湍流转捩的研究
- 格式:pdf
- 大小:3.36 MB
- 文档页数:14
有关近空间高超声速飞行器边界层转捩和湍流的两个问题周恒;张涵信【摘要】和一般的飞行器一样,在近空间飞行器的研制中,其边界层的转捩和湍流也是需要考虑的两个重要问题.但即使是对一般的飞行器,"转捩"和"湍流"也还是两个历经百年而仍未很好解决的问题,而对近空间飞行器来说,空气动力学本身就还存在若干新的需要研究解决的基础问题,边界层的转捩和湍流就更是没有很好解决的问题.本文讨论了两个问题;1) 为增强对高超声速飞行器边界层转捩预测的能力,需要开展哪些方面的研究工作及其困难;2) 是否有可能当飞行器飞行高度足够大时,其边界层就不会再有湍流问题?%For the research and development of near space flying vehicles, also as the same for conventional flying vehiclessuch as airplanes, the problems of transition and turbulence of the boundary layers are two important issues must be taken into consideration.However, even for conventional flying vehicles, these two problems are still not fully resolved, even though the investigations have been lasted for more than 100 years already.For near space flying vehicles, not only the related aerodynamics has its own unsolved fundamental scientific problems, let along the problems of transition and turbulence.In this paper, two related problems are focused on: 1) In order to enhance our capability of predicting the transition of the boundary layer of a hypersonic flying vehicle, what kinds of research work should we do and what difficulties we might face? 2) Would it be possible that there would be no problem of turbulence for its boundary layer if the attitude of the flying vehicle is sufficiently high?【期刊名称】《空气动力学学报》【年(卷),期】2017(035)002【总页数】5页(P151-155)【关键词】近空间飞行器;转捩;湍流;预测能力【作者】周恒;张涵信【作者单位】天津大学力学系, 天津 300072;中国空气动力研究与发展中心国家计算流体力学实验室, 北京 100191【正文语种】中文【中图分类】V211.3转捩问题历经百年的研究,在低速流方面已经有了不小的进展。
标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。
本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。
1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。
在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。
2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。
它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。
k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。
3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。
与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。
4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。
在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。
5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。
在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。
总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。
从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。
浅谈湍流的认识与发展浅谈湍流的认识与发展摘要:本⽂结合流体⼒学课程的学习以及对湍流相关书籍的阅读,阐述个⼈对湍流运动的发展、特点、性质的理解。
湍流作为“经典物理学最后的疑团”,⼈们不断地进⾏探索,建⽴湍流模型对其进⾏研究理论分析。
近年来,对于湍流这⼀不规则运动,⼈们提出了并且倾向于应⽤混沌理论进⾏分析,并取得了⼀些成果。
对湍流的认识在不断深⼊。
关键字:湍流概念湍流性质湍流强度模型建⽴混沌理论在流体⼒学的学习过程中, 湍流⼀度被称为“经典物理学最后的疑团”,我对湍流这⼀流体的状态极其相关的⼒学性质进⾏了更深⼊的了解与学习,结合课堂上⽼师的讲解以及课后对相关参考⽂献的阅读理解,在此我想浅谈⼀下这⼀阶段我对湍流的学习与认识。
从湍流的定义出发,初识湍流,湍流是流体的⼀种流动状态。
对于流体,⼤家都知道,当流速很⼩时,流体分层流动,互不混合,称为层流,也称为稳流或⽚流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加⽽增加,此种流况称为过渡流;当流速增加到很⼤时,流线不再清楚可辨,流场中有许多⼩漩涡,层流被破坏。
这时的流体作不规则运动,有垂直于流管轴线⽅向的分速度产⽣,这种运动称为湍流。
流体作湍流时,阻⼒⼤流量⼩,能量耗损增加。
能量耗损E与速度的关系为△ E= kv2(k是⽐例系数,它与管道的形状、⼤⼩以及管道的材料有关。
v是平均流速)。
所有流体都存在湍流现象。
我们可以⽤雷诺数的范围量化湍流。
在直径为d的直管中,若流体的平均流速为v,由流体运动粘度v组成的雷诺数有⼀个临界值(⼤约为2300~2800),若Re⼩于该范围则流动是层流,在这种情况下,⼀旦发⽣⼩的随机扰动,随着时间的增长这扰动会逐渐衰减下去;若Re⼤于该范围,层流就不可能存在了,⼀旦有⼩扰动,扰动会增长⽽转变成湍流。
雷诺在1883年⽤玻璃管做试验,区别出发⽣层流或湍流的条件。
把试验的流体染⾊,可以看到染上颜⾊的质点在层流时都⾛直线。
湍流的产生和解释湍流是如何产生的有哪些模型可以预测和解释湍流现象关于第一个问题,可以先从流体的流动讲起。
假设有这样一根管道,我在一头加上一个水龙头,然后通过调节水龙头的大小来控制水的速度。
一开始,水龙头开度比较小,这时候是层流(如下图)。
细致地调节细管中红水的流速,当它与主流管内水流速度相近时,可以看到清水中有稳定而清晰的红色水平流线,表明这时主流管中各水层互不干扰地流动。
逐渐加大水龙头的开度,层流就慢慢的变成湍流了。
这时流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。
这时的流体作不规则运动,有垂直于流管轴线方向的分速度产生(如下图)。
所以我们现在可以说,层流与湍流的最大区别就是流速了(单单对于上例来说)。
流速较小的时候,流动比较规则,分层现象比较明显。
流速大了之后就开始乱了,各种漩涡,滑动。
现在来看看究竟怎么区别层流和湍流,或者说究竟与哪些因素有关。
这里我们先引入雷诺数的概念。
雷诺数(Reynolds number)一种可用来表征流体流动情况的无量纲数,以Re表示,Re=ρvd/η,其中v、ρ、η分别为流体的流速、密度与黏性系数,d为一特征长度。
黏性就是指当流体运动时,层与层之间有阻碍相对运动的内摩擦力。
举个例子,假如有一群人手拉手的往前跑,大家开始跑得都很慢,突然有一个人不想跟他们一起玩这个脑残的游戏了,所以任性的加快了速度。
如果手拉的不紧,他就很容易逃脱—这就是黏性比较小,相互之间摩擦力较小;如果手拉的越紧,他就越不容易逃脱—这就是黏性比较大,相互之间摩擦力较大。
另一方面,要是不容易逃脱,他只要加快速度,终究是可以逃脱的。
这个例子或许不那么恰当,但是可以说明雷诺数的概念了。
雷诺数其实是一个无量纲数,表示作用于流体微团的惯性力与粘性力之比。
当雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。
转捩模型在螺旋桨数值计算中的应用洪方文,张志荣,刘登成,郑巢生,翟树成(1.中国船舶科学研究中心,江苏无锡214082;2.船舶振动噪声重点实验室,江苏无锡214082)摘要:螺旋桨敞水性能数值计算是船舶快速性能分析的基础,其计算精度对船舶快速性预报的准确度至关重要,湍流模型的选用是保证螺旋桨敞水性能计算精度的关键。
本文利用k -ωSST 湍流模型和γ-R e θ转捩模型对螺旋桨敞水性能进行了计算。
结果表明,在模型尺度下螺旋桨叶片表面流动的相当一部分还保持着层流状态,带有转捩能力的湍流模型对这类流动具有更强的模拟能力。
关键词:转捩湍流模型;数值计算;螺旋桨敞水性能中图分类号:U661.31文献标识码:A doi:10.3969/j.issn.1007-7294.2021.04.001Application of transition turbulence model in numerical calculation of propeller flow fieldsHONG Fang-wen ,ZHANG Zhi-rong ,LIU Deng-cheng ,ZHENG Chao-sheng ,ZHAI Shu-cheng (1.China Ship Scientific Research Center,Wuxi 214082,China;2.National Key Laboratory on Vibration and Noise,Wuxi 214082,China)Abstract :The numerical calculation of propeller open water performance is the basis of ship propulsion analysis,whose precision is very important for the prediction of ship speed.The turbulence model is the key to ensure the accuracy of propeller open water performance calculation.In this paper,k-ωSST turbulence model and γ-R e θtransition model were used to simulate the propeller flow fields.The results indicated thata considerable part of the flow on the surface of the propeller blade remained laminar at the model scale while better simulation results could be obtained by the transition turbulence model.Key words:transition turbulence model;CFD;open water performance of propeller 0引言自计算机诞生以来,数值计算成为科学研究的一种主要手段。
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。
在湍流中的流体的各种物理参数,如速度、压力、温度等都随时间与空间发生随机的变化。
从物理结构上说,可以把湍流看成是由各种不同尺度的涡旋叠合而成的流动,这些漩涡的大小及旋转轴的方向分布是随机的。
大尺度的涡旋主要是有流动的边界条件所决定,其尺寸可以与流场的大小相比拟,是引起低频脉动的原因;小尺度的涡旋主要是有粘性力所决定,其尺寸可能只有流场尺度的千分之一量级,是引起高频脉动的原因。
大尺度的涡旋破裂后形成小尺度涡旋。
较小尺度的涡旋破裂后形成更小尺度的涡旋。
因而在充分发展的湍流区域内,流涕涡旋的尺度可在相当宽的范围内连续地变化。
大尺度的涡旋不断地从主流获得能量,通过涡旋间的相互作用,能量组建向小的涡旋传递。
最后由于流体粘性的作用,小尺度的涡旋不断消失,机械能就转化(或称为耗散)为流体的热能。
同时,由于边界作用、扰动及速度梯度的作用,新的涡旋又不断产生,这就构成了湍流运动。
流体内部多尺度涡旋的随机运动构成了湍流的一个重要特点:物理量的脉动。
要注意的是,湍流运动尽管是流体微团的运动,但远未达到分子水平。
无论湍流运动多么复杂,非稳态的N—S方程对于湍流的瞬时运动仍然是适用的。
V an.Kavman和I.G Taylor对湍流的定义为:湍流是流体和气体中出现的一种无规则流动现象,当流体流过固体边界或相固流体相互流过时会产生湍流。
Hinze对湍流的定义为:湍流是时间和空间上的一种不规则的随机变化,可利用不同的统计平均值来统计。
Bradshan对湍流的定义为:湍流是宽范围尺度的涡旋组成的。
用一句话总结湍流:在一定雷诺数下,流体表现在时间和空间上的随机脉动运动,流体中含有大量不同尺度的涡旋(eddy)。
湍流是流体的一种流动状态。
当流速很小时,流体分层流动,互不混合,称为层流,也称为稳流或片流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。
大雷诺数下对称翼型的转捩判断与规律研究
杨从新;张根豪;李寿图;郭艳磊;岳念西;刘文杰
【期刊名称】《太阳能学报》
【年(卷),期】2024(45)1
【摘要】围绕翼型的转捩问题,以NACA0012、NACA0015、NACA0018三种不同厚度的对称翼型为研究对象,基于TSST湍流模型的数值模拟方法,提出基于湍流强度的转捩判断方法并研究在5种大雷诺数条件下翼型表面流动的转捩规律,以期为风力机叶片设计提供新的参考思路。
研究表明,基于湍流强度的转捩判断方法是有效、可行的,使用翼型表面湍流强度曲线的阶跃现象观测转捩,可有效避免转捩前流动扰动带来的影响。
同时利用湍流强度的变化情况可为风力机叶片设计寻找最佳设计参数。
研究发现,增大攻角和雷诺数使得翼型上翼面转捩位置前移、下翼面转捩位置后移。
此外,随着攻角的减小、雷诺数的增大、翼型表面厚度的增加,在翼型转捩前的流动逐渐稳定。
【总页数】8页(P326-333)
【作者】杨从新;张根豪;李寿图;郭艳磊;岳念西;刘文杰
【作者单位】兰州理工大学能源与动力工程学院;甘肃省风力机工程技术研究中心;东方电气集团东方电机股份有限公司
【正文语种】中文
【中图分类】TK83;V211.3
【相关文献】
1.基于转捩模型的低雷诺数翼型优化设计研究
2.低雷诺数下翼型不同分离流态的大涡模拟
3.确定低雷诺数翼型转捩分离泡位置的实验研究
4.对称翼型低雷诺数小攻角升力系数非线性现象研究
5.低雷诺数翼型分离流动的大涡模拟研究
因版权原因,仅展示原文概要,查看原文内容请购买。