高考数学基础选择题专项训练(一)——(十)(附答案)
- 格式:doc
- 大小:1.78 MB
- 文档页数:11
高三数学考试题库及答案一、选择题1. 若函数f(x)=x^2+2x+3,g(x)=x^2-2x+5,那么f(x)-g(x)=()A. 4x-2B. 4x+2C. 4x-4D. 4x+4答案:A解析:f(x)-g(x) = (x^2+2x+3) - (x^2-2x+5) = 4x-2。
2. 已知数列{an}是等差数列,且a1=2,a3=8,那么a5=()A. 14B. 16C. 18D. 20答案:A解析:设等差数列的公差为d,则a3 = a1 + 2d,即8 = 2 + 2d,解得d = 3。
因此,a5 = a1 + 4d = 2 + 4*3 = 14。
3. 若直线l的方程为x+2y-3=0,那么直线l的斜率k=()A. 1/2B. -1/2C. 2D. -2答案:B解析:直线l的方程为x+2y-3=0,可以改写为y = -1/2x + 3/2,斜率k = -1/2。
4. 已知函数f(x)=x^3-3x,那么f'(x)=()A. 3x^2-3B. 3x^2+3C. -3x^2+3D. -3x^2-3答案:A解析:f'(x) = d/dx(x^3-3x) = 3x^2 - 3。
5. 已知a,b∈R,若a+b=2,那么a^2+b^2的最小值为()A. 1B. 0C. 2D. 4答案:C解析:根据柯西-施瓦茨不等式,(a^2+b^2)(1^2+1^2) ≥ (a+b)^2,即a^2+b^2 ≥ (a+b)^2/2 = 2^2/2 = 2。
当且仅当a=b=1时,等号成立。
二、填空题6. 已知向量a=(2, -1),b=(1, 3),那么向量a+b=()。
答案:(3, 2)解析:向量a+b = (2+1, -1+3) = (3, 2)。
7. 已知函数f(x)=x^2-4x+3,那么f(2)=()。
答案:-1解析:f(2) = (2)^2 - 4*2 + 3 = 4 - 8 + 3 = -1。
甲醇现货采购合同书范本甲方(买方):名称:_____________________地址:_____________________联系人:___________________电话:_____________________### 乙方(卖方):名称:_____________________地址:_____________________联系人:___________________电话:_____________________### 鉴于:甲乙双方本着平等自愿、诚实信用的原则,经协商一致,就甲方购买乙方甲醇现货事宜达成如下合同:## 第一条产品描述1. 产品名称:甲醇2. 规格型号:________________3. 质量标准:符合国家标准GB/T338-20114. 包装方式:散装/桶装## 第二条采购数量及价格1. 采购数量:________________吨2. 单价:________________元/吨3. 总金额:________________元## 第三条交货时间及地点1. 交货时间:________________年____月____日前2. 交货地点:________________## 第四条运输方式及费用承担1. 运输方式:________________(如:公路、铁路、水运等)2. 费用承担:由乙方负责运输至甲方指定地点,运输费用由乙方承担。
## 第五条质量验收1. 甲方在收到货物后____天内进行质量验收。
2. 如发现货物质量不符合合同约定,甲方有权要求乙方更换或退货。
## 第六条付款方式及期限1. 付款方式:银行转账/电汇/承兑汇票等。
2. 付款期限:甲方在验收合格后____天内支付全部货款。
## 第七条违约责任1. 如乙方未能按时交货,每逾期一天,应向甲方支付未交货部分货款____%的违约金。
2. 如甲方未能按时付款,每逾期一天,应向乙方支付未付款部分货款____%的滞纳金。
(每个专题时间:35分钟,满分:60分)1.函数y =的定义域是( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]2.函数221()1x f x x -=+, 则(2)1()2f f = ( ) A .1 B .-1 C .35D .35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C. D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。
那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭ ③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有:( ) A .0个 B .1个C .2个D .3个9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310D .712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是A .258B .234C .222D .2101.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅2.︒+︒15cot 15tan 的值是( )A .2B .2+3C .4D .334 3.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率为( )A .32 B .33 C .22 D .235.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1B .-1C .2D .216.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:其中真命题的个数是( ) ①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β.A .0B .1C .2D .37.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π 9.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2810.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,4] 时,f(x)= x -2,则 ( ) A .f (sin21)<f (cos 21) B .f (sin 3π)>f (cos 3π) C .f (sin1)<f (cos1) D .f (sin 23)>f (cos 23) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上任意选一处M 建一座码头,向B 、C 两地转运货物,经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km 、那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2) a 万元C .27a 万元D .(7-1) a 万元专题训练(三)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A .-3 B .-1 C .1 D .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( )A .[)(]3,21,2-- B .(]()3,21,--+∞C . (][)3,21,2--D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A .12-B .14- C .14 D .134.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n5.函数f(x)22sin sin 44f x x x ππ=+--()()()是( ) A .周期为π的偶函数 B .周期为π的奇函数 C . 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A .0.1536B . 0.1808C . 0.5632D . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23 B . 76 C . 45 D . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A . 6 B . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是( ) A . 4 B . 12 C .2 D . 1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 ( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则( ) A . 1f -()>f (0)>f (1) B . f (0)>f(1)>f (-1) C . 1f ()>f (0)>f (-1) D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x –y+1=0的交点在( )A . 第四象限B . 第三象限C .第二象限D . 第一象限1.设集合P={1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17 D.9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个人数(人)时间(小时)专题训练(五)1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于10<<a ,给出下列四个不等式,其中成立的是( )① )11(log )1(log a a a a +<+ ②)11(log )1(log aa a a +>+ ③aa a a 111++<④aaaa 111++>A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.圆064422=++-+y x y x 截直线x -y -5=0所得弦长等于( ) A .6 B .225 C .1 D .5 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p --- 6.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下:则==)10(ξP ( )A .932 B .103 C .93 D .103 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐, 并且这2人不.左右相邻,那么不同排法的种数是( )A .234B .346C .350D .3631.设集合U A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( ) A .21 B .-21 C .2 D .-23.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10C .13D .44.函数)1(11>+-=x x y 的反函数是 ( )A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( ) A .57B .51C .27 D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95 B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3C .-21-3D .21+31.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( ) A .{2|-<x x } B .{3|>x x } C .{21|<<-x x } D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7.函数xe y -=的图象( ) A .与xe y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称 8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=( ) A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2π C .π D .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A .56个 B .57个 C .58个 D .60个专题训练(八)1、设集合22,1,,M x y xy x R y R =+=∈∈,2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .42、函数sin 2xy =的最小正周期是( ) A .2πB .πC .2πD .4π3、记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2 B . 2-C . 3D . 1- 4、等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 1925、圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=6、61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-7、若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,) 8、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 549、不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .11、在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C . 32D .12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种1.设集合U={1U A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为( ) A .)0(ln 2>=x x y B .)0)(2ln(>=x x y C .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为( ) A .26 B . 6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( ) A .1 B .2 C .3 D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 A .160 B .180 C .200 D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( ) A .-3 B .-2 C .-1 D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+ C .232+ D .32+1.设集合A .PQ P = B .P Q 包含Q C .P Q Q = D . P Q 真包含于P2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞ 3.对任意实数,,a b c 在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件 4.若平面向量b 与向量)2,1(-=的夹角是o 180,且53||=,则=b ( ) A . )6,3(- B . )6,3(- C . )3,6(- D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。
一、等差数列选择题1.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15 B .30C .3D .64解析:A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A2.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6 B .7 C .8 D .10解析:D 【分析】由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭+++=⎧⎪⎨⎪⎩,即{1132024a d a d +-+=, 解得:{123a d =-=,51424310a a d ∴=+=-+⨯=.故选:D.3.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S <B .70S <,且80S >C .70S >,且80S >D .70S <,且80S <解析:A 【分析】根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】依题意,有170a a +>,180a a +< 则()177702a a S +⋅=>()()188188402a a S a a +⋅==+<故选:A .4.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<解析:D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D.5.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19 B .20C .21D .22解析:B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1nn a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】 因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+,所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d , 由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=,所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 6.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .13解析:B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B7.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60 B .120C .160D .240解析:B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B.8.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121 B .161C .141D .151解析:B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B9.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .6227解析:D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】 由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D10.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11 B .12C .23D .24解析:C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C.11.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32 B .33C .34D .35解析:D 【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【详解】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m ++++++++=++=则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D12.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50C .60D .80解析:C 【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =1158158()15215156022a a a S a +⨯⨯====故选:C 【点睛】本题考查等差数列性质及前n 项和公式,属于基础题 13.定义12nn p p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n ,又2n n a b =,则1223910111b b b b b b +++=( )A .817B .1021C .1123D .919解析:D 【分析】由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-, 故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:12239101111111111233517191.21891919b b b b b b +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=⨯= 故选:D14.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10- B .8C .12D .14解析:D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D15.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大212,则该数列的项数是( ) A .8 B .4C .12D .16解析:A 【分析】设项数为2n ,由题意可得()21212n d -⋅=,及6S S nd -==奇偶可求解. 【详解】设等差数列{}n a 的项数为2n , 末项比首项大212, ()212121;2n a a n d ∴-=-⋅=① 24S =奇,30S =偶,30246S S nd ∴-=-==奇偶②.由①②,可得32d =,4n =, 即项数是8, 故选:A.二、等差数列多选题16.已知数列{}n a 满足:12a =,当2n ≥时,)212n a =-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+-D .数列{}n a 为周期数列解析:ABC 【分析】由)212n a =-1=,再利用等差数列的定义求得n a ,然后逐项判断. 【详解】当2n ≥时,由)212n a =-,得)221n a +=,1=,又12a =,所以是以2为首项,以1为公差的等差数列,2(1)11n n =+-⨯=+,即221n a n n =+-,故C 正确;所以27a =,故A 正确;()212n a n =+-,所以{}n a 为递增数列,故正确;数列{}n a 不具有周期性,故D 错误; 故选:ABC 17.题目文件丢失!18.题目文件丢失! 19.题目文件丢失!20.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.21.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥解析:BC 【分析】 设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断.【详解】 设公差d 不为零, 因为38a a =,所以1127a d a d +=+, 即1127a d a d +=--, 解得192a d =-,11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误;()()()()()()221101110910,10102222n n n n n n dd na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 22.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n aa ---=---=是常数, {(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn kn a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确;对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.23.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214- D .{}n a 为单调递增数列解析:AD 【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题24.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ;D .{}n a 的前n 项和21n S n n =++(*n N ∈).解析:AC【分析】直接利用等差数列的定义性质判断数列是否为等差数列.【详解】A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;C 选项中()*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不为等差数列.故错误.故选:AC【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.25.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大. ∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.。
高考数学基础知识专项练习(含答案)以下是高考数学基础知识专项练,共有20道题目,每题均有详细解答。
1.已知函数$f(x)=3x+5$,求$f(-2)$的值。
解:直接将$x=-2$代入原函数,得$f(-2)=3*(-2)+5=-1$。
答案:$-1$2.解不等式$x-8\leq12$。
解:将不等式两边加上8,得$x\leq20$。
答案:$x\leq20$3.化简$\dfrac{6x^3}{9x^4}$。
解:将分子和分母同时除以$3x$,得$\dfrac{2}{3x}$。
答案:$\dfrac{2}{3x}$4.若$3x^2-6x=a$,求$x$的值。
解:将方程移项,得$3x^2-6x-a=0$,再利用求根公式,得$x=\dfrac{2\pm\sqrt{4+3a}}{3}$。
答案:$x=\dfrac{2\pm\sqrt{4+3a}}{3}$5.已知等差数列的公差$d=3$,首项$a_1=2$,求第10项的值。
解:利用等差数列的通项公式$a_n=a_1+(n-1)d$,得$a_{10}=2+9*3=29$。
答案:$29$6.已知直角三角形两直角边分别为3和4,求斜边长。
解:使用勾股定理,得斜边长$c=\sqrt{3^2+4^2}=5$。
答案:$5$7.若$f(x)=x^2-2x+5$,求$f(3)$的值。
解:直接将$x=3$代入原函数,得$f(3)=3^2-2*3+5=7$。
答案:$7$8.已知函数$f(x)=\dfrac{1}{x+1}$,求$f(2)$的值。
解:直接将$x=2$代入原函数,得$f(2)=\dfrac{1}{2+1}=\dfrac{1}{3}$。
答案:$\dfrac{1}{3}$9.化简$2y-4y^2-3y+1$。
解:将同类项相加,得$-4y^2-y+1$。
答案:$-4y^2-y+1$10.已知函数$f(x)=\sqrt{x+3}$,求$f(1)$的值。
解:直接将$x=1$代入原函数,得$f(1)=\sqrt{1+3}=2$。
高考数学复习题型及答案一、选择题1. 函数f(x)=x^2+2x+1的图像是:A. 一条直线B. 一个开口向上的抛物线C. 一个开口向下的抛物线D. 一个圆答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,则其第10项a10的值为:A. 29B. 32C. 35D. 41答案:A二、填空题3. 若复数z=1+i,则|z|=________。
答案:√24. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。
答案:3x^2-6x三、解答题5. 求证:对于任意实数x,不等式x^2+x+1>0恒成立。
证明:要证明x^2+x+1>0恒成立,只需证明其判别式Δ<0。
计算判别式Δ=1^2-4×1×1=-3<0,因此原不等式恒成立。
6. 已知数列{an}满足a1=1,an+1=2an+1,求数列{an}的通项公式。
解:由递推关系an+1=2an+1,可得an+1+1=2(an+1),即数列{an+1}是首项为2,公比为2的等比数列。
因此,an+1=2^n,进而得到an=2^(n-1)-1。
四、计算题7. 计算定积分∫₀^₁x^2dx。
解:∫₀^₁x^2dx=(1/3)x^3|₀^₁=1/3。
8. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2≤1所围成的圆盘。
解:∬D(x^2+y^2)dσ=∫₀^π∫₀^1(r^2cos^2θ+r^2sin^2θ)rdrdθ=∫₀^π∫₀^1r^3 dθ dr=(π/2)∫₀^1r^3dr=(π/2)(1/4)=π/8。
以上题型涵盖了高考数学中常见的选择题、填空题、解答题和计算题,通过这些题型的练习,可以有效地复习和巩固数学知识,为高考做好充分的准备。
高考数学选填压轴题练习与答案一.选择题(共25小题)1.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),若b n=a n cos2nπ3,且数列{b n}的前n项和为S n,则S11=()A.64B.80C.﹣64D.﹣80【解答】解:数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),则a n+1n+1=a nn+1,可得数列{a nn}是首项为1、公差为1的等差数列,即有a nn=n,即为a n=n2,则b n=a n cos2nπ3=n2cos2nπ3,则S11=−12(12+22+42+52+72+82+102+112)+(32+62+92)=−12(12+22﹣32﹣32+42+52﹣62﹣62﹣72+82﹣92﹣92+102+112)=−12×(5+23+41+59)=﹣64.故选:C.2.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(π6+x)=﹣f(π6−x),f(π2+x)=f(π2−x),下列四个结论:①φ=π4;②ω=92+3k(k∈N);③f(−π2)=0;④直线x=−π3是f(x)图象的一条对称轴.其中所有正确结论的编号是()A.①②B.①③C.②④D.③④【解答】解:函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(x)图象的一条对称轴是直线x=π2,所以f(π2+x)=f(π2−x),由f (x )的一个零点为π6, 所以f (π6+x )=﹣f (π6−x ),整理得T 4+k ⋅T 2=π2−π6=π3, 所以T =4π3(1+2k), 故ω=2πT=32+3k (k ∈Z ),故②错误;当k =1时,f (x )=sin (92x +φ), 把(π6,0)代入关系式,得到sin (3π4+φ)=0,由于0<φ<π2,所以φ=π4,故①正确;对于f (−π3)=sin (92⋅π3+π4)≠±1,故④错误; f (−π2)=sin[92⋅(−π2)+π4]=sin (﹣2π)=0,故③正确. 故选:B .3.已知四面体ABCD 的四个顶点都在以AB 为直径的球R 面上,且BC =CD =DB =2,若四面体ABCD 的体积是4√23,则这个球面的面积是( )A .16πB .323πC .4πD .763π【解答】解:由题意,几何体的直观图如图, 四面体ABCD 的体积是4√23,可得O 到平面BCD 的距离为h ,13×√34×22×2ℎ=4√23,解得h =2√63, 所以外接球的半径为R =OB =OD =OC =OA =(2√63)(23√32=2,所以外接球的表面积为:4π×22=16π. 故选:A .4.已知函数f (x )={log 2x ,x >114x +1,x ≤1,g (x )=f (x )﹣kx ,若函数g (x )有两个零点,则k 的取值范围是( ) A .(0,14]B .(0,1eln2) C .[0,1e)D .[14,1eln2)【解答】解:函数f (x )={log 2x ,x >114x +1,x ≤1,作出f (x )的图象与y =kx 图象有两个交点,(如图)设y =kx 与y =log 2x 的切点为(x 0,y 0), 可得{y 0=kx 0y 0=log 2x 01k =x 0ln2,解得x 0=e ,∴相切时的斜率k =1eln2.故得f (x )的图象与y =kx 图象有两个交点时,14≤k <1eln2. 故选:D .5.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,椭圆E 上一点P (2,1)关于原点的对称点为Q ,若△PQF 的周长为4√2+2√5.则离心率e =( )A.√32B.√22C.√33D.√23【解答】解:∵P与Q关于原点对称,则Q(﹣2,﹣1),∴|PQ|=2√12+22=2√5,又三角形PQF的周长为|QP|+|PF|+|QF|=4√2+2√5,∴|PF|+|QF|=4√2,设椭圆的右焦点为M,则由椭圆的性质可得|PF|=|QM|,∴|QM|+|QF|=2a=4√2,得a=2√2,将点P代入椭圆方程可得:48+1b2=1,解得b=√2,∴c=√a2−b2=√6.则离心率e=ca =√62√2=√32.故选:A.6.对于函数y=f(x)与y=g(x),若存在x0,使f(x0)=g(﹣x0),则称M(x0,f(x0)),N(﹣x0,g(﹣x0))是函数f(x)与g(x)图象的一对“隐对称点”.已知函数f(x)=m(x+1),g(x)=lnxx,函数f(x)与g(x)的图象恰好存在两对“隐对称点”,则实数m的取值范围为()A.(﹣1,0)B.(﹣∞,﹣1)C.(0,1)∪(1,+∞)D.(﹣∞,﹣1)∪(﹣1,0)【解答】解:∵f(x)=m(x+1)恒过定点(﹣1,0),f(x)关于y轴对称的图象的函数解析式为y=﹣m(x﹣1)依题意可得,y=﹣m(x﹣1)与g(x)=lnxx有2个交点,由g(x)=lnxx ,得g′(x)=1−lnxx2,当0<x<e时,h′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,而y=﹣m(x﹣1)恒过定点(1,0),作出函数g(x)=lnxx的图象如图,当直线y=﹣m(x﹣1)与g(x)=lnxx切于(1,0)时,由导数的几何意义可得,﹣m=1−ln112=1,则要使y =﹣m (x ﹣1)与g (x )=lnx x有2个交点,则﹣m >0且﹣m ≠1,∴实数m 的取值范围为(﹣∞,﹣1)∪(﹣1,0). 故选:D .7.已知函数f (x )={|xlnx|,x >0|x(x +1)|,x ⩽0,关于x 的方程f 2(x )+tf (x )+1=0(t ∈R )有8个不同的实数根,则t 的取值范围是( ) A .(−1e −e ,+∞) B .(−2e ,−12)∪(﹣∞,−1e −e )C .(﹣∞,−174)D .(2,+∞)∪(﹣∞,−174)【解答】解:当x >0时,f (x )=|xlnx |,令F (x )=xlnx ,F ′(x )=lnx +1, 令F ′(x )=lnx +1=0,解得x =1e,F (1e)=−1e,f (1e)=1e,故当x >0时,函数f (x )在(0,1e )上单调递增,在(1e ,1)上单调递减,在(1,+∞)上单调递增; 当x <0时,可得函数f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,−12)上单调递增,在(−12,0)上单调递减.又f (−12)=14,f (1e )=1e ,故刻画出函数f (x )的大致图象如图:令m =f (x ),则已知方程可化为m 2+tm +1=0.观察图象可知,当m >1e 时,只有2个交点;当m =1e 时,有3个交点;当14<m <1e 时,有4个交点; 当0<m <14时,有6个交点.要想满足题意,则只需使得方程m 2+tm +1=0在(14,1e )上存在两个不同实数根,或在(1e ,+∞)和(0,14)上各有1个根,方程m 2+tm +1=0的两根之积为1, 令g (m )=m 2+tm +1,由题意,{g(14)<0g(4)<0,解得t <−174,即t 的取值范围是(﹣∞,−174).故选:C .8.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是正方体棱上一点,若满足|PB |+|PC 1|=d 的点P 的个数为4.则d 的取值范围为( ) A .(√2,2)B .(√2,2√2)C .[2,1+√3)D .(1+√3,2√2)【解答】解:点P 分别在BB 1,BC ,CC 1,B 1C 1上运动时,m 的取值范围是[√2,2], 当点P 分别在C 1D 1,AB 上运动时,m 的取值范围是[√2,1+√3], 当点P 分别在棱A 1B 1,CD 上运动时,m 的取值范围是[2,2√2],当P 分别在棱A 1D 1,DD 1,AD ,AA 1上运动时,m 的取值范围是[√4+2√2,2√2], 由结合图形可知,点P 在正方体的每一条棱上运动时, 它所在的位置与m 的值是一一对应的, 当|PB |+|PC 1|=d 的点P 的个数为4, 则d 的取值范围为[2,1+√3), 故选:C .9.已知不相等的两个正实数x ,y 满足x 2﹣y =4(log 2y ﹣log 4x ),则下列不等式中不可能成立的是( )A.x<y<1B.y<x<1C.1<x<y D.1<y<x【解答】解:由已知x2﹣y=4(log2y﹣log4x),因为2log4x=log2x,所以原式可变形为x2+2log2x=y+4log2y,令f(x)=x2+2log2x,g(x)=x+4log2x,函数f(x)与g(x)均为(0,+∞)上的增函数,且f(x)=g(y),且f(1)=g(1),当x>1时,f(x)>1,g(y)>1,y>1,当x<1时,f(x)<1,g(y)<1,y<1,要比较x与y的大小,只需比较g(x)与g(y)的大小,g(x)﹣g(y)=g(x)﹣f(x)=x+4log2x﹣x2﹣2log2x=x﹣x2+2log2x,设h(x)=x﹣x2+2log2x(x>0),则h'(x)=1−2x+2xln2,故h'(x)在(0,+∞)上单调递减,又h'(1)=−1+2ln2>0,h'(2)=−3+1ln2<0,则存在x0∈(1,2)使得h'(x)=0,所以当x∈(0,x0)时,h'(x)>0,当x∈(x0,+∞)时,h'(x)<0,又因为h(1)=0,h(x0)>h(1)=0,h(4)=﹣12+4=﹣8<0,所以当x<1时,h(x)<0,当x>1时,h(x)正负不确定,故当x<1,y<1时,h(x)<0,所以g(x)<g(y)<g(1),故x<y<1,当x>1,y>1时,h(x)正负不定,所以g(x)与g(y)的正负不定,所以x>y>1,x=y>1,y>x>1均有可能,即选项A,C,D均有可能,选项B不可能.故选:B.10.正实数a,b,c满足a+2﹣a=2,b+3b=3,c+log4c=4,则实数a,b,c之间的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a【解答】解:c+log4c=4⇒log4c=4﹣c,即c 为函数y =log 4x 与y =4﹣x 的图象交点的横坐标; b +3b =3⇒1+3b =4﹣b ,即b 为函数y =1+3x 与y =4﹣x 的图象交点的横坐标; a +2﹣a =2⇒2+12a =4−a ,即a 为函数y =2+12x 与y =4﹣x 的图象交点的横坐标; 在同一坐标系中画出图象,可得b <a <c . 故选:A .11.《九章算术》是我国古代数学经典名著,堪与欧几里得《几何原本》相媲美的数学名著,在《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”.已知某鳖臑A ﹣BCD 的外接球半径为1,则该鳖臑A ﹣BCD 的体积最大值为( ) A .49√3B .427√3C .94√3D .316√3【解答】解:四个面都是直角三角形的四面体称为“鳖臑”.如图:某鳖臑A ﹣BCD 的外接球半径为1,可知CD =2,设AB =a ,BC =b ,AD =c , 所以a 2+b 2+c 2=4,可得4=a 2+b 2+c 2≥3√(abc)23,所以abc ≤√4333=8√39.当且仅当a =b =c =2√33时,取等号.该鳖臑A ﹣BCD 的体积:13×12abc ≤16×8√39=4√327. 故选:B .12.已知抛物线y=x2+mx﹣2与x轴交于A,B两点,点C的坐标为(3,1),圆Q过A,B,C三点,当实数m变化时,存在一条定直线l被圆Q截得的弦长为定值,则此定直线l方程为()A.x﹣3y=0B.3x﹣y+1=0C.√3x﹣y﹣1=0D.x−√3y=0【解答】解:y=x2+mx﹣2与x轴交于A,B,设两点A(x1,0),B(x2,0),设圆Q的方程为x2+y2+Dx+Ey+F=0,取y=0,可得x2+Dx+F=0.则方程x2+Dx+F=0与方程x2+mx﹣2=0等价,则D=m,F=﹣2,则圆的方程为x2+y2+mx+Ey﹣2=0.∵圆Q过C(3,1),∴10+3m+E﹣2=0,即E=﹣8﹣3m,得圆Q的方程为x2+y2+mx﹣(8+3m)y﹣2=0,即x2+y2﹣8y﹣2+m(x﹣3y)=0,由圆系方程可知,圆x2+y2﹣8y﹣2+m(x﹣3y)=0经过圆x2+y2﹣8y﹣2=0与直线x﹣3y=0的交点,则圆Q被直线x﹣3y=0所截弦长为定值.故选:A.+alnx+e2≥ax恒成立(e为自然对数的底数),则正实数a的取值范围是13.对任意x>0,若不等式e xx()A.(0,e]B.(0,e2]C.[2e ,e]D.[2e,e2]【解答】解:不等式e xx +alnx+e2≥ax可化为e xx−a(x﹣lnx)+e2≥0,即e xx−aln e xx+e2≥0;设t=e xx,其中x>0;由e x≥ex知t≥e,所以f(t)=t﹣alnt+e2(t≥e),只需证明f(t)的最小值f(t)min≥0即可;对函数f(t)求导数,得f′(t)=1−at =t−at(t≥e),①当0<a≤e时,f′(t)≥0恒成立,f(t)是[e,+∞)上的单调增函数,所以f(t)的最小值是f(t)min=f(e)=e﹣alne+e2≥0,解得a≤e2+e;又0<a≤e,所以a的取值范围是(0,e].②当a>e时,f(t)在[e,a)上单调递减,在(a,+∞)上单调递增,所以f(t)的最小值是f(t)min=f(a)=a﹣alna+e2≥0;设g(a)=a﹣alna+e2,其中a>e,则g′(a)=1﹣lna﹣1=﹣lna<0,所以g(a)在(e,+∞)上是单调减函数;g(e2)=e2﹣e2lne2+e2=0,所以g(a)≥0时,a≤e2;由a>e知,a的取值范围是(e,e2];综上知,正实数a的取值范围是(0,e2].故选:B.14.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是其右支上第一象限内的一点,直线PO,PF2分别交该双曲线左、右支于另两点A,B,若|PF1|=2|PF2|,且∠AF2B=60°,则该双曲线的离心率是()A.√3B.√2C.2√33D.√52【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,由|PF1|=2|PF2|,可得|PF2|=2a,|PF1|=4a,结合双曲线性质可以得到|PO|=|AO|,而|F1O|=|F2O|,结合四边形对角线平分,可得四边形PF1AF2为平行四边形,结合∠AF2B=60°,得∠F1AF2=60°,对三角形F1AF2,用余弦定理,得到|AF1|2+|AF2|2﹣|F1F2|2=2|AF1|•|AF2|•cos∠F1PF2,由|PF1|=2|PF2|,可得|AF1|=2a,|AF2|=4a,|F1F2|=2c,代入上式子中,得到3a2=c2,∴e=ca=√3,故选:A.15.如图,双曲线F:x2a2−y2b2=1(a>0,b>0)以梯形ABCD的顶点A,D为焦点,且经过点B,C,其中AB∥CD,∠BAD=60°,|CD|=4|AB|,则F的离心率为()A.3√34B.√3C.65D.5√36【解答】解:如图,不妨设|AB|=1,|CD|=4,则|BD|=1+2a,|AC|=4+2a,在△ABD中,由余弦定理得1+4c2﹣2•1•2c•cos60°=(1+2a)2,①在△ACD中,由余弦定理得16+4c2﹣2•4•2c•cos120°=(4+2a)2,②②﹣①得,15+10c=12a+15,则e=ca =65.故选:C.16.已知定义R在上的函数f(x),其导函数为f'(x),若f(x)=f(﹣x)﹣2sin x.且当x≥0时,f'(x)+cos x>0,则不等式f(x+π2)>f(x)+sin x﹣cos x的解集为()A.(﹣∞,π2)B.(π2,+∞)C.(﹣∞,﹣π4)D.(﹣π4,+∞)【解答】解:令g(x)=f(x)+sin x,则g(﹣x)=f(﹣x)+sin(﹣x)=f(﹣x)﹣sin x,又f(x)=f(﹣x)﹣2sin x,∴f(x)+sin x=f(﹣x)﹣sin x,故g(﹣x)=g(x),∴g(x)为定义在R上的偶函数;当x≥0时,g′(x)=f′(x)+cos x>0,∴g(x)在[0,+∞)上单调递增,又∵g(x)为偶函数,故g(x)在(﹣∞,0]上单调递减,由f(x+π2)+cosx=f(x+π2)+sin(x+π2)>f(x)+sinx得g(x+π2)>g(x),∴|x+π2|>|x|,解得x>−π4,∴不等式的解集为(−π4,+∞).故选:D.17.已知双曲线C:x2a2−y2b2=1(a>0,b>0),过C的右焦点F作垂直于渐近线的直线l交两渐近线于A,B两点,A,B两点分别在一、四象限,若|AF||BF|=513,则双曲线C的离心率为()A.1312B.√133C.√135D.√13【解答】解:由题意知:双曲线的右焦点F(c,0),渐近线方程为y=±bax,即bx±ay=0,如下图所示:由点到直线距离公式可知:|F A |=√a 2+b 2=b ,又∵c 2=a 2+b 2,∴|OA |=a ,∵|AF||BF|=513,∴|BF |=135b ,设∠AOF =α,由双曲线对称性可知∠AOB =2α, 而tan α=ba ,tan2α=|AB||OA|=18b 5a,由正切二倍角公式可知:tan2α=2tanα1−tan 2α=2×b a 1−(b a)2=2ab a 2−b 2,即2ab a 2−b2=18b 5a,化简可得:4a 2=9b 2, 由双曲线离心率公式可知:e =c a=√1+b 2a2=√1+49=√133. 故选:B .18.数学中一般用min {a ,b }表示a ,b 中的较小值.关于函数f(x)=min{sinx +√3cosx ,sinx −√3cosx}有如下四个命题:①f (x )的最小正周期为π; ②f (x )的图象关于直线x =3π2对称;③f (x )的值域为[﹣2,2];④f (x )在区间(−π6,π4)上单调递增. 其中是真命题的是( ) A .②④B .①②C .①③D .③④【解答】解:令g(x)=sinx +√3cosx =2sin(x +π3),ℎ(x)=sinx −√3cosx =2sin(x −π3), 则f (x )=min {g (x ),h (x )}={g(x),g(x)⩽ℎ(x)ℎ(x),g(x)>ℎ(x)={2sin(x +π3),π2+2kπ⩽x ⩽3π2+2kπ2sin(x −π3),−π2+2kπ<x <π2+2kπ,(k ∈Z),如图所示:由图知:则f (x )的最小正周期为2π,故①错误; f (x )的图象关于直线x =3π2对称,故②正确;f (x )的值域为[﹣2,1],故③错误;f (x )在区间(−π6,π4)上单调递增,故④正确. 故选:A .19.四棱锥P ﹣ABCD 中,底面ABCD 为矩形,体积为163,若P A ⊥平面ABCD ,且P A =2,则四棱锥P ﹣ABCD的外接球体积的最小值是( ) A .160√53π B .256πC .125πD .20√53π【解答】解:底面为矩形的四棱锥P ﹣ABCD 的体积为163,若P A ⊥平面ABCD ,且P A =2, 可得底面面积为:8,设AB =a ,BC =b ,则ab =8,四棱锥的外接球就是扩展的长方体的外接球,PC 就是外接球的直径,可得:2R =√a 2+b 2+22≥√4+2ab =√4+2×8=2√5,当且仅当a =b =2√2,取等号,R ≥√5. 外接球的体积的最小值为:4π3×(√5)3=20√5π3.故选:D .20.已知函数f (x )={|log 2x|(x >0)2x 2+4x +1(x ≤0),若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则x 1+x 2﹣x 3x 4的值是( ) A .﹣4B .﹣3C .﹣2D .﹣1【解答】解:作出f (x )的函数图象如图所示:因为函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4, 即y =f (x )与y =b 有四个不同的交点, 由图象知 x 1+x 2=﹣2×42×2=−2,由﹣log 2x 3=log 2x 4,得:log 2x 3+log 2x 4=0,得:x 3x 4=1, ∴x 1+x 2﹣x 3x 4=﹣3, 故选:B .21.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为( )A .512√6729π B .16√23π C .32√627π D .128√281π【解答】解:由题意可得每个三角形面积为S =12×4×2√3=4√3,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为√16−(4√33)2=4√63,故四面体的体积为13×4√3×4√63=16√23,∵该六面体的体积是正四面体的2倍, ∴六面体的体积是32√23, 由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥, 设丸子的半径为R ,则32√23=6×13×4√3×R ,解得R =4√69,∴丸子的体积的最大值为V max =4π3R 3=4π3×(4√69)3=512√6729π. 故选:A .22.已知函数f (x )=e x ﹣aln (ax ﹣a )+a (a >0),若关于x 的不等式f (x )>0恒成立,则实数a 的取值范围为( ) A .(0,e 2]B .(0,e 2)C .[1,e 2]D .(1,e 2)【解答】解:∵f (x )=e x ﹣aln (ax ﹣a )+a >0(a >0)恒成立, ∴e xa >ln(x −1)+lna −1, ∴e x ﹣lna+x ﹣lna >ln (x ﹣1)+x ﹣1, ∴e x﹣lna+x ﹣lna >e ln(x ﹣1)+ln (x ﹣1).令g (x )=e x +x ,易得g (x )在(1,+∞)上单调递增, ∴x ﹣lna >ln (x ﹣1),∴﹣lna >ln (x ﹣1)﹣x . ∵ln (x ﹣1)﹣x ≤x ﹣2﹣x =﹣2, ∴﹣lna >﹣2,∴0<a <e 2, ∴实数a 的取值范围为(0,e 2). 故选:B .23.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c cos A +a cos C =2,AC 边上的高为√3,则∠ABC 的最大值为( ) A .π6B .π3C .π2D .2π3【解答】解:因为c cos A +a cos C =2, 所以由余弦定理可得c •b 2+c 2−a 22bc+a •a 2+b 2−c 22ab=2,整理可得b =2,因为AC 边上的高为√3, 所以12×2×√3=12acsinB , 所以ac =2√3sinB, 因为cos B =a 2+c 2−b 22ac≥2ac−b 22ac=1−2ac,当且仅当a =c 时取等号,所以cos B ≥1−√33sinB , 即3cos B +√3sin B ≥3, 所以2√3sin (B +π3)≥3,所以sin (B +π3)≥√32, 因为B ∈(0,π),所以B +π3∈(π3,4π3), 所以B +π3∈(π3,2π3],所以B ∈(0,π3], 则∠ABC 的最大值为π3. 故选:B .24.在平面直角坐标系xOy 中,若抛物线C :y 2=2px (p >0)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为△F AB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM →⋅ON →的取值范围是( ) A .[−6325,9]B .[﹣3,21]C .[6325,21]D .[3,27]【解答】解:抛物线C :y 2=2px (p >0)的焦点F (p2,0),准线方程为x =−p2, 设A (3,√6p ),所以|AF |=3+p2=4,解得p =2, 所以抛物线的方程为y 2=4x ,A (3,2√3),B (3,﹣2√3),F (1,0), 所以直线AF 的方程为y =√3(x ﹣1), 设圆心坐标为(x 0,0), 所以(x 0﹣1)2=(3﹣x 0)2+12, 解得x 0=5,即E (5,0), ∴圆的方程为(x ﹣5)2+y 2=16,不妨设y M >0,设直线OM 的方程为y =kx ,则k >0, 根据√1+k2=4,解得k =43, 由{y =43x(x −5)2+y 2=16,解得M (95,125), 设N (4cos θ+5,4sin θ), 所以OM →•ON →=365cos θ+485sin θ+9=125(3cos θ+4sin θ)+9,因为3cos θ+4sin θ=5sin (θ+φ)∈[﹣5,5], 所以OM →•ON →∈[﹣3,21]. 故选:B .25.已知双曲线x 24−y 25=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O为圆心,|OF |为半径的圆上,则直线MF 的斜率是( ) A .−√35B .−5√117C .5√117D .√35【解答】解:如图所示,设线段MF 的中点为H ,连接OH ,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=12|MF|=12(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF中,tanα=√32−(12)212=√35,∴直线MF的斜率是−√35.故选:A.二.多选题(共7小题)26.下列结论正确的是()A.存在这样的四面体ABCD,四个面都是直角三角形B.存在这样的四面体ABCD,∠BAC=∠CAD=∠DAB=∠BCD=90°C.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=90°D.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=∠DAB=90°【解答】解:对于A,在长方体ABCD﹣A1B1C1D1中,四面体A1﹣ABC的四个面都是直角三角形,所以选项A正确;对于B ,三个直角均以A 为顶点,那么△BCD 为锐角三角形,故选项B 错误;对于C ,存在不共面的四点A 、B 、C 、D ,使∠ABC =∠BCD =∠CDA =90°,如图所示,故选项C 正确;对于D ,若∠ABC =∠BCD =∠CDA =∠DAB =90°,则A ,B ,C ,D 四点共面,故选项D 错误. 故选:AC .27.已知函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),则下列说法正确的是( ) A .若a =﹣1,则f (x )是(0,12)上的减函数B .若0<a <1,则f (x )有两个零点C .若a =1,则f (x )≥0D .若a >1,则曲线y =f (x )上存在相异两点M ,N 处的切线平行 【解答】解:函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),对于A ,当a =﹣1,f (x )=x 2+x ﹣lnx (x >0),f ′(x )=2x +1−1x在(0,+∞)上单调递增,又f ′(12)=0,故当x ∈(0,12)时,f ′(x )<0,则f (x )是(0,12)上的减函数,故A 正确; 对于B ,若f (x )=0,则x 2﹣ax ﹣lnx =0,故a =x −lnx x(x >0),令g (x )=x −lnx x(x >0),则g ′(x )=1−1−lnx x 2=x 2+lnx−1x 2,再令h (x )=x 2+lnx ﹣1(x >0),显然,h (x )在(0,+∞)上单调递增,又h (1)=0,所以,当x ∈(0,1)时,h (x )<0,即g ′(x )<0,则g (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h (x )>0,即g ′(x )>0,则g (x )在(1,+∞)上单调递增, 故g (x )min =g (1)=1,要使f (x )有零点,则a ≥1,故B 错误;对于C ,当a =1时,f (x )=x 2﹣x ﹣lnx (x >0),f ′(x )=2x ﹣1−1x 在(0,+∞)上单调递增,又f ′(1)=0,故当x ∈(0,1)时,f ′(x )<0,则f (x )是在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,则f (x )在(1,+∞)上单调递增,故f (x )≥f (1)=0,故C 正确;对于D ,由于f ′(x )=2x ﹣a −1x (x >0),若曲线y =f (x )上存在相异两点M (x 1,f (x 1)),N (x 2,f (x 2))处的切线平行, 则f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2), 即2x 1﹣a −1x 1=2x 2﹣a −1x 2,即2x 1−1x 1=2x 2−1x 2,也就是f ′(x )=2x ﹣a −1x =0有两异根,即a =2x −1x (x >0)有两个交点.令t (x )=2x −1x (x >0),则t (x )在(0,+∞)上单调递增,当t →0+时,t (x )→﹣∞;当t →+∞时,t (x )→+∞,故y =a 与t (x )=2x −1x (x >0)只有一个交点,故D 错误. 综上所述,AC 正确, 故选:AC .28.已知无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项,则下列结论正确的是( ) A .d 的最大值是6 B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{a n }中的项【解答】解:∵无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项, ∴设{17−5=12=md 23−17=6=nd ,解得d =6m−n ,∴d 的最大值为6,故A 正确; ∵a 1≤5,d ∈N *,∴2a 2﹣a 8=a 1﹣5d ≤0,故B 正确;∵d =6m−n ,∴当m ﹣n =2时,d =3,数列可能为5,8,11,14,17,20,23,…,故C 错误; ∵137=23+19×6,∴137一定是等差数列{a n }中的项,故D 正确. 故选:ABD .29.已知函数f (x )=(sin x +cos x )|sin x ﹣cos x |,下列说法正确的是( ) A .f (x )是周期函数B .f (x )在区间[−π2,π2]上是增函数 C .若|f (x 1)|+|f (x 2)|=2,则x 1+x 2=kπ2(k ∈Z )D .函数g (x )=f (x )+1在区间[0,2π]上有且仅有1个零点【解答】解:f (x )=(sin x +cos x )|sin x ﹣cos x |={cos 2x −sin 2x ,sinx <cosx sin 2x −cos 2x ,sinx ≥cosx ={cos2x ,sinx <cosx−cos2x ,sinx ≥cosx .其图象如图:由图可知,f (x )是周期为2π的周期函数,故A 正确; f (x )在区间[−π2,π2]上不是单调函数,故B 错误;若|f (x 1)|+|f (x 2)|=2,由|f (x 1)|≤1,|f (x 2)|≤1,则只有|f (x 1)|=|f (x 2)|=1,即x 1,x 2只能是函数的最值点的横坐标, 可得x 1+x 2=kπ2(k ∈Z ),故C 正确;函数g (x )=f (x )+1的图象是把y =f (x )的图象向上平移1个单位得到的,则在区间[0,2π]上有且仅有2个零点,故D 错误. ∴说法正确的是AC . 故选:AC .30.已知F 1,F 2是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作倾斜角为π3的直线分别交y 轴、双曲线右支于点M 、点P ,且|PM |=|MF 1|,下列判断正确的是( )A.E的渐近线方程为y=±√2x B.|MF2|=12|PF1|C.E的离心率等于2+√3D.∠F1PF2=π6【解答】解:如右图,由|PM|=|MF1|,可得M为PF1的中点,又O为F1F2的中点,可得OM∥PF2,∠PF2F1=90°,∠PF1F2=60°,∠F1PF2=30°,|MF2|=12|PF1|,故B正确,D正确;设|F1F2|=2c,则|PF1|=2ccos60°=4c,|PF2|=2c tan60°=2√3c,则2a=|PF1|﹣|PF2|=(4﹣2√3)c,可得e=ca =(4−2√3)c=2+√3,ba=√c2a2−1=√6+4√3,则双曲线的渐近线方程为y=±bax即为y=±√6+4√3x.故C正确,A错误.故选:BCD.31.已知函数f(x)=e x﹣cos x,x∈R,下列判断正确的是()A.f(x)在(﹣2π,−32π)单调递增B.f(x)在(﹣π,0)有2个极值点C.f(x)在(﹣2π,−π2)仅有1个极小值D.当﹣4π≤x≤﹣2π时,f(x)≤1【解答】解:函数f(x)=e x﹣cos x,则f′(x)=e x+sin x,对于A,当x∈(﹣2π,−32π)时,f′(x)>0,所以f(x)单调递增,故A正确;对于B,函数f′(x)=e x+sin x的零点,即为方程f′(x)=0的根,作出函数y=﹣sin x与函数y=e x的大致图象,如图所示:由图象可知,当x∈(﹣π,0)时,函数y=﹣sin x与函数y=e x有两个交点,则方程f′(x)=0有两个实根,所以f(x)在(﹣π,0)有2个极值点,故B正确;对于C,由图象可得,函数y=﹣sin x与函数y=e x在(﹣2π,−π2)上只有一个交点,则方程f′(x)=0只有一个实数根x0,且在(﹣2π,x0)上,f′(x)>0,f(x)单调递增,在(x0,−π2)上,f′(x)<0,f(x)单调递减,所以f(x)在x=x0处取得极大值,故C错误;对于D,当x=﹣3π时,f(x)=e﹣3π+1>1,故D错误.故选:AB.32.随着高三毕业日期的逐渐临近,有n(n≥2)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则()A.当n=4时,每个人抽到的卡片都不是自己的概率为38B.当n=5时,恰有一人抽到自己的卡片的概率为340C.甲和乙恰好互换了卡片的概率为1n−1−1nD.记n个同学都拿到其他同学的卡片的抽法数为a n,则a n+2=(n+1)(a n+a n+1)n∈N*【解答】解:考虑n+1个同学时的情况,若n+1个同学都拿到其他同学的卡片,则第n+2个同学可以与其中任何一个交换卡片,若n+1个同学只有一个拿到自己的卡片,则第n+2个同学必须与该同学交换卡片,∴a n+2=(n+1)a n+1+(n+1)a n,故D正确;a n+2﹣(n+2)a n+1=﹣[a n+1﹣(n+1)a n],∵a1=0,a2=1,∴a n﹣na n﹣1=(﹣1)n,∴a n=n!⋅∑n i=2(−1)ii!,代入数据可得a4=9,∴当n=4时,每个人抽到的卡片都不是自己的概率为a44!=38,故A正确;当n=5时,恰有一人抽到自己的卡片的概率为5a45!=38,故B错误;甲和乙恰好互换了卡片的概率为(n−2)!n!=1n−1−1n,故C正确.故选:ACD.三.填空题(共18小题)33.已知矩形ABCD中,AB=2,BC=√3,E是CD边的中点.现以AE为折痕将△ADE折起,当三棱锥D﹣ABE的体积最大时,该三棱锥外接球的表面积为16π3.【解答】解:由题意,当平面ADE⊥平面ABE时,三棱锥D﹣ABE的高最大值,此时体积最大.∵△ADE是直角三角形,∴三棱锥D﹣ABE换成B﹣ADE∴底面△ADE外接圆半径r=12AE=1,垂直面△ABE是边长为2等边三角形,可得AE边上的高h=√3;设球心与圆心距离为d,球半径为R,R2=r2+d2……①√3−d=R⋯⋯②由①②解得R=√3;三棱锥外接球的表面积S=4πR2=16π3;故答案为:16π3.34.由正三棱锥S﹣ABC截得的三棱台ABC﹣A1B1C1的各顶点都在球O的球面上,若AB=6,三棱台ABC ﹣A1B1C1的高为2,且球心O在平面ABC与平面A1B1C1之间(不在两平面上),则AB1的取值范围为(2√6,6).【解答】解:该三棱台的横截面如图所示,因为△ABC为正三角形,且AB=6,=2√3,则AH=√3又GH=2,球心O在GH上,A,A1都在球面上,故OA=OA1,设OH=h,A1G=m,则由△A1GO和△AOH均为直角三角形,所以m2+(2﹣h)2=h2+12,解得m2=8+4h,由图可知,h∈(0,2),m∈(0,2√3),综上可得,m∈(2√2,2√3),又A1B1=√3A1G,所以A1B1∈(2√6,6),即AB1的取值范围为(2√6,6).故答案为:(2√6,6).35.设数列a1,a2,a3,a4各项互不相同,且a i∈{1,2,3,4}(i=1,2,3,4).若下列四个关系①a1=1;②a2≠1;③a3=2;④a4≠4中恰有一个正确,则(10a1+a2)﹣(10a3+a4)的最大值是18.【解答】解:若①正确,则②一定正确,因此不符合题意;若②正确,此时令a4=4,a3=1,a1=3,a2=2,则有(10a1+a2)﹣(10a3+a4)的最大值为18;若③正确,此时a4=4,a2=1,a1=3,a3=2,则有(10a1+a2)﹣(10a3+a4)的最大值为7;若④正确,此时a4=2,a3=3,a1=4,a2=1,则有(10a1+a2)﹣(10a3+a4)的最大值为9.综上可得,(10a1+a2)﹣(10a3+a4)的最大值为18.故答案为:1836.设抛物线C1:y=x2﹣2x+2和C2:y=﹣x2+ax+b在它们的一个交点处的切线互相垂直,则C2过定点(1,3).2【解答】解:∵y=x2﹣2x+2,∴y'=2x﹣2,∵y=﹣x2+ax+b,∴y'=﹣2x+a,设交点为(x0,y0),∵它们在一个交点处切线互相垂直,∴(2x0﹣2)(﹣2x0+a)=﹣1,即4x02﹣(2a+4)x0+2a﹣1=0,①由交点分别代入二次函数式,整理得,2x02﹣(2+a)x0+2﹣b=0,即4x02﹣(4+2a)x0+4﹣2b=0,②由①②整理得2a﹣1﹣4+2b=0,即a+b=52,所以C2:y=﹣x2+ax+52−a,令x=1,可得y=32,则C2过定点(1,32),故答案为:(1,32),37.在三棱锥A﹣BCD中,AB=AC=BC=BD=CD=6,AD=9,则三棱锥A﹣BCD外接球O的表面积为84π.【解答】解:如图所示:取BC的中点E,连接AE,DE,取AD的中点F,连接EF,因为AB=AC=BC=BD=CD=6,所以AE⊥BC,DE⊥BC,且三角形ABC和三角形BCD都是正三角形,所以AE=DE=3√3,即三角形ADE为等腰三角形,所以EF⊥AD,且EF平分∠AED,不妨设三角形BCD的外接圆圆心为O′,且O′在DE上,所以EO′=13ED=√3,设外接球的球心为O,半径为R,则OA=OD=R,利用面面垂直可证得平面AED⊥平面BCD,又平面AED∩平面BCD=ED,则球心O必在三角形AED中,又OA=OD=R,所以O在∠AED的角平分线EF上,连接OO′,则OO′⊥平面BCD,即OO′⊥ED,在三角形AED中,由余弦定理可得:cos∠AED=AE2+ED2−AD22AE⋅ED =−12,所以∠AED=120°,所以∠FED=12∠AED=60°,在Rt△EOO′中,tan∠FED=OO′EO′=√3=√3,所以OO′=3,在Rt△OO′D中,OD=R,O′D=2√3,所以R2=OO′2+O′D2=21,所以球O的表面积为S=4πR2=84π,故答案为:84π.38.如图,在三棱锥A﹣BCD中,BC=CD=BD=2√2,AB=AC=AD=2a,若该三棱锥的侧面积是底面积的√3倍,则该三棱锥外接球的表面积为12π.【解答】解:取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,因为AB=AC且点E为BC的中点,所以AE=√4a2−2,=3√2×√4a2−2=6√2a2−1,由此可知该三棱锥的侧面积S侧底面△BCD的面积为2√3,所以6√2a2−1=√3×2√3,解得a=1,设三棱锥A﹣BCD外接球半径为R,OF=x,因为AB=AC=AD=2,所以点A在底面BCD上的射影为点F,因为AB<BC,故三棱锥外接球球心O在直线AF的延长线上,BF为△BCD外接圆的半径,所以BF=2√6,3)2=4①,在Rt△ABF中,由勾股定理可得(R−x)2+(2√63)=R2②,在Rt△OBF中,由勾股定理可得x2+(2√63,由①②解得R=√3,x=√33所以外接球的表面积S =4πR 2=12π. 故答案为:12π.39.在△ABC 中,点M ,N 是线段BC 上的两点,|MA →|=|MB →|=|MC →|=1,MA →⋅MN →=12,则MA →⋅NA →= 12 ,|NA →|的取值范围是 (12,1] .【解答】解:根据题意,画出大致图形如下:结合题意及图形, 可知MA →•MN →+MA →•NA →=MA →•(MN →+NA →) =MA →•MA →=|MA →|2 =1,∵MA →⋅MN →=12, ∴MA →⋅NA →=1−12=12,又∵12=MA →⋅NA →=|MA →|•|NA →|•cos <MA →,NA →>=|NA →|•cos <MA →,NA →>, ∴|NA →|=12cos <MA →,NA →>,由题意可知点N 在线段BC 上,假设点N 与点B 重合,则12=MA →⋅MN →=MA →•MB →=|MA →|•|MB →|•cos <MA →,MB →>=cos <MA →,MB →>, 即cos ∠BMA =12,∴∠BMA =π3或2π3,∴∠BAM =π3或π6,即cos <MA →,NA →>=12或√32, 假设点N 与点C 重合,则12=MA →⋅MN →=MA →•MC →=|MA →|•|MC →|•cos <MA →,MC →>=cos <MA →,MC →>,此时cos <MA →,NA →>=12或√32, 综合可得,12≤cos <MA →,NA →><1, ∴1≤2cos <MA →,NA →><2, ∴12<12cos <MA →,NA →>≤1,即12<|NA →|≤1, 故答案为:12;(12,1].40.已知一圆锥纸盒母线长为6,其轴截面为正三角形,在纸盒内放置一个棱长为a 的正方体,若正方体可在纸盒内任意转动,则a 的最大值为 2 .【解答】解:由于正方体可在圆锥内任意转动,故当正方体棱长a 最大时,正方体外接球为圆锥内切球, 设圆心为P ,半径为r ,轴截面上球与圆锥母线切点为Q ,SO ⊥AB ,SO 平分AB , 由△SAB 为正三角形,SA =SB =AB =6,OA =OB =3, 因为PB 为∠SAB 的角平分线,所以∠PBA =30°,PO =OB tan30°=√3=r ,由正方体外接球直径与正方体之间的关系可得,2R =√3a , 又正方体外接球为圆锥内切球,所以√3a =2r =2√3,故a =2, 所以a 的最大值为2. 故答案为:2.41.若数列{a n}满足递推公式a n+2=a n+1+a n(n∈N*),且a1=a2,a2020=2021,则a1+a3+a5+…+a2019=2021.【解答】解:∵a1=a2,a n+2=a n+1+a n(n∈N*),且a2020=2021,∴a1+a3+a5+…+a2019=a2+a3+a5+…+a2019=a4+a5+…+a2019=…=a2018+a2019=a2020=2021,故答案为:2021.42.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC中,角A =60°,以AB、BC、AC为边向外作三个等边三角形,其外接圆圆心依次为O1、O2、O3,若三角形O1O2O3的面积为√32,则三角形ABC的周长最小值为3√2.【解答】解:由题意知△O1O2O3为等边三角形,设边长为m,则S△O1O2O3=12m2sin60°=√34m2=√32,解得|O1O2|=m=√2;设BC=a,AC=b,AB=c,如图所示:在△O1AO2中,∠O1AB=∠O1BA=30°,由∠BAC =60°,所以∠O 1AO 2=120°, 在等腰△BO 1A 中,ABO 1A=sin120°sin30°,解得O 1A =√3,同理得O 3A =√3,在△O 1AO 2中,由余弦定理得O 1O 32=O 1A 2+O 3A 2﹣2O 1A •O 3A •cos120°, 即2=c 23+b 23−2•bc 3•(−12),即b 2+c 2+bc =6,在△ABC 中,由余弦定理知, a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc , ∴a =√(b 2+c 2+bc)−2bc =√6−2bc , 又∵(b +c )2=b 2+c 2+bc +bc =6+bc , ∴b +c =√6+bc ,∴△ABC 的周长为a +b +c =√6−2bc +√6+bc , 又∵b 2+c 2≥2bc , ∴b 2+c 2+bc =6≥3bc , ∴bc ≤2.令f (x )=√6−2x +√6+x (0<x ≤2), 则f ′(x )=√6−2x2√6+x ,当f ′(x )<0时,有√6−2x2√6+x0,解得x >3,∴f (x )在(0,2]上单调递减, ∴当x =2时取得最小值,f (2)=3√2. ∴a +b +c ≥3√2,即△ABC 的周长最小值为3√2. 故答案为:3√2.43.设函数f (x )的定义域为D ,若存在x 0∈D ,使得f (x 0+1)=f (x 0)+f (1),则称x 0为函数f (x )的“可拆点”.若函数f(x)=log 2a1+x 2在(0,+∞)上存在“可拆点”,则正实数a 的取值范围为 [3−√5,2) . 【解答】解:由已知可得函数f (x )有“可拆点”, 则log 2(a1+x 2)+log 2(a2)=log 2(a1+(1+x)2)成立,即a1+(1+x)2=a1+x2⋅a2,整理可得:(2﹣a)x2﹣2ax+2﹣2a=0,从而问题转化为方程(2﹣a)x2﹣2ax+2﹣2a=0在区间(0,+∞)上有解,设h(x)=(2﹣a)x2﹣2ax+2﹣2a,由已知可得a>0,则当a>2且x>0时,h(x)<0,方程h(x)=0无解,不满足题意,当a=2时,方程h(x)=0的根为−12,不满足题意,当0<a<2时,函数h(x)的图象的对称轴为x=a2−a>0,要使方程h(x)=0在区间(0,+∞)上有解,只需△=4a2﹣4(2﹣a)(2﹣2a)≥0,解得3−√5≤a≤3+√5,所以3−√5≤a<2,故实数a的取值范围为:[3−√5,2).故答案为:[3−√5,2).44.在棱长为√2的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于√312.【解答】解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又AC=√2AB=2,所以HC=HG=13D1C=13AC⋅√32=√33,所以点Q的轨迹所组成的图形的面积S=12CH⋅HG⋅sin120°=√312.故答案为:√312.45.已知F1,F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过点F2作圆x2+y2=a2的切线交双曲线左支于点M,且∠F1MF2=60°,则该双曲线的渐近线方程为y=±(1+√33)x.【解答】解:设切点为A,过F1作F1B⊥MF2,垂足为B,由题意可得|OA|=a,|OF2|=c,|AF2|=√c2−a2=b,由OA为△BF1F2的中位线,可得|BF1|=2a,|BF2|=2b,又∠F1MF2=60°,可得|MF1|=|BF1|sin60°=√3,|MB|=√3|MF2|=|MB|+|BF2|=√32b,又|MF2|﹣|MF1|=√3+2b√3=2a,所以b=(1+√33)a,所以双曲线的渐近线方程为y=±(1+√33)x.故答案为:y=±(1+√33)x.46.已知函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,现有以下四个命题:①f(x)﹣g(x)是奇函数;②函数f(x)的图象与函数g(x)的图象关于原点中心对称;③对任意x∈R,恒有f(x)≥g(x);④函数f(x)与函数h(x)的最小值相同其中正确命题的序号是③④.【解答】解:函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,对于①,令F(x)=f(x)﹣g(x)=x•e x﹣x•e﹣x,由于F(﹣x)=F(x)故函数F(x)为偶函数,故①错误;对于②,函数f(﹣x)=﹣x•e﹣x≠﹣f(x),所以函数f(x)不为奇函数,函数g(﹣x)=−xe−x=−x⋅e x≠−g(x),所以函数g(x)不为奇函数,故②错误;对于③,当x=0时,f(x)=g(x)=0,当x>0时,e2x>1,得到e x>1e x,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),当x<0时,e2x<1,整理得e x<1e x ,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),故③正确;对于④,f′(x)=(1+x)•e x,令f′(x)<0,得到x<﹣1,f′(x)>0,得到x>﹣1,所以函数f(x)的最小值为f(﹣1)=−e−1=−1e.h′(x)=1+lnx(x>0),令h ′(x )<0,解得0<x <1e , 令h ′(x )>0,解得x >1e ,所以函数h (x )的最小值为h (1e )=1e ⋅ln 1e =−1e =f(−1),故④正确; 故选:③④.47.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin A +2sin B =2cos A sin C ,a +b =3√2,△ABC 的面积是√3,则边长c = √14 . 【解答】解:∵sin A +2sin B =2cos A sin C , ∴sin A +2sin (A +C )=2cos A sin C , 即sin A +2sin A cos C +2cos A sin C =2cos A sin C , 即sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =−12,则C =120°, ∵△ABC 的面积是S =12ab ×√32=√3,∴ab =4,则c 2=a 2+b 2﹣2ab ×(−12)=(a +b )2﹣ab =18﹣4=14, 则c =√14, 故答案为:√14.48.抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴的交点为A ,如果在直线x +y +4=0上存在点M ,使得∠FMA =90°,则实数p 的取值范围是 [4√2,+∞) . 【解答】解:由题意可得F (p2,0),A (−p2,0),∵M 在直线x +y +4=0上,设点M (x ,﹣x ﹣4), ∴AM →=(x +p2,﹣x ﹣4),FM →=(x −p2,﹣x ﹣4),又∠FMA =90°,∴AM →•FM →=(x +p 2)(x −p2)+(﹣x ﹣4)2=0, 即2x 2+8x +16−p24=0,∴△=82﹣4×2×(16−p24)=2p2﹣64≥0,解得p ≤﹣4√2或p ≥4√2, 又p >0,∴p 的取值范围是[4√2,+∞). 故答案为:[4√2,+∞). 49.已知F 1,F 2是双曲线C 1:x 2a2−y 2b 2=1(a >0,b >0)与椭圆C 2:x 225+y 29=1的公共焦点,点P ,Q 分别是曲线C 1,C 2在第一、第三象限的交点,四边形PF 1QF 2的面积为6√6,设双曲线C 1与椭圆C 2的离心率依次为e 1,e 2,则e 1+e 2=2√10+45.【解答】解:由题意可得a 2+b 2=16,根据双曲线C 1与椭圆C 2的对称性可得△PF 1F 2的面积为3√6, 设P (x 0,y 0),(x 0,y 0>0),则{12⋅8⋅y 0=3√6x 0225+y 029=1,解得x 0=5√104,y 0=3√64, 代入双曲线的方程结合b 2=16﹣a 2,可得a 4﹣35a 2+250=0,结合0<a <c =4,解得a =√10, 双曲线的离心率为e 1=c a=√10=2√105, 而椭圆的离心率e 2=45, ∴e 1+e 2=2√10+45. 故答案为:2√10+45.50.一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R −ℎ)ℎ2,其中R 为球的半径,h 为球缺的高.若一球与一棱长为。
一、等差数列选择题1.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+ B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =解析:D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.2.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24 B .39C .104D .52解析:D 【分析】根据等差数列的性质计算求解. 【详解】由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,74a =,∴11313713()13134522a a S a +===⨯=. 故选:D .3.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 解析:C 【分析】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案. 【详解】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C4.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<解析:D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<.5.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26 C .52 D .56解析:B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B.6.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .100解析:B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m +=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B.7.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12 B .20C .40D .100解析:B由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B.8.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4 B .6C .7D .8解析:A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A9.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个 B .3个C .2个D .1个解析:B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.10.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8 B .13C .26D .162解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.11.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4C .a 5=2D .a 6=2解析:C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C12.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4 D .-4解析:A 【详解】 由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.13.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11 B .10C .6D .3解析:A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A.14.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤 B .6斤C .9斤D .12斤解析:C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 15.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14C .15D .16解析:A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A二、等差数列多选题16.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4, ∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题17.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.18.题目文件丢失!19.题目文件丢失!20.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD.【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 21.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .2解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.22.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( )A .2-B .1-C .1D .2解析:ABC【分析】 根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n -<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】 根据不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立, 由12+n 递减,且1223n <+≤, 所以2a -≤,即2a ≥-,当n 为偶数时有:12a n <-恒成立, 由12n -第增,且31222n≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC .【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.23.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( )A .2490a a +=B .数列{}n S 中最大值的项是25SC .公差0d >D .数列{}na 也是等差数列 解析:AB【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项.【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+, 1149249,2a d a d =-=-.对于A 选项,24912490a a a d +=+=,所以A 选项正确.对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确. 对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误. 故选:AB【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.24.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( )A .0d <B .120a >C .13n S S ≤D .当且仅当0n S <时,26n ≥ 解析:AB【分析】根据等差数列的性质及717S S =可分析出结果.【详解】因为等差数列中717S S =,所以89161712135()0a a a a a a ++++=+=, 又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.25.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21解析:BC【分析】 分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对; 由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错;故选:BC【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.。
2019年上海市第五十二中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:高中数学第二章统计本章整合试卷及答案新人教A版必修3某高级中学有学生270人,其中一年级108人,二、三年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样【答案】D第 2 题:来源:黑龙江省双鸭山市第一中学2019届高三数学上学期第一次月考试题理(含解析)函数其中()的图象如图所示,为了得到的图象,则只需将的图象()A. 向右平移个长度单位B. 向右平移个长度单位C. 向左平移个长度单位D. 向左平衡个长度单位【答案】A【详解】由函数其中()的部分图象可得A=1,,求得ω=2.再根据五点法作图可得,.故把的图象向右平移个长度单位,可得的图象,第 3 题:来源:广西南宁市2016_2017学年高一数学下学期第一次月考试题试卷及答案在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成的角的正弦值为( )A. B. C.D.【答案】D 提示:在平面A1B1C1D1内过点C1作B1D1的垂线,垂足为E,连接BE.⇒C1E⊥平面BDD1B1,∴∠C1BE的正弦值就是所求角的正弦值.∵BC1=,C1E=,∴sin∠C1BE=.第 4 题:来源:山东省泰安市2019届高三数学一轮复习质量检测试卷理(含解析)若复数的实部与虚部互为相反数,则实数A. 3B.C.D.【答案】D【解析】【分析】利用复数乘法的运算法则化简复数,然后利用复数的实部与虚部的和为零,列方程求解即可.【详解】因为,且复数的实部与虚部互为相反数,所以,,解得,故选D.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查乘法/除法运算,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.第 5 题:来源:甘肃省兰州市2016_2017学年高一数学下学期期末考试试题试卷及答案若,则是第几象限角()A.一或二B.二或三C.三或四D.四或一第 6 题:来源:湖北省宜昌市2017_2018学年高一数学上学期期中试题试卷及答案已知集合,则= A.B. C. D.【答案】B第 7 题:来源:广东省天河区普通高中2017_2018学年高一数学10月月考试题试卷及答案08若奇函数在上为增函数,且有最小值0,则它在上A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值0【答案】D第 8 题:来源:湖南省怀化三中2018_2019学年高一数学上学期期中试题.函数在上是增函数,在上是减函数,则()A. B. C. D.的符号不确定【答案】B第 9 题:来源:重庆市万州三中2018_2019学年高二数学下学期期中试题理函数的图象如图所示,下列数值排序正确的是( )A. B.C. D.第 10 题:来源:四川省崇州市2016-2017学年高一数学下学期开学考试试题设,则的大小关系是()A. B.C. D.【答案】A第 11 题:来源:河北省衡水中学2018届高三数学上学期一轮复习周测试题理试卷及答案已知命题有解,命题,则下列选项中是假命题的为()A.B. C.D.【答案】B第 12 题:来源:广东省天河区普通高中2017_2018学年高二数学11月月考试题04 试卷及答案若,,则下列不等式成立的是A. B. C. D.【答案】.A第 13 题:来源: 2019高考数学一轮复习第2章函数的概念与基本初等函数第3讲函数的奇偶性与周期性分层演练文若函数f(x)=ln(ax+)是奇函数,则a的值为( )A.1 B.-1C.±1 D.0【答案】C.因为f(x)=ln(ax+)是奇函数,所以f(-x)+f(x)=0.即ln(-ax+)+ln(ax+)=0恒成立,所以ln[(1-a2)x2+1]=0,即(1-a2)x2=0恒成立,第 14 题:来源:福建省泉州市2017届高考数学模拟试卷(文科)含答案解析若,则=()A.i B.﹣i C.﹣1 D.1【答案】D【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解: ===i,则=1.故选:D.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.第 15 题:来源:山东省武城二中2017届高三数学下学期第一次月考试题试卷及答案理若直角坐标平面内两点P,Q满足条件①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组”).则下列函数中,恰有两个“伙伴点组”的函数是___(填空写所有正确选项的序号)①;②;③;④.【答案】②③第 16 题:来源: 2015-2016学年广东省东莞市高二数学下学期期末试卷a 理(含解析)用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根【答案】A【考点】反证法与放缩法.【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是:方程x2+ax+b=0没有实根.故选:A.第 17 题:来源:江西省上饶市玉山县第一中学2018_2019学年高二数学下学期期中试题理(10_19班)若函数的导函数的图像关于原点对称,则的解析式可能为()A.B.C.D.【答案】A第 18 题:来源:重庆市六校联考高一(上)期末数学试卷(含答案解析)若区间[x1,x2]的长度定义为|x2﹣x1|,函数f(x)=(m∈R,m≠0)的定义域和值域都是[a,b],则区间[a,b]的最大长度为()A. B. C. D.3【答案】A【解答】解:函数f(x)=(m∈R,m≠0)的定义域是{x|x≠0},则[m,n]是其定义域的子集,∴[m,n]⊆(﹣∞,0)或(0,+∞).f(x)==﹣在区间[a,b]上时增函数,则有:,故a,b是方程f(x)=﹣=x的同号相异的实数根,即a,b是方程(mx)2﹣(m2+m)x+1=0同号相异的实数根.那么ab=,a+b=,只需要△>0,即(m2+m)2﹣4m2>0,解得:m>1或m<﹣3.那么:n﹣m==,故b﹣a的最大值为,第 19 题:来源: 2017年湖北省宜昌市长阳县高一数学3月月考试题试卷及答案在△ABC中,,c=2,C=600,则A等于() A.1500 B.750 C.1050 D.750或1050【答案】 B第 20 题:来源:湖南省郴州市湘南中学2019届高三数学上学期期中试题理函数的零点所在的大致区间是()A.(0,1) B.(1,2) C.(2,e) D.(3,4)【答案】B第 21 题:来源:河北省石家庄市2017_2018学年高一数学上学期期中试题试卷及答案函数的零点所在区间为( )A. B. C. D.【答案】 C第 22 题:来源:河南省安阳市2017_2018学年高二数学上学期第二次月考试题试卷及答案已知等差数列中,,公差,则使前项和为取最小值的正整数的值是()A.4和 5 B.5和 6 C.6和7 D.7和8【答案】C第 23 题:来源: 2015-2016学年广东省东莞市高二数学下学期期末试卷a 理(含解析)对具有线性相关关系的两个变量y与x进行回归分析,得到一组样本数据(x1,y1),(x2,y2)…(xn,yn),则下列说法中不正确的是()A.若最小二乘法原理下得到的回归直线方程=0.52x+,则y与x具有正相关关系B.残差平方和越小的模型,拟合的效果越好C.在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适D.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好【答案】D【分析】可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好.【解答】解:若最小二乘法原理下得到的回归直线方程=0.52x+,b=0.52>0,则y与x具有正相关关系,正确;残差平方和越小的模型,拟合的效果越好,正确;可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.故正确;相关指数R2取值越大,说明残差平方和越小,模型的拟合效果越好,故不正确.故选:D.第 24 题:来源:新疆维吾尔自治区阿克苏市2017_2018学年高二数学上学期第二次月考试题试卷及答案理已知,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】若“”,则,即.所以,充分性成立;若“”,则,有或.必要性不成立.故“”是“”的充分不必要条件.故选A.第 25 题:来源:宁夏石嘴山市2018届高三数学上学期期中试题理用数学归纳法证明“”时,由的假设证明时,如果从等式左边证明右边,则必须证得右边为()A. B.C. D.【答案】D第 26 题:来源:河北省石家庄市2016_2017学年高一数学下学期学情反馈试题(一)理试卷及答案在中,角、、的对边分别为、、,则以下结论错误的为()A.若,则B.C.若,则;反之,若,则D.若,则【答案】D【解析】试题分析:∵,∴由正弦定理,,又∵,为的内角,∴,故,A正确;∵由正弦定理可得,∴,故B正确;在,设外接圆的半径为,若,则,由正弦定理可得,即;若,即有,即,即.则在中,,故C正确;∵,∴,∴或,∴或,∴三角形为直角三角形或等腰三角形,故D错误.故选:D.第 27 题:来源:湖南省长沙市雅礼中学2019届高三数学上学期月考试题二理现有四个函数:①,②,③,④的图像(部分)如下,但顺序打乱了,则按照从左到右将图象对应的序号排列正确的组是A.①③②④ B.②①③④ C.③①④② D.①④②③【答案】D第 28 题:来源: 2017届宁夏银川市高三第二次模拟考试理科数学试卷含答案已知是定义在R上的偶函数,且对恒成立,当时,,则A. B.C. D.【答案】B第 29 题:来源:贵州省思南中学2018_2019学年高二数学下学期期末考试试题理复数z满足,则复数的虚部是()A.1 B.-1 C. D.【答案】C第 30 题:来源:辽宁省沈阳市2018届高三数学11月阶段测试试题理试卷及答案下列判断错误的是()SX010202A.“”是“”的充分不必要条件B.命题“”的否定是“”C.若为真命题,则均为假命题D.命题“若,则”为真命题,则“若,则”也为真命题【答案】C第 31 题:来源:山西省芮城县2017_2018学年高二数学上学期第一次月考试题理试卷及答案已知三棱锥的所有顶点都在球的球面上,为球的直径,且,,为等边三角形,三棱锥的体积为,则球的半径为A. 3B.1C.2D.4【答案】C第 32 题:来源: 2016_2017学年福建省厦门市高二数学试卷及答案下学期期中试题理设a=,b=,,则a、b、c间的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b【答案】D第 33 题:来源:高中数学第三章导数及其应用3.1导数3.1.2瞬时速度与导数3.1.3导数的几何意义自我小测新人教B版选修1_120171101235曲线y=x3+2在点处切线的倾斜角为( )A.30° B.45° C.135° D.60°【答案】B第 34 题:来源:广东省深圳市耀华实验学校2018_2019学年高一数学下学期入学考试试题(国际1班)若函数是定义域为上的减函数,则函数的图像大致是 ( ).A. B.C . D.【答案】D第 35 题:来源:湖北省宜昌市2017_2018学年高二数学上学期期中试题理试卷及答案若圆的半径为1,圆心在第二象限,且与直线和轴都相切,则圆的标准方程是()A. B.C. D.【答案】B第 36 题:来源:黑龙江省哈尔滨市2016_2017学年高二数学6月月考试题试卷及答案理.离散型随机变量X的分布列为,则与依次为( )和和和和【答案】D第 37 题:来源: 2017届吉林省长春市朝阳区高三数学下学期第八次模拟考试试题试卷及答案理若,则=(A)(B)1 (C)5 (D)25【答案】B第 38 题:来源:广东省江门市第二中学2017_2018学年高二数学11月月考试题(含解析)数列前项的和为()A. B.C. D.【答案】B【解析】数列前项的和故选B.第 39 题:来源: 2017年河南省焦作市高考数学二模试卷(理科)含答案解析在区间上任选两个数x和y,则y<sinx的概率为()A. B. C. D.【答案】C【考点】几何概型.【分析】该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.【解答】解:在区间上任选两个数x和y,区域的面积为,满足y<sinx的区域的面积为=(﹣cosx)=1,∴所求概率为.故选C.第 40 题:来源:江西省南康中学2018_2019学年高二数学二下学期期中(第二次大考)试题理已知椭圆(a>b>0)的左、右焦点分别为为椭圆上一动点,面积的最大值为,则椭圆的离心率为()A. B.1 C. D.【答案】A。
河北省衡水市高考数学基础选择题狂练选择题含答案有解析 1.若02πα<<,02πβ-<<,1cos 43πα⎛⎫+= ⎪⎝⎭,3cos 42πβ⎛⎫-= ⎪⎝⎭,则cos 2βα⎛⎫+ ⎪⎝⎭等于( ) A .3B .3-C .53D .6-2.已知两条直线,a b 与两个平面,αβ,给出下列命题:①若,,a b αβαβ⊂⊂∥,则a b ∥;②若,,,a b a b αββα⊂⊂,则αβ∥; ③若,,a b αβαβ⊥⊥,则a b ∥;④若,,a b αβαβ⊥,则a b ∥;其中正确的命题个数为 A .1B .2C .3D .43.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 4.为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如表所示: 开业天数10 2030 40 50 销售额/天(万元)62758189根据上表提供的数据,求得y 关于x 的线性回归方程为0.6754.9y x =+,由于表中有一个数据模糊看不清,请你推断出该数据的值为( ) A .68B .68.3C .71D .71.35.向量()()1,2,2,1a b =-=,则( ) A .//a bB .a b ⊥C .a 与b 的夹角为60°D .a 与b 的夹角为30°6.若不等式210ax ax -+≤的解集为空集,则实数a 的取值范围是( ) A .04a ≤≤ B .04a <≤C .04a <<D .04a ≤<7.已知过点)3,1A的直线l 的倾斜角为60︒,则直线l 的方程为( )A .340x y +-=B .320x y --=C .340x y ++=D .320x y -+= 8.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若1,2,45a b B ===︒,则角A =( )A .30︒B .60︒C .30150︒︒或D .60120︒︒或9.如图,正四面体A BCD -,P 是棱CD 上的动点,设CP tCD =(()01t ∈,),分别记AP 与BC ,BD所成角为α,β,则( )A .αβ≥B .αβ≤C .当102t ⎛⎤∈ ⎥⎝⎦,时,αβ≥D .当102t ⎛⎤∈ ⎥⎝⎦,时,αβ≤ 10.已知两条平行直线3460x y +-=和340x y a ++=之间的距离等于2,则实数a 的值为( ) A .1-B .4C .4或16-D .16-11.下列函数中同时具有性质:①最小正周期是π,②图象关于点5,012π⎛⎫- ⎪⎝⎭对称,③在,63ππ⎡⎤-⎢⎥⎣⎦上为减函数的是( ) A .sin 26x y π⎛⎫=+⎪⎝⎭ B .sin 26y x π⎛⎫=-⎪⎝⎭C .cos 23y x π⎛⎫=+ ⎪⎝⎭D .cos 26y x π⎛⎫=- ⎪⎝⎭12.若函数()g x 的图象可由函数()sin 232f x x x =+ 的图象向右平移6π个单位长度变换得到,则()g x 的解析式是( )A . ()2sin 2g x x =B .()2sin 26g x x π⎛⎫=+ ⎪⎝⎭C .()2cos2g x x =D .2g()2sin 23x x π⎛⎫=+⎪⎝⎭13.已知a 、b 是平面上两个不共线的向量,则下列关系式:①a b b a ⋅=⋅;②()2a ab a a b ⋅+=+⋅;③()222a b a b ⋅=⋅;④a b a b +≥-.正确的个数是( )A .4B .3C .2D .114.若2tan1tan 1212m ππ=-,则m =( )A .33B .3C .2D .2315.设点()2,3A -,()3,2B ,若直线20ax y ++=与线段AB 没有交点,则a 的取值范围是A .54,,23⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .45,,32⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭ C .45,32⎛⎫- ⎪⎝⎭ D .54,23⎛⎫- ⎪⎝⎭16.若实数x ,y 满足约束条件40,250,270,x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩则12y z x -=-的取值范围为( )A .[]2,0-B .(],2-∞-C .[)2,0-D .()0,∞+17.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( ) A .()2,3 B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭18.为了得到函数的图像,只需将函数的图像( )A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位19.(6分)己知函数()sin()f x A x ωϕ=+(x ∈R ,0A >,0>ω,2πϕ<)的图象(部分)如图所示,则()f x 的解析式是()A .()2si 3n ()f x x x R ππ⎛⎫=+∈ ⎪⎝⎭B .()2sin 2()6f x x R ππ⎛⎫=+∈ ⎪⎝⎭C .()2sin ()6f x x x R ππ⎛⎫=+∈ ⎪⎝⎭D .()2sin 2()3f x x x R ππ⎛⎫=+∈ ⎪⎝⎭20.(6分)一个圆锥的表面积为5π,它的侧面展开图是圆心角为90︒的扇形,该圆锥的母线长为( ) A .83B .4C .25D .3521.(6分)在中,内角,,的对边分别为,,.若,则A .B .C .D .22.(8分)已知sin 0θ<,tan 0θ>,那么θ是( ) A .第一象限B .第二象限C .第三象限D .第四象限23.(8分)在复平面内,复数z 满足(1)2z i -=,则z 的共轭复数对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限24.(10分)设ABC ∆的内角A B C 、、所对边分别为1330a b c a b A ︒===,,,,.则该三角形( ) A .无解B .有一解C .有两解D .不能确定25.(10分)设n S 为等差数列{}n a 的前n 项和,若4540,a a a <>,则使0n S >成立的最小正整数n 为( ) A .6B .7C .8D .926.(12分)在ABC ∆中,,2,1,,AB AC AB AC AB AC E F +=-==为BC 的三等分点,则·AE AF =( )A .89B .109C .259D .26927.(12分)数列{}n a 的通项公式cos 2n n a n π=,其前n 项和为n S ,则2017S 等于( ) A .1006 B .1008C .1006-D .1008-28.已知134sin 25αα+=,则4sin 3απ⎛⎫+ ⎪⎝⎭的值为( )A .23B 23C .45-D .4529.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C .78-D .18-30.将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .sin(2)10y x π=-B .y =sin(2)5x π-C .y =1sin()210x π-D .1sin()220y x π=-参考答案选择题含答案有解析 1.C 【解析】 【分析】利用同角三角函数的基本关系求出sin 4πα⎛⎫+⎪⎝⎭与sin 42πβ⎛⎫-⎪⎝⎭,然后利用两角差的余弦公式求出cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦值.【详解】02πα<<,3444πππα∴<+<,则sin 43πα⎛⎫+== ⎪⎝⎭,02πβ-<<,则4422ππβπ<-<,所以,sin 423πβ⎛⎫-==⎪⎝⎭, 因此,cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1cos cos sin sin 44244233339ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=+-++-=+⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故选C . 【点睛】本题考查利用两角和的余弦公式求值,解决这类求值问题需要注意以下两点: ①利用同角三角平方关系求值时,要求对象角的范围,确定所求值的正负; ②利用已知角来配凑未知角,然后利用合适的公式求解. 2.A 【解析】 【分析】结合线面平行定理和举例判断. 【详解】若,,a b a αββ⊂⊂,则,a b 可能平行或异面,故①错误;若,,,a b a b αββα⊂⊂,则,a b 可能与,αβ的交线平行,故②错误; 若,,a b αβαβ⊥⊥,则a β⊥,所以a b ∥,故③正确;若,,a b αβαβ⊥,则,a b 可能平行,相交或异面,故④错误; 故选A. 【点睛】本题线面关系的判断,主要依据线面定理和举例排除. 3.B 【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B. 4.A 【解析】 【分析】根据表中数据计算x ,再代入线性回归方程求得y ,进而根据平均数的定义求出所求的数据. 【详解】根据表中数据,可得1(1020304050)305x =⨯++++=,代入线性回归方程ˆ0.6754.9yx =+中, 求得0.673054.975y =⨯+=,则表中模糊不清的数据是7556275818968⨯----=, 故选:B. 【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题. 5.B 【解析】试题分析:由()()1,2,2,1a b =-=,可得()()1,22,112210a b ⋅=-⋅=⨯-⨯=,所以a b ⊥,故选B . 考点:向量的运算. 6.D 【解析】【分析】对a 分0,0a a =≠两种情况讨论分析得解. 【详解】当0a =时,不等式为10≤,所以满足题意; 当0a ≠时,2,0440a a a a >⎧∴<<⎨∆=-<⎩, 综合得04a ≤<. 故选:D 【点睛】本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于基础题. 7.B 【解析】 【分析】由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解. 【详解】∵直线l 的倾斜角为60︒,∵直线l的斜率k =又直线过点)A,由直线方程的点斜式可得直线l的方程为1y x -=20y --=. 故选:B . 【点睛】本题考查直线的点斜式方程,考查直线的倾斜角与斜率的关系,是基础题. 8.A 【解析】 【分析】由正弦定理可解得sin 1sin 2a B Ab ==,利用大边对大角可得范围()0,45A ∈︒,从而解得A 的值. 【详解】1,45a b B ===︒,∴由正弦定理可得:1sin 1sin 2a BA b===,1a b =<=045A ︒<<︒,∴解得:30A =︒.故选A . 【点睛】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围. 9.D 【解析】作//PE BC 交BD 于E 时,PDE ∆为正三角形,,PDA EDA AE AP ∆≅∆=,APE ∠是AP 与BC 成的角α,根据等腰三角形的性质22cos PE PD PA PA α==,作//PF BD 交BC 于F ,同理可得2cos PCPAβ=,当102t <≤时,,cos cos ,PC PD βααβ≤≤≤,故选D .10.C 【解析】 【分析】利用两条平行线之间的距离公式可求a 的值. 【详解】两条平行线之间的距离为625a d --===,故4a =或16a =-, 故选C. 【点睛】一般地,平行线1110A x B y C ++=和1120A x B y C ++=,应用该公式时注意,x y前面的系数要相等. 11.C 【解析】 【分析】根据周期公式排除A 选项;根据正弦函数的单调性,排除B 选项;将512x π=-代入函数解析式,排除D 选项;根据周期公式,将512x π=-代入函数解析式,余弦函数的单调性判断C 选项正确. 【详解】 对于A 项,2412T ππ==,故A 错误;对于B 项,,63x ππ⎡⎤∈-⎢⎥⎣⎦ ,2,622x πππ⎡⎤-∈-⎢⎥⎣⎦,函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增,则函数sin 26y x π⎛⎫=- ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增,故B 错误;对于C 项,22T ππ==;当512x π=-时,5cos cos 0632y πππ⎛⎫⎛⎫=-+=-= ⎪ ⎪⎝⎭⎝⎭,则其图象关于点5,012π⎛⎫-⎪⎝⎭对称;当,63x ππ⎡⎤∈-⎢⎥⎣⎦,[]20,3x ππ+∈,函数cos y x =在区间[]0,π上单调递减,则函数cos 23y x π⎛⎫=+ ⎪⎝⎭在区间,63ππ⎡⎤-⎢⎥⎣⎦单调递减,故C 正确;对于D 项,当512x π=-时,5cos cos()166y πππ⎛⎫=--=-=- ⎪⎝⎭,故D 错误; 故选:C 【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题. 12.A 【解析】 【分析】先化简函数()f x ,然后再根据图象平移得()g x . 【详解】由已知()2sin(2)3f x x π=+,∴()2sin[2()]2sin 263g x x x ππ=-+=.故选A . 【点睛】本题考查两角和的正弦公式,考查三角函数的图象平移变换,属于基础题. 13.C 【解析】 【分析】根据数量积的运算性质对选项进行逐一判断,即可得到答案. 【详解】① . a b b a ⋅=⋅,满足交换律,正确. ② . ()2a ab a a b ⋅+=+⋅,满足分配律,正确.③ .()22222222cos ,a ba b a b a b a b =⋅≤=⋅⋅⋅,所以不正确.④ . 2222a b a b a b +=++⋅,2222a b a b a b -=+-⋅224a b a b a b +--=⋅,a b ⋅可正可负可为0,所以④不正确.故选:C 【点睛】本题考查向量数量积的运算性质,属于中档题 14.D 【解析】 【分析】将2tan1tan 1212m ππ=-转化为22tan111221tan 12m ππ=⨯-,结合二倍角的正切公式即可求出m . 【详解】222tan111312tan1tan tan 121222661tan 12m m πππππ=-⇒=⨯==- 23m ∴=故选D 【点睛】本题主要考查了二倍角的正切公式,关键是将2tan1tan 1212m ππ=-转化为22tan111221tan 12m ππ=⨯-,利用二倍角的正切公式求出m ,属于基础题. 15.B 【解析】直线20ax y ++=恒过点()02M -,且斜率为a -()325202MA k --==--- ()224303MB k --==- 由图可知,52a ->-且43a -< 4532a ⎛⎫∴∈- ⎪⎝⎭, 故选C点睛:本题主要考查了两条直线的交点坐标,直线20ax y ++=恒过点()02M -,,直线20ax y ++=与线段AB 没有交点转化为过定点()02-,的直线与线段AB 无公共点,作出图象,由图求解即可. 16.A【解析】【分析】12y z x -=-的几何意义为点(),M x y 与点()2,1P 所在直线的斜率,根据不等式表示的可行域,可得出取值范围.【详解】12y z x -=-的几何意义为点(),M x y 与点()2,1P 所在直线的斜率. 画出如图的可行域,当直线PM 经过点()1,3A 时,min 31212z -==--;当直线PM 经过点()3,1B -时,max 11032z -==--. 12y z x -=-的取值范围为[]2,0-,故选A.【点睛】本题考查了不等式表示的可行域的画法,以及目标函数为分式时求取值范围的方法.17.B【解析】011111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nn n n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭ ()143n p S n ≤-≤即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立,当1n =时,13p ≤≤当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果18.A【解析】【分析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.19.C【解析】【分析】 根据图象可知514263T ⎛⎫=⨯-= ⎪⎝⎭,利用正弦型函数2T πω=可求得ω;根据最大值和最小值可确定A ,利用123f ⎛⎫= ⎪⎝⎭及2πϕ<可求得ϕ,从而得到函数解析式.【详解】 由图象可知,()f x 的最小正周期:514263T ⎛⎫=⨯-= ⎪⎝⎭又2T πω= ωπ∴=又()max 2f x =,()min 2f x =-且0A > 2A ∴= 12sin 233f πϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭ 232k ππϕπ∴+=+,k Z ∈,即26k πϕπ=+,k Z ∈ 2πϕ< 6πϕ∴= ()()2sin 6f x x x R ππ⎛⎫∴=+∈ ⎪⎝⎭本题正确选项:C【点睛】本题考查根据图象求解三角函数解析式的问题,关键是能够明确A 由最大值和最小值确定;ω由周期确定;ϕ通常通过最值点来进行求解,属于常考题型.20.B【解析】【分析】 设圆锥的底面半径为r ,母线长为l ,利用扇形面积公式和圆锥表面积公式,求出圆锥的底面圆半径和母线长.【详解】设圆锥的底面半径为r ,母线长为l它的侧面展开图是圆心角为90的扇形 22r l ππ=⋅∴ 4l r ∴=又圆锥的表面积为5π 2245r rl r r r πππππ∴+=+⋅=,解得:1r =∴母线长为:44l r ==本题正确选项:B【点睛】本题考查了圆锥的结构特征与应用问题,关键是能够熟练应用扇形面积公式和圆锥表面积公式,是基础题.21.A【解析】【分析】 根据正弦定理将题干等式化为,由C 是三角形内角可知,则,有,即得A 的值。
高三数学基础训练(一)1.已知集合}121|{},72|{-<<+=≤≤-=m x m x B x x A 且≠B φ,若A B A =则( ).A .43≤≤-mB .43<<-mC .42<<mD .42≤<m 2.下列等式中,成立的是( ). A .)2cos()2sin(x x -=-ππ B .x x sin )2sin(-=+π C .x x sin )2sin(=+πD .x x cos )cos(=+π 3.右图给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是( ).A .10>iB .10<iC .20>iD .20<i4.直线x+2y+3=0的斜率和在y 轴上的截距分别是( ).A .21-和-3 B .21和-3 C .21-和23 D .21-和23- 5.下列函数为奇函数的是( ).) A .1+=x y B .2x y = C .x x y +=2 D .3x y =6.实数x ,y 满足24x y +=,则39x y +最小值( ).A .1B .18C .32D .4347.某商场出售甲、乙两种不同价格的笔记本电脑,其中甲商品因供不应求,连续两次提价10%,而乙商品由于外观过时而滞销,只得连续两次降价10%,最后甲、乙两种电脑均以9801元售出.若商场同时售出甲、乙电脑各一台与价格不升不降比较,商场盈利情况是( ).A .前后相同B .少赚598元C .多赚980.1元D .多赚490.05元8.互相平行的三条直线,可以确定的平面个数是 .9、函数13)(23+-=x x x f 减区间为 .10.从100张卡片(1号到100号)中任取1张,取到卡号是7的倍数的概率是 . 11(理)设n x x )5(3121-的展开式的各项系数之和为M ,而二项式系数之和为N ,且M -N=992.则展开式中2x 项的系数为 .1.不等式(12)(31)0x x -+>的解集是( ).A .11{|}32x x x <->或B .11{|}32x x -<<C .1{|}2x x >D .1{|}3x x >-2.函数22cos 2sin 2y x x =-的最小正周期为( ).A .2πB .πC .2πD .4π3. 把直线01=-+y x 沿y 轴正方向平移1个单位,再关于原点对称后,所得直线的方程是:( ).A .02=-+y xB .02=--y xC .02=++y xD .02=+-y x 4.已知直线062:1=++y ax l 与01)1(:22=-+-+a y a x l 平行,实数a 的取值( ).A .-1或2B .0或1C .-1D .25.表示如图中阴影部分所示平面区域的不等式组( ). A .⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x B .⎪⎩⎪⎨⎧≥-+≥--≤-+0623063201232y x y x y xC .⎪⎩⎪⎨⎧≤-+≤--≤-+0623063201232y x y x y xD .⎪⎩⎪⎨⎧≥-+≤--≥-+0623063201232y x y x y x6.若,1sin )(3++=x b ax x f 且,)75(=f 则=-)5(f ( ).A .7-B .5-C .5D .77、(2005湖南)函数()f x ).A .(,0)-∞B .[0,)+∞C .(,0]-∞D .(,)-∞+∞8.化简++-的结果等于 .9、若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m = . 10、计算2= . 11、(理)在10()x a -的展开式中,7x 的系数是15,则实数a =.1、集合{|12}A x x =<<,{|}B x x a =≥,满足A B φ=,则实数a 的取值范围.A .{|2}a a ≥B .{|2}a a >C .{|1}a a ≥D .{|1}a a >2、命题“若a b >,则88a b -≤-”的否命题是( ).A .若a b <,则88a b -<-B .若88a b ->-,则a b >C .若a b ≤,则88a b ->-D .若88a b -≤-,则a b ≤3、已知向量(8,)m a =,(2,4)n a =,若//m n ,则a =( ).A .0B .4C .4-D .4或4-4、若02πα-<<,则直线tan 0x y α⋅-=的倾斜角为( ).A .α-B .2πα+ C .πα+ D .2πα-5、(06年广州一模)已知椭圆的长轴长为8,离心率是34,则椭圆的标准方程为( ). A .221169x y += B .221167x y += 或221716x y += C .2211625x y += D .2211625x y +=或2212516x y += 6、复数534i+的共轭复数是( ). A .34i - B .34i + C .3455i + D .3455i - 7、在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立则( ).A .11<<-a B .20<<a C .2321<<-a D .2123<<-a . 8、函数cos sin 2y x x =-+的值域为 .9、函数331y x x =-+的单调递减区间是 .10、在等差数列中,已知581,5a a ==-,则13a = 。
11、(理)由曲线x y e =、y e =、0x =所围成的面积是 。
1、设a b >,c d ≥,那么不等式成立的是( )。
A .a d b c -<-B .a d b c ->-C .a d b c -≤-D . a d b c -≥-2、等比数列{}n a 中,公比q 满足2q =,则3445a a a a +=+( )。
A .14 B .2 C .12± D .123、已知A (1,1),(2,4)B -,(,9)C x -三点共线,则x 的值为( ). A .1 B .3 C .4.5 D .514、3()31f x x x =-+在[3,0]-上的最大值,最小值分别( )。
A .1,1-B .1,17-C .3,17-D .9,19-5、直线10x y -+=与圆22()2x a y -+=相切,则a 为( )。
A .1B .-3C .2D .-3或16、已知直线l 、m 与平面α、β,若m αβ= 且//l m ,则下列不可能成立的是( )。
A .l α⊂B .l β⊂C .l αD .l β⊥7.函数2312xy e π-=的部分图象大致是( )。
( )A B C 8、圆2262150x y x y +---=的半径为 。
9、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为 .10、在ABC ∆中,若︒=120A ,AB=5,BC=7,则sin C =__________ 。
11、(理)若(3n x -的展开式中各项系数之和为128,则n = 。
1. 化简31i i-+=( ).A .1+2iB . 1–2iC .2+iD .2–i2.为了得到函数3)31(-=x y 的图象,可以把函数xy )31(=的图象( )个单位. A .向左平移3个 B .向右平移3个 C .向左平移1个 D .向右平移1个3.不等式2620x x --<的解集是( ).3:{2}2A x x -<< 3:{2}2B x x -<< 3:{2}2C x x x <<-或 3:{2}2D x x x ->>或4.在等差数列{}n a 中,56789450a a a a a ++++=,则311a a +=( ).A .45B .75C .180D .3005.下列函数中,图象的一部分如下图所示的是( ).:sin()6A y x π=+ B .sin(2)6y x π=- C .cos(4)3y x π=- D .cos(2)6y x π=- 6、若集合},044{2R k x kx x A ∈=++=只有一个元素,则k 的值为( ).A.1B.0C.0或1D.以上都不对 7.空间不共面的四个点可以确定的平面个数是 .8、过曲线32y x x =+上一点(1,3)的切线方程是__ .9.已知(3,4),(5,2)A B --,则AB = .10.设12,e e 是两个单位向量,它们的夹角是060,则1212(2)(32)e e e e -⋅-+= . 11、(理)分别写有1,2,3,4,5,6,7,8,9的九张卡片中,任意抽取两张,当两张卡片上的字之和能被3整除时,就说这次试验成功,则一次试验成功的概率为 .1、三角函数)32sin(3π+=x y 的周期、振幅是( ).A .3,πB .3,-πC .3,2π D .3,2-π 2.(2007广东高考)已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则M N =( ).A .{|1}x x >-B .{|1}x x <C .{|11}x x -<<D .∅ 3.已知平面向量),2(),3,12(m m =+=,且∥,则实数m 的值等于( ).A .2或32-B .32C .2-或32D .27- 4、(2007广东高考)若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ).A .2B .12C .12- D .2-5.若椭圆221169x y +=上一点P 到它的右焦点是3,那么点P 到左焦点的距离是( ). A.5 B.1 C.15 D.86.不等式260x y -->表示的平面区域在直线260x y --=的( ).A .左上方B .右上方C .左下方D .右下方7.已知一个二次函数的对称轴为x =2,它的图象经过点(2, 3),且与某一次函数的图象交于点(0, -1),那么二次函数的解析式是( ).A .f (x)=-x 2-4x -1B .f (x)=-x 2+4x +1C .f (x)=-x 2+4x -1D .f (x)=x 2-4x +18.若等比数列{}n a 的前n 项的和是31n n S =-,则公比q 为__________.9. 直线3260x y -+=在,x y 轴上的截距分别为 . 10.在平面直角坐标系xOy 中,圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[)02θ∈π,),则圆C 的圆心坐标为 .11(理)甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为 .(答案用分数表示)1.已知cos tan 0θθ<,那么角θ是( )象限角.A.第一或第二 B.第二或第三 C.第三或第四D.第一或第四 2.已知全集{}12345U =,,,,,且{}234A =,,,{}12B =,,则()U A B ð等于( ). A.{}2 B.{}5 C.{}34, D.{}2345,,,3.等比数列{}n a 中,44a =,则26a a 等于( ).A.4 B.8 C.16 D.324.若函数3()()f x x x =∈R ,则函数()y f x =-在其定义域上是( ).A .单调递减的偶函数B .单调递减的奇函数C .单调递增的偶函数D .单调递增的奇函数5.若向量,a b 满足1==a b ,a 与b 的夹角为60°,则+=··aa ab ( ).A.12 B.32 C.1+ D.2 6.若l m n ,,是互不相同的空间直线,αβ,是不重合的平面,则下列命题中为真命题的是( ).A.若l n αβαβ⊂⊂∥,,,则l nB.若l αβα⊥⊂,,则l β⊥ C.若l n m n ⊥⊥,,则l m ∥ D.若,l l αβ⊥,则αβ⊥7.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ). A.310 B.15 C.110 D.112 8、22(1)i =+ . 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.在极坐标系中,直线l 的方程为sin 3ρθ=,则点π26⎛⎫ ⎪⎝⎭,到直线l 的距离为 . 11、(理)若32nx⎛+ ⎝的展开式中含有常数项,则最小的正整数n 等于 .1.若集合{}2x M y y -==,{P y y =,则M N ⋂=( ).A.{y|y>1}B.{y|y ≥1}C.{y|y>0}D.{y|y ≥0}2、直线3490x y --=与圆224x y +=的位置关系是( )A .相交且过圆心B .相切C .相离D .相交但不过圆心3、若函数在等差数列{}n a 中,1234100,80a a a a +=+=,则=+101a a ( ).A 、40B 、 50C 、60D 、704、21()sin ()2f x x x =-∈R ,则()f x 的最小正周期为( ). A 、π2的奇函数 B 、π的奇函数 C 、2π的偶函数 D 、π的偶函数 5.直线cos 2ρθ=关于直线4πθ=对称的直线方程是( ). A .cos 2ρθ=- B .sin 2ρθ= C .sin 2ρθ=- D .2sin ρθ=6、不等式03221<-+-x x 的解集为( ).A 、)1,(--∞B 、)0,1(-C 、),1(+∞D 、)1,0(7.下面四个命题,其中正确的两个命题是( ).(1).若直线//a 平面α,则直线a 与平面α内任何直线平行;(2).若直线a α⊥,则直线a 与平面α内任何直线垂直;(3).若平面//αβ,则平面α内任何直线与平面β平行;(4).若平面αβ⊥,则平面α内任何直线与平面β垂直.8. 复数i z 32-=,则=-z . 9、设函数⎩⎨⎧>≤=)1(log )1(2)(2x x x x f x ,则=)]2([f f .10、若已知,a b 满足:||1,||2,||2a b a b ==-=,则||a b +=_______.11.(理)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 .1). A .a B .21a C .2a D .31a2、如果向量),1,(k a =→与),4(k b =→共线且方向相反,则=k ( ).A 、2±B 、2-C 、2D 、03.数列4,,,121--a a 成等差数列;4,,,,1321--b b b 成等比数列,则212b a a -的值为( ). A 、21 B 、21- C 、21或21- D 、41 4.圆锥的轴截面是等边三角形,则其侧面展开图扇形的中心角为( ). A 、3πB 、 23π C 、π D5.已知y x ,满足约束条件503x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则y x z 42+=的最小值为( ).A 、6B 、-6C 、10D 、-106、已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为( ).A .-1B .0C .1D .27、若函数c bx x x f ++=2)(的图象顶点在第四象限,则其导数)(/x f 的图象是( ).8、已知复数i Z i Z -=+=1,321,则复数21Z Z ∙的虚部为 .9、已知4sin cos 5αα-=-,则sin cos αα= .10、若直线(1)10a x y +++=与圆2220x y x +-=相切,则a 的值为 .11、(理)设服从二项分布B (),p n 的随机变量ξ的期望和方差分别是42∙与441∙,则二项分布的参数p n ,的值为 .高三数学基础训练(十)1、(2005湖南)函数()f x ).A .(,)-∞+∞B .[0,)+∞C .(,0]-∞D . (,0)-∞2、设复数z 满足关系||2z z i +=+,则z =( ).A .34iB .34i +C .34i -+D .34i -- 3、如果命题“p 或"q 与命题“非p ”都是真命题,那么( ).A 、命题p 不一定是假命题B 、命题q 一定是真命题C 、命题q 不一定是真命题D 、命题p 与q 的真假相同4、线性回归方程y bx a =+必过点( ).A .(0,0)B .(,0)xC .(0,)yD .(,)x y5、若2tan =α,则=ααcos sin ( ).A 、21B 、32C 、52 D 、1 6、已知向量,2;22121→→→→→→+=-=e e b e e a 其中→→21,e e 不共线,则→→+b a 与→→→-=2126e e c 的关系是( ).A 、不共线B 、共线C 、相等D 、无法确定7、某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在 某一天各自的课外阅读所用的时间数据,结果可以用下图中的条形图表示,根据条形图,可得这50名学生这一天平均每人的课外阅读时间为( ).A .0.6hB .0.9hC .1.0hD .1.5h8、如果函数2()3f x x bx c =++是偶函数,则b = . 9、已知一个四棱台的四个侧面均是全等的等腰梯形,且上、下底面的边长分别为10cm 、16cm ,高为4cm ,则这个棱台的侧面积为 .10、(05年高考湖南卷)已知数列2{log (1)}n a -*()n N ∈为等差数列,且13a =,39a =,则n a 的通项公式为 .11、(理)将3封不同的信投入4个不同的邮箱,则不同的投法的种数是 .高考数学基础选择题专项训练(一)——(十)答案(一)答案:(1)——(7)题,DCADDBB ,(8)1或3,(9)[]0,2,(10)750,(11)-250.(二)答案:(1)——(7)题,BCCCABC ,(8)OQ ,(9)32,(10)i ,(11)12-.(三)答案:(1)——(7)题,ACDCBDC ,(8)2⎡-+⎣,(9)[]1,1-,(10)-15,(11)1.(四)答案:(1)——(7)题,BDBCDDC ,(8)5,(9)12,(10,(11)7.(五)答案:(1)——(7)题,BBCCDC(7)4,(8)520x y --=,(9)10,(10)92-,(11)13.(六)答案:(1)——(7)题,ACCAADC(8)3,(9)-2,3,(10)(0,2),(11)19.(七)答案:(1)——(7)题,CCCBBDA(8)i -,(9)3,(10)2,(11)7.(八)答案:(1)——(6)题,CDCDBD(7)②③,(8,(9)2,(10(11)960.(九)答案:(1)——(7)题,BBACBBA ,(8)-2,(9)950,(10)-1,(11)4,0.6.(十)答案:(1)——(7)题,CBBDCBB ,(8)0,(9)260,(10)21n n a =+,(11)3464=。