个角度分析新能源电动汽车智能管理系统。
一、设计1. 系统架构设计新能源电动汽车智能管理系统的基本框架包括智能控制模块、能源管理模块、车辆管理模块和信息交互模块。
其中智能控制模块负责电动汽车的行驶控制、能源管理模块负责电池管理、车辆管理模块负责车辆状态管理、信息交互模块负责车主和车辆的数据交互和互通。
2. 功能模块设计(1)智能控制模块:包括速度控制、转向控制、制动控制等。
(2)能源管理模块:主要实现电池的管理和优化,包括电池充电、放电及状态检测。
(3)车辆管理模块:负责实时检测车辆各项参数,包括车速、温度、转速等,对车辆进行自动诊断,提供故障报警等功能。
(4)信息交互模块:负责车主和车辆之间的数据交互和互通,包括车辆状态信息、车辆位置、充电电量等。
二、开发1. 技术选型智能管理系统的开发需要选择合适的技术和工具,其中包括硬件和软件两个方面。
(1)硬件:需要优化电池性能、提高电动汽车行驶的效率,选择合适的电池品牌和规格,采用先进的电源电控技术,实现对电池充电和放电的智能控制。
(2)软件:需要建立完善的软件平台,实现车辆状态监测和故障诊断,采用先进的无线通信技术进行数据传输和车辆位置追踪等。
2. 系统实现在新能源电动汽车智能管理系统的实现中,需要许多技术的支持,如嵌入式系统、云计算、大数据等,可以通过以下几个方面进行实现。
(1)开发智能控制系统,实现车速、转向、制动等功能。
(2)开发电池管理系统,实现电池充放电及状态管理。
(3)开发车辆管理系统,实现车辆状态监测及故障诊断。
(4)开发信息交互系统,实现车辆信息交互和互通。
三、总结随着科技的不断发展,新能源电动汽车智能管理系统将会越来越普及和完善。