核医学显象剂归纳
- 格式:docx
- 大小:19.08 KB
- 文档页数:3
核医学名词解释CCD:交叉性小脑失联络征象,一侧大脑皮质有局限性放射性分布减低或缺损,同时可见病变对侧小脑放射性减低,多见于慢性脑血管疾病超级骨显像:全身骨骼放射性均匀、对称性的异常浓集,软组织活性很低,骨骼显影非常清晰,双肾及膀胱不显影,称为超级骨显像,见于某些累及全身的骨代谢病变(甲状旁腺功能亢进、恶性肿瘤骨转移)放射化学纯度:以特定化学形态存在的放射性活度站总放射活度的百分比放射性核素:原子核处于不稳定状态,需要通过核内结构或能级调整才能趋于稳定,并释放出一种以上的核素称为放射性核素放射性核素发生器:从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置放射性活度:放射性元素或同位素单位时间内发生衰变的原子核数量放射性药物:含有放射性核素供医学诊断和治疗用的一类特殊药物。
用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂核素:指质子数、中子数均相同的并且原子核处于相同能级状态的原子甲状腺冷结节:甲状腺显像中,结节部位放射性缺损或明显低于正常甲状腺组织甲状腺热结节:甲状腺显像中,结节部位的放射性分布高于正常甲状腺组织PET:正电子发射型计算机断层,利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能代谢成像的仪器重建影像,构成断层影像SPECT:单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下闪烁现象:在肿瘤病人放疗或化疗后,临床表现明显好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会又消失或改善的现象体外放射分析:在体外实验条件下,以结合反映为基础,以放射性核素标记物为示踪剂,以放射性测量为定量手段,对微量物质进行定量监测的一类技术同位素:质子数相同而中子数不相同的核素互称同位素同质异能素:质子数和中子数均相同,所处核能状态不同的原子图像融合:通过不同显像模式获得的同一对象的图像数据进行空间配准,然后采用一定的算法将各图像数据中所含的信息进行整合,形成新的图像数据的技术吸收剂量:单位质量的受照物质吸收射线的平均能量心肌可逆性灌注缺损:负荷显像心肌分布缺损或稀疏,静息或延迟显像填充或再分布,见于可逆性心肌缺血。
核医学:是一门利用放射性核素发射的核射线对疾病进行诊断、治疗和研究的学科。
元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同。
核素:质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。
同一元素可有多种核素。
同质异能素:质子数和中子数都相同,但处于不同的核能状态原子。
同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。
稳定核素(stable nuclide):原子核稳定,不会自发衰变的核素。
放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。
放射性衰变(radiation decay):放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程。
放射性活度:单位时间内原子核的衰变数量,单位:贝克。
基本衰变类型:α衰变;β衰变;正电子衰变;电子俘获;γ衰变。
半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间。
核探测仪器的基本原理:电离作用、荧光现象、感光作用SPECT:单光子计算机发射断层显像仪是在γ照相机基础上发展起来的新一代仪器,分为探头、旋转支架、扫描床、计算机操作系统。
PET :正电子发射计算机断层显像仪是一种探测体内11C、13N、15O、18F等正电子核素的仪器,注入人体的正电子核素标记物随血液循环分布于组织或器官。
PET/CT:以PET特性为主,同时将PET影像叠加在CT图像上,使得PET影像更加直观,解剖定位更加准确。
放射性药物:含有放射性核素, 用于医学诊断和治疗的一类特殊制剂。
显像剂:诊断用放射性药物通过一定途径引入体内靶器官靶组织的影像或功能参数。
显像剂的特点:亲骨性好,血液清除快,有效半衰期短,γ射线能量适中,骨/软组织比值增高。
放射性核素发生器(radionuclide generator):从长半衰期核素的衰变产物中分离得到短半衰期核素的装置。
核医学知识点总结绪论+第一章核物理知识1、湮灭辐射:18F、11C、13N、15O等正电子核素在衰变过程中发射(产生)正电子,正电子与原子核周围的轨道电子(负电子)发生结合,同时释放两个能量相等方向相反的γ光子(511kev),这种现象就叫正电子湮灭辐射现象。
2、物理半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,如131碘的半衰期是8.04天。
3、临床核医学:是将核技术应用于临床领域的学科,是用利用放射性核素诊断、治疗疾病和进行医学研究的学科。
4、核素:指具有特定的质子数、中子数及特定能态的一类原子。
5、放射性衰变的定义:放射性核素的原子由于核内结构或能级调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。
6、放射性活度:表示单位时间内原子核的衰变数量:单位为Ci(居里),1Ci=3.7x1010Bq7、放射性核素发射器:从长半衰期的母体分离短半衰期的子体的装置,又称为“母牛”。
8、个人剂量监测仪:是从事放射性工作人员用来测量个人接受外照射剂量的仪器,射线探测器部分体积较小,可佩戴在身体的适当部位。
9、放射性核素示踪原理:是以放射性核素或其标记化合物作为示踪剂,应用射线探测仪器来检测其行踪,借此研究示踪剂在生物体内的分布代谢及其变化规律的技术。
10、阳性显像(positive imaging)是以病灶对显像剂摄取增高为异常的显像方法。
由于病灶放射性高于正常脏器、组织,故又称“热区”显像(hot spot imaging)如放射免疫显像、急性心肌梗死灶显像、肝血管瘤血池显像等。
11阴性显像(negative imaging)是以病灶对显像剂摄取减低为异常的显像方法。
正常的脏器、组织因摄取显像剂而显影,其中的病变组织因失去正常功能不能摄取显像剂或摄取减少而呈现放射性缺损或减低,故又称“冷区”显像(cold spot imaging)12放射性药物:含有放射性核素,用于临床诊断或治疗的药物。
核医学知识点总结笔记复习整理核医学使用的射线包括α、β-、β+和γ四种,而放射科使用的射线为X射线。
在核医学基础中,核素是指具有特定的质量数、原子序数和核能态,且其平均寿命长得足以被观测的一类原子。
同质异能素是指具有相同的原子序数和核子数,但核能态不同的核素。
放射性核素是指不稳定核素的原子核能自发地放出各种射线而转变为另一种核素。
放射性核衰变是指放射性核素的原子核自发地放出射线,并转变成新的原子核的过程。
β衰变是指由于核内中子数过多,中子和质子数不平衡,由中子转化为质子的同时,核内放射出β射线的过程,核素的质量数不变,原子序数增加1.β+衰变是指由于核内质子数过多,质子和中子数目不平衡,由质子转化为中子的同时,核内放射出β射线的过程,核素的质量数不变,原子序数减少1.γ衰变是指激发态的原子核以放出γ射线(光子)的形式释放能量而跃迁到较低能量级的过程,也称γ跃迁。
放射性活度是指单位时间内发生衰变的原子核数,单位时间为“秒”,其单位为贝可(Bq),1Bq表示放射性核素在一秒内发生一次核衰变,即1Bq=1/s。
物理半衰期是指在单一的放射性核素衰变过程中,放射性活度降至其原有值一半时所需要的时间,简称半衰期(T1/2)。
有效半衰期是指某生物系统中某单一放射性核素的活度,由物理衰变与生物代谢共同作用而使放射性活度减少至原有值的一半所需要的时间(Tc)。
电离是指带电粒子通过物质时,同原子的核外电子发生静电作用,使原子失去轨道电子而形成自由电子(负离子)和正离子的过程。
湮灭辐射是指β入射粒子与物质作用,其动能丧失殆尽时与自由电子结合,转化为方向相反能量各为0.511MeV的两个光子,这种辐射为湮灭辐射。
光电效应是指光子与物质相互作用时,将全部能量转移给原子的内层电子,使得电子脱离原子成为高速运行的光电子。
这一过程在核医学中被广泛应用。
放射性探测是用探测仪器将射线能量转换成可纪录和定量的电能、光能等,测定放射性核素的活度、能量、分布的过程。
绪论核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断、治疗疾病和进行科学研究的医学学科。
第一章 核物理1.核素(nuclide):是指质子数、中子数均相同,并且原子核处于相同能级状态的原子2.同位素(isotope):具有相同质子数但中子数不同的核素互称同位素,同位素具有相同的化学性质。
3.同质异能素(isomer ):质子数和中子数都相同,所处的核能状态不同的原子称为同质异能素,激发态的原子和基态的原子互为同质异能素。
4.核衰变的类型:① α衰变:放射性衰变时释放出α射线的衰变。
这种衰变方式主要发生于原子序数大于82的核素中。
衰变后母核的质子数减少2,质量数减少4,在元素周期表中子核的位置比母核左移两位。
α射线实质上是由氦核组成,用衰变反应式可表示为: ② β衰变:原子核释放出β射线而发生的衰变。
β- 衰变时放射出的β- 射线分为β- 和β+ 射线。
β- 射线的本质是高速运动的电子流。
发生β- 衰变后质子数增加1,原子序数增加1,原子的质量数不变,原子核释放出一个β- 粒子和反中微子(ν),衰变反应式如下:③ 正电子衰变:原子核释放出正电子(β+ 射线)的衰变方式。
正电子衰变发生在贫中子核素,原子核中的一个质子转变为中子。
衰变时发射一个正电子和一个中粒子(ν),质子数减少1,质量数不变,衰变反应式表示为:④ 电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程。
母核经电子俘获后,子核比母核中子数增加1,质子数减少1,质量数不变。
电子俘获衰变时原子核结构的变化与正电子衰变类似,发生在贫中子的原子核。
衰变反应式表示为:⑤ γ衰变:原子核从激发态回复到基态时,以发射γ光子形式释放过剩的能量,这一过程称为γ衰变。
这种激发态的原子核是在α衰变、β衰变或核反应之后形成的,衰变反应式为:各种衰变的比较5.放射性活度(radioactivity ,A ):表示为单位时间内原子核的衰变数量。
第一章概论1、放射性强度单位(国际、常用)1)贝可勒尔(Bq) :国际单位,1Bq 表示放射性核素在一秒内发生一次核衰变。
2)居里(Ci、mCi、μCi):常用单位1Ci=3.7×1010Bq1Bq=2.703×10-11 Ci2、放射性核素衰变规律衰变规律:不受外界因素影响,仅与时间有关半衰期:实际工作中表示放射性核素衰变速率的指标。
物理半衰期:放射性核素的原子核数衰减到原来的一半所需要的时间。
生物半衰期:进入生物体内的放射性核素或其标记化合物,由于排泄、分泌等使其在体内的含量间质原来的一般所需要的时间。
3、显像原理[根据放射性核素的示踪作用]引入机体发射γ射线的放射性核素机器标记化合物→[依据在体内的特点和在特定脏器或病变组织中的聚集]用放射性核素现象仪探测获得脏器或病变组织中的射线分布图像→在体内显示脏器和组织的形态、位置、大小及其功能结构变化。
4、显像方式和种类(书P5)a静态显像与动态显像b局部显像与全身显像c平面显像与断层显像d阳性显像与阴性显像e早期显像与延迟显像第二章神经系统1、脑血流断层显像1)显像剂及特点显像剂:99m Tc-ECD、99m Tc-HMPAO、123I-IMP特点:a分子量小、零电荷、脂溶性高的胺类化合物和四配基络合物。
b能通过正常血脑屏障为脑细胞摄取。
c进入脑细胞内经脑内酶水解转变为水溶性化合物不能反扩散出脑细胞,较长时间滞留。
2)显像原理:显像剂能通过血脑屏障,进入脑细胞的量与局部脑血流量成正比。
在正常血供和功能的脑组织显影,而血供较差的脑组织、坏死和瘢痕组织轻度显影(稀疏)或不显影(缺损)。
3)图像分析灰质结构表现为放射性浓聚区,白质和脑室部位放射性明显低下。
放射性分布两侧基本对称,与X-CT影像类似。
异常图像:a过度灌注:发病数日后,由于侧支循环丰富,在rCBF断层影像上可见到病变四周出现异常放射性摄取增高区。
b大小脑交叉失联络:病变对侧小脑呈放射性减低。
核医学考点大综合(终结版)名解同质异能素:质子数和中子数都相同,所处的核能状态不同的原子称为同质异能素。
crossed cerebellar diaschisis交叉性小脑失联络:一侧大脑皮质局限性放射性分布稀疏或缺损,同时对侧小脑韧致辐射:带电粒子受到物质原子核电场的作用,运动速度和方向突然发生变化,能量的部分或全部以X射线的形式发射出来,这种现象为韧致辐射。
固定性缺损:运动和静息(或延迟)显像都存在分布缺损而没有变化,多见于心肌梗死或疤痕组织。
不可逆性缺损(部分可逆性缺损):负荷显像显示放射性缺损或稀疏,静息影像显示放射性缺损,见于心梗,严重心肌缺血。
可逆性缺损:为负荷显像心肌分布缺损或稀疏、静息或延迟显像填充或“再分布”,可见于心肌缺血。
超级影像Super Bone Scan:全身骨骼放射性异常浓聚且清晰,双肾及膀胱不显影。
是显像剂异常浓聚的特殊表现。
见于甲状旁腺功能亢进和骨转移性肿瘤。
早期显像:是将显像剂引入体内2h以内进行显像。
阳性现象:是以病灶对显像剂摄取增高为异常的显像方法。
负荷显像:指受检者在生理活动或药物干预状态下将显像剂引入体内进行影像采集的显像方法,亦称为介入显像。
闪烁现象:骨转移癌患者在给予放射性核素治疗后2-10天,骨痛加剧持续2-4天称为骨痛的闪烁现象或称为反跳痛,常预示有好的疗效。
甲状腺热结节(Thyroid hot node):又称高功能结节,甲状腺结节显像剂分布增高,功能大于正常甲状腺,常见于功能自主性甲状腺腺瘤或单侧甲状腺缺如。
放射性核素衰变:放射性核素的原子由于核内结构或能级调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。
放射性药物:指含有放射性核素供医学诊断和治疗用的一类特殊药物。
核医学体外分析技术:主要是利用放射分析方法或其派生的相关技术在体外进行机体内物质种类和含量的物质测定,主要用来测定血清或其他体液样品内的激素、其他生物活性物质和药物浓度,体外分析法的代表是放射免疫分析。
核医学整理:
第一部分 显像剂
心血管系统
放射性核素心肌灌注成像:201Tl (redistribution) ;99mTc-MIBI(p47)
存活心肌检测:201Tl;99mTc-MIBI;(p72)
心肌葡萄糖代谢显像 18F-FDG
心血池显像:FPRNA/ERNA
99mTcO4-;99mTc-DTPA;99m
Tc-MIBI (p76)
内分泌系统
甲状腺摄131I功能试验:131I (p88)
甲状腺静态显像:99mTcO4- (p91)
甲状腺动态显像:99mTcO4- (p95)
分化型甲状腺癌的全身显像:131I (p96);18F-FDG (p98);99mTc-MIBI (p99);201Tl
(p100)
甲状旁腺显像:99mTc-MIBI
甲状旁腺减影现象:201Tl/99mTc-MIBI + 99mTcO4-(甲状旁腺不摄取)
骨骼系统
核素骨显像:85Sr2+、18F-NaF、99mTc-MDP(p113)
这两个的方法、原理的区
别、共同之处在哪里?
泌尿系统
肾动态显像:99mTc、131I的化合物(p135)——肾动脉血流灌注;肾实质功能;
肾图:99mTc-MAG3、131I-OIH——肾浓聚、排出
肾小球滤过率测定:99mTc-DTPA
膀胱显像:99mTc-DTPA
肿瘤显像
肿瘤代谢显像:18F-FDG、其他(P161)、76Ca、201Tl、99mTc-MIBI(p184)
神经系统
脑血流灌注显像: 99mTc-ECD; 99mTc-HMPAO;133Xe等惰性气体。
脑葡萄糖代谢显像:18F-FDG
脑脊液间隙显像:99mTc-DTPA
胃肠系统
唾液腺显像:99mTcO
4
-
异位胃粘膜显像:99mTcO4-
胃肠道出血显像:99mTc-RBC
胃排空功能测定:99mTc-SC(硫胶体)、99mTc-DTPA
胃食管反流测定:同上
肝胆显像:99mTc-HIDA or 99mTc-DISIDA
肝动脉灌注显像:99mTc-RBC
肝血池显像:99mTc-RBC
肝胶体显像:99mTc-SC(硫胶体)、99mTc-植酸盐
放射性核素治疗:
甲状腺疾病:131I
肾上腺素能肿瘤:131I-MIBG
骨转移瘤:氯化锶89SrCl2、