操作系统实验5-调度
- 格式:doc
- 大小:83.00 KB
- 文档页数:4
一、根据调度算法设计流程图:实验
步骤
}
}
}
三、整合完成所有程序并实现作业调度(见源代码)。
四、进行调试阶段,对程序修改优化,进行数据测试。
五、实验结果分析
六、总结
实验
WindowsXP和CV++6.0集成开发环境
环境
实验运行的初始界面:
实验结
果与分
析
测试数据:
a1 1 2 a1
a2 2 3 a2
运行结果:
进行多次循环录入:返回算法选择界面:
测试数据:
b1 2 4 b1
b2 1 3 b2
运行结果:
实验分析和总结:
1)测试的数据必须是符合JCB模块中相同类型的,如在源码中式int类型的,而在测试的时候输入float类型就出错。
2)各个库函数的运用需要掌握相应的功能,否则会照成代码冗余、繁杂、不优化等各种问题。
3)通常在dos下运用的都是英文,而想要用汉字提示就必须考虑一些问题。
在源码中我们用制表符(\t)来控制提示,输出的数字是不能与之对齐的,所以我们要将“\t”改成空格。
4)这编写和调试程序时,为了尽快调通程序应该按照流程图的结构(保证流程图思路是对的情况下)来建立编程思路。
5)此程序也借用了现有的一些代码,并且它还不是最优化的,它还可以进行改进和优化,比如:在回调函数的引用时跳到了另一个页面,见下图:
继续Enter的时候就到下一页:
而不是在同一页面。
6)总之,在编程旅途中是一个很艰辛的过程,要在这里开拓一片蓝天就必须有孜孜不倦的精神。
中南大学计算机操作系统实验报告................................................................................................................................................................................................................1、增强学生对计算机操作系统基本原理、基本理论、基本算法的理解;2、提高和培养学生的动手能力。
1、每人至少选作1 题,多做不限;2、每人单独完成,可以讨论,但每人的设计内容不得彻底相同,抄袭或者有2 人/多人设计彻底一样者,不能通过;3、设计完成后,应上交课程设计文档,文档格式应是学校课程设计的标准格式,所有学生的封面大小、格式也必须一样;4、同时上交设计的软盘(或者以班刻录光盘)。
调度算法的摹拟:摹拟各种调度算法,并进行调度性能分析。
摹拟了一个作业调度算法,其中用到了先来先服务算法(FCFS)、短作业优先算法(SJF)、最高响应比优先算法(HRN)三种算法。
如下,分别为三种算法的程序流程图。
图1 - 开始界面图 2 –输入作业的信息(名字、提交时间、运行时间) 图3 –选择算法(FCFS 、SJF、HRN)图4、5 –选择FCFS 算法后输出结果图6、7 –选择SJF 算法后输出结果图8、9 –选择HRN 算法后输出结果能体现公平性;一旦一个较长的作业进入系统后就会长期的占用系统的资源,这样如果有优先级较高的短作业需要执行的话需要等待很长期。
比前者改善了平均周转时间和平均带权周转时间,缩短作业的等待时间,提高系统的吞吐量;对长作业非常不利,可能长期得不到执行,未能一句作业的紧迫程度来划分执行的优先级,难以准确估计作业的执行时间,从而影响调度性能。
这种算法是对FCFS 方式和SJF 方式的一种综合平衡。
实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。
通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。
就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。
2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。
先来先服务算法按照进程到达的先后顺序进行调度。
短作业优先算法优先调度执行时间短的进程。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。
四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。
实现进程的创建、插入、删除等操作。
实现不同的调度算法。
2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。
分别采用先来先服务、短作业优先和时间片轮转算法进行调度。
记录每个算法下的平均周转时间、平均等待时间等性能指标。
五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。
实验报告实验课程: 计算机操作系统学生姓名:XXX学号:XXXX专业班级:软件2014年12月25日目录实验一熟悉Windows XP中的进程和线程 (3)实验二进程调度 (7)实验三死锁避免—银行家算法的实现 (16)实验四存储管理 (22)实验一熟悉Windows XP中的进程和线程一、实验名称熟悉Windows XP中的进程和线程二、实验目的1、熟悉Windows中任务管理器的使用。
2、通过任务管理器识别操作系统中的进程和线程的相关信息。
3、掌握利用spy++.exe来察看Windows中各个任务的更详细信息。
三、实验结果分析1、启动操作系统自带的任务管理器:方法:直接按组合键Ctrl+Alt+Del,或者是在点击任务条上的“开始”“运行”,并输入“taskmgr.exe”。
2、调整任务管理器的“查看”中的相关设置,显示关于进程的以下各项信息,并完成下表:表一:统计进程的各项主要信息3、启动办公软件“Word”,在任务管理器中找到该软件的登记,并将其结束掉。
再从任务管理器中分别找到下列程序:winlogon.exe、lsass.exe、csrss.exe、smss.exe,试着结束它们,观察到的反应是任务管理器无法结束进程,原因是该系统是系统进程。
4、在任务管理器中找到进程“explorer.exe”,将之结束掉,并将桌面上你打开的所有窗口最小化,看看你的计算机系统起来什么样的变化桌面上图标菜单都消失了、得到的结论 explorer.exe是管理桌面图标的文件(说出explorer.exe进程的作用)。
5、运行“spy++.exe”应用软件,点击按钮“”,切换到进程显示栏上,查看进程“explorer.exe”的各项信息,并填写下表:进程:explorer.exe 中的各个线程6、注意某些线程前有“+”,如图所示:,说明二者之间的差异前有“+”其器线程下有窗口。
四、心得体会通过本次实验,我了解到了windows系统中进程的管理与操作,我了解了如何切出任务管理器,任务管理器应用与其他与进程相关的知识,明白了有些系统程序不能够关闭,系统中的进程与线程虽然很多,但是其中有许多关联,只要弄清楚其中的关联那么就能够运用好进程与线程,达到我们的目的。
第1篇一、实验目的1. 理解磁盘调度算法的基本原理和重要性。
2. 掌握几种常见的磁盘调度算法,包括先来先服务(FCFS)、最短寻道时间优先(SSTF)、扫描(SCAN)和循环扫描(C-SCAN)算法。
3. 通过模拟实验,分析不同磁盘调度算法的性能差异。
4. 优化磁盘调度策略,提高磁盘访问效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 磁盘调度算法模拟库:PyDiskScheduling三、实验内容1. FCFS算法:模拟实现先来先服务算法,按照请求顺序访问磁盘。
2. SSTF算法:模拟实现最短寻道时间优先算法,优先访问距离当前磁头最近的请求。
3. SCAN算法:模拟实现扫描算法,磁头从0号磁道开始向0号磁道移动,访问所有请求,然后返回到0号磁道。
4. C-SCAN算法:模拟实现循环扫描算法,与SCAN算法类似,但磁头在到达末尾磁道后返回到0号磁道。
四、实验步骤1. 导入PyDiskScheduling库。
2. 创建一个磁盘调度对象,指定磁头初始位置、请求序列和调度算法。
3. 运行调度算法,获取磁头移动轨迹和访问时间。
4. 分析算法性能,包括磁头移动次数、平均访问时间和响应时间等。
五、实验结果与分析1. FCFS算法:在请求序列较短时,FCFS算法表现较好。
但随着请求序列长度增加,磁头移动次数和访问时间明显增加。
2. SSTF算法:SSTF算法在请求序列较短时表现最佳,平均访问时间和响应时间较低。
但当请求序列较长时,算法性能下降,磁头移动次数增加。
3. SCAN算法:SCAN算法在请求序列较短时性能较好,但随着请求序列长度增加,磁头移动次数和访问时间逐渐增加。
与SSTF算法相比,SCAN算法在请求序列较长时性能更稳定。
4. C-SCAN算法:C-SCAN算法在请求序列较短时表现较好,但随着请求序列长度增加,磁头移动次数和访问时间逐渐增加。
与SCAN算法相比,C-SCAN算法在请求序列较长时性能更稳定,且磁头移动次数更少。
操作系统实验报告(二)实验题目:进程调度算法实验环境:C++实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较各种算法的性能优劣。
实验内容:编程实现如下算法:1.先来先服务算法;2.短进程优先算法;3.时间片轮转调度算法。
设计分析:程序流程图:1.先来先服务算法2.短进程优先算法3.时间片轮转调度算法实验代码:1.先来先服务算法#include <iostream.h>#define n 20typedef struct{int id; //进程名int atime; //进程到达时间int runtime; //进程运行时间}fcs;void main(){int amount,i,j,diao,huan;fcs f[n];cout<<"请输入进程个数:"<<endl;cin>>amount;for(i=0;i<amount;i++){cout<<"请输入进程名,进程到达时间,进程运行时间:"<<endl; cin>>f[i].id;cin>>f[i].atime;cin>>f[i].runtime;}for(i=0;i<amount;i++) //按进程到达时间的先后排序{ //如果两个进程同时到达,按在屏幕先输入的先运行for(j=0;j<amount-i-1;j++){ if(f[j].atime>f[j+1].atime){diao=f[j].atime;f[j].atime=f[j+1].atime;f[j+1].atime=diao;huan=f[j].id;f[j].id=f[j+1].id;f[j+1].id=huan;}}}for(i=0;i<amount;i++){cout<<"进程:"<<f[i].id<<"从"<<f[i].atime<<"开始"<<","<<"在"<<f[i].atime+f[i].runtime<<"之前结束。
xx大学操作系统实验报告姓名:学号:班级:实验日期:实验名称:先来先服务FCFS和短作业优先SJF进程调度算法实验一先来先服务FCFS和短作业优先SJF进程调度算法1. 实验目的:通过这次实验,理解FCFS和SJF进程调度算法的运行原理,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。
:2. 需求分析(1) 输入的形式和输入值的范围;输入:进程个数N 范围:0<N<=100依次输入(进程名进程到达时间范围:0<time<=100进程服务时间)范围:0<time<=100选择一种算法:1—FCFS,2—SJF 范围:1或2或00—退出平均周转时间:平均带权周转时间:(3) 程序所能达到的功能输入进程的个数N,以及每个进程的到达时间和运行时间。
通过选择FCFS或是SJF进程调度算法进行调度,计算出每个进程的开始运行时间、结束时间、执行顺序、周转时间、带权周转时间,并最终求得平均周转时间和平均带权周转时间。
(4) 测试数据,包括正确的输入及其输出结果和含有错误的输入及其输出结果。
正确一(FCFS)正确二(SJF)输入参数错误3、概要设计所有抽象数据类型的定义:static int MaxNum=100;int ArrivalTime[MaxNum];//到达时间int ServiceTime[MaxNum];//服务时间int FinishTime[MaxNum];//结束时间int WholeTime[MaxNum];//周转时间double WeightWholeTime[MaxNum];//带权周转时间double AverageWT_FCFS,AverageWT_SJF; //平均周转时间double AverageWWT_FCFS,AverageWWT_SJF; //平均带权周转时间主程序的流程:●变量初始化●接受用户输入的N,T1…..Tn,S1….Sn;●选择算法进行进程调度,计算进程的开始运行时间、结束时间、执行顺序、周转时间、带权周转时间;●计算所有进程的平均周转时间、平均带权周转时间;●按照格式输出调度结果。
操作系统原理实验报告一、实验目的操作系统是计算机系统中最为关键的软件之一,它负责管理和控制计算机的硬件和软件资源,为用户和应用程序提供一个方便、高效、稳定的运行环境。
本次实验的目的在于通过实际操作和观察,深入理解操作系统的核心原理和关键机制,包括进程管理、内存管理、文件系统管理、设备管理等方面,提高对操作系统的认识和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C++。
三、实验内容及步骤(一)进程管理实验1、进程创建与终止编写程序,使用系统调用创建一个新的进程,并在新进程中执行特定的任务,如打印一段文本。
观察新进程的创建过程和资源分配情况。
编写程序,实现父进程等待子进程终止,并获取子进程的退出状态。
2、进程调度编写程序,模拟多个进程的并发执行,设置不同的优先级和时间片。
观察进程的调度顺序和执行时间,分析调度算法的效果。
(二)内存管理实验1、内存分配与释放编写程序,使用动态内存分配函数(如 malloc、new 等)申请一定大小的内存空间,并进行读写操作。
观察内存的分配和释放过程,检查是否存在内存泄漏。
2、内存分页与分段了解操作系统的内存分页和分段机制。
编写程序,模拟内存分页和分段的过程,展示地址转换和页面置换算法的效果。
(三)文件系统管理实验1、文件创建与读写编写程序,创建一个新文件,并向文件中写入一定的数据。
读取文件中的数据,并进行验证。
2、文件目录操作编写程序,实现对文件目录的创建、删除、遍历等操作。
观察文件目录的结构和变化。
(四)设备管理实验1、设备驱动程序了解设备驱动程序的基本概念和工作原理。
编写一个简单的设备驱动程序,实现对特定设备的控制和数据传输。
2、设备中断处理模拟设备中断的产生和处理过程。
编写中断处理程序,处理设备中断事件。
四、实验结果与分析(一)进程管理实验结果与分析1、进程创建与终止成功创建了新进程,并在新进程中打印出指定的文本。
操作系统实验报告
实验五 调度
一、 基本信息
二、 实验内容
在设计一个按优先级进行调度的算法
(1)假设系统中有3个进程,每个进程由一个PCB来标识
进程名 进程 id
链接指针 指向就绪队列中下一
个进程的PCB首址
进程优先级 由用户指定或程序任
意设定
估计运行时间 由用户指定或程序任
意设定
进程状态 假设只有 ready 和
running、完成 三种
状态
(2)用一个指针指向就绪队列的第一个进程,用另一个指针指向正在运行
的进程
(3)调度时,总是选择优先级最高的执行,并采用动态调度:每运行一次
优先级减1,估计运行时间减1
(4)进程运行一次后,若剩余的运行时间不为0,且优先级低于就绪队列
中的进程,则状态变为ready,并选择一个进程使用CPU;若剩余的运行
时间为0,则状态变为完成
(5)如就绪队列不空,则重复(3)(4)直到所有进程都结束
三、 实验目的
通过实验,巩固和加深对进程调度的理解,以及各种调度算法的基本实现
思想。
四、 设计思路和流程图
(1) 用一个结构体构造进程块,记录进程的各个属性,优先级和估计运行时
间随机产生
操作系统实验报告
(2) 创建一个进程块链表,每个节点表示一个进程块。用head指针表示链
表头部,用curPCB表示当前CPU调度的进程块
(3) 遍历链表,找到优先级最高的进程“运行”
(4) 重复调度进直到就绪队列中没有进程时,程序运行结束
五、 主要数据结构及其说明
#include
#include
#include
struct PCB
{
int id;
int priority;//数值越大,优先级越高
PCB* nextPCB;//指向就绪队列中下一个进程的PCB首址
int probTime;//估计运行时间
int state;//0: ready, 1: running, 2:finished
};
void main()
{
srand((unsigned)time(0));
struct PCB *temp = new struct PCB;
const int cnt = 3;
struct PCB *head = temp;
for(int i=0; i
temp->id = i;
temp->priority = rand() % 10 + 1;
temp->probTime = rand() % 10 + 1;
temp->state = 0;
temp->nextPCB = (i == (cnt-1))?0:new struct PCB;
操作系统实验报告
temp = temp->nextPCB;
}
int max = 0;//最高优先级
struct PCB *curPCB;//正在执行的进程
int countOfPro = cnt;//记录当前剩余进程数
while(countOfPro != 0)
{
for(struct PCB *p = head; p != 0; p = p->nextPCB)
{
if(p->state != 2 && p->priority > max)
{
max = p->priority;
curPCB = p;
}
}
curPCB->priority--;
curPCB->probTime--;
if(curPCB->probTime <= 0)
{
curPCB->state = 2;
countOfPro--;
}
max = -99999;
//打印运行后的进程属性内容
printf("current proccess is %d ",curPCB->id);
printf("priority is %d ", curPCB->priority);
printf("rest time is %d\n", curPCB->probTime);
}
操作系统实验报告
system("pause");
return;
}
六、 程序运行时的初值和运行结果
七、 实验体会
此次实验模拟了系统进程调度,进一步学习了进程调度的机制,加
深了对调度的理解。并且学习了各种调度算法的基本实现思想。
但是仍然对优先级有一点小小的疑问,在我的程序中,优先级可以
为负,但是实际系统中应该是不能的,不知道应该怎么来实现。