七年级上册数学8.1 二元一次方程组
- 格式:doc
- 大小:275.19 KB
- 文档页数:7
第八章二元一次方程组 数学: 8.1二元一次方程组~8.2二元一次方程组解法同步测试A 一、耐心填一填,一锤定音!(每小题6分,共30分) 1.在方程427xy中,如果用含有x的式子表示y,则y_____.
2.若方程4mxy的一个解是43xy,,则m_____. 3.请写出一个以51xy,为解的二元一次方程组_____. 4.在二元一次方程2()15xyxy中,当3y时,x_____. 5.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求这两种各有多少个?若设篮球有x个,排球有y个,则依题意得到的方程组是_____.
二、精心选一选,慧眼识金!(每小题5分,共15分) 1.下列方程组中,是二元一次方程组的是( )
A.44129xyxy, B.2537xyyz, C.146xxy, D.421xyxyxy, 2.下列说法中正确的是( ) A.二元一次方程中只有一个解 B.二元一次方程组有无数个解 C.二元一次方程组的解必是它所含的二元一次方程的公共解 D.判断一组解是否为二元一次方程的解,只需代入其中的一个二元一次方程即可 3.西部山区某县响应国家“退耕还林”的号召,将该县一部分耕地改还为林地,改还后,
林地面积和耕地面积共有2180km,耕地面积是林地面积的25%,设改还后耕地面积为2kmx,林地面积为2kmy,则下列方程组中,正确的是( )
A.18025%xyyx, B.18025%xyxy,
C.18025%xyxy, D.18025%xyyx, 三、用心做一做,马到成功!(本大题共20分) 1.(本题10分)解方程组: (1)25437xyxy,;(2)74321432xyyx,. 2.(本题10分)已知等式ykxb,当2x时,1y;当1x时,3y;求kb,的值.
8.1二元一次方程组(基础)1.下列方程是二元一次方程的是( )A.x-1y=2 B.x+2y=0 C.x2-x=5 D.3x-1=02.已知方程x m-3+y2-n=6是二元一次方程,则m-n=______.3.下列方程组是二元一次方程组的是( )A.x2y1y3z⎧=+⎨=-⎩B.xy12x y7⎧=⎨+=⎩C.x3y4⎧=⎨=⎩D.112x y3x2y4⎧+=⎪⎨⎪-=⎩4.二元一次方程x-2y=l有无数组解,下列四组值是该方程的解的是( )A.x01y2⎧=⎪⎨=⎪⎩B.x1y1⎧=⎨=⎩C.x1y1⎧=⎨=-⎩D.x1y0⎧=⎨=⎩5.已知x1y2⎧=⎨=⎩是二元一次方程2x+ay=4的一组解,则a的值为( )A.2 B.-2 C.1 D.-16.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m长的彩绳,用来做手工编织,在不造成浪费的前提下,不同的截法有( )A.1种B.2种C.3种D.4种7.已知二元一次方程组5x4y5①3x2y9②⎧+=⎨+=⎩下列说法正确的是( )A.同时适合方程①和方程②的的值是方程组的解B.适合方程①的x,y的值是方程组的解C.适合方程②的x,y的值是方程组的解D.适合方程①或方程②的x,y的值是方程组的解8.解为x1y2⎧=⎨=⎩的方程组是( )A.x y13x y5⎧-=⎨+=⎩B.x y13x y5⎧-=-⎨+=-⎩C.x y33x y1⎧-=⎨-=⎩D.x2y33x y5⎧-=-⎨+=⎩9.用16元买了60分、80分两种邮票共22枚,则60分与80分的邮票分别买了( )A.6枚,16枚B.7枚,15枚C.8枚,14枚D.9枚,13枚10.若关于x,y的方程组3x y mx my n⎧-=⎨+=⎩的解是x1y1⎧=⎨=⎩,求|m-n|的值.代入消元法(基础)1.用代入法解方程组4x3y17①5x y7②⎧-=⎨+=⎩,使得代入后化简比较容易的变形是( )A.由①,得x=173y4+B.由①,得y=174y3--C.由②,得y=7-5xD.由②,得x=7y5-2.用代入法解方程组2x3y2①4x9y1②⎧+=⎨-=-⎩时,变形正确的是( )A.先将①变形为x=3y-22,再代入② B.先将①变形为y=22x3-,再代入②C.先将②变形为x=94y-1,再代入① D.先将②变形为y=9(4x+1),再代入①3.用代入法解方程组2x y53x2y8⎧-=⎨-=⎩时,消去y后得到的方程是( )A.3x-4x—10=0B.3x-4x+5=8C.3x-2(5-2x)=8D.3x-2(2x-5)=84.用代入法解方程组7x2y3①x2y12②⎧-=⎨-=-⎩有以下步骤:(1)由①,得y=7x32-③; (2)将③代入①,得7x-2×7x32-=3;(3)整理,得3=3; (4)所以x可取一切实数,原方程组有无数组解.以上解法,造成错误的一步是( ) A.(1) B.(2) C.(3) D.(4)5.方程组y2x3x y15⎧=⎨+=⎩的解是______. 6.已知a:b=3:1,且a+b=8,则a-b=______.7.(1)2x y2①y x4②⎧+=⎨=-⎩(2)2x y1①5x3y8②⎧-=⎨-=⎩(3)x y=3①5x3(x y)1②⎧+⎨-+=⎩8.某文具店练习本和水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.则练习本和水笔的单价分别为( )A.0.8元、2.2元B.0.6元、2.4元C.2.2元、0.8元D.2.4元、0.6元9.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.代入消元法(能力)1.已知x,y满足方程组x m4y5m⎧+=⎨-=⎩,则无论m取何值,x,y恒有的关系式是( )A.x+y=1B.x+y=-1C.x+y=9D.x-y=-92.已知x2y1⎧=⎨=⎩是二元一次方程组mx ny8nx my1⎧+=⎨-=⎩的解,则2m-n的平方根为______.3.若-2a m b4与5a n+2b2m+n可以合并成一项,则mn的值是______.4.3(y2)x12(x1)5y8⎧-=+⎨-=-⎩(2)4(x y1)3(1y)2x y223⎧--=--⎪⎨+=⎪⎩5.某市对八年级综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学的测试成绩和平时成绩各为多少分?(2)某同学测试成绩为70分,他的综合评价得分可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少为多少分?加减消元法(基础)1.对于方程组4x7y194x5y17⎧+=-⎨-=⎩,用加减法消去x得到的方程是( )A.2y=-2B.2y=-36C.12y=-2D.12y=-362.用加减法解方程组3x2y2x y5⎧-=⎨+=⎩,下列变形正确的是( )A.3x2y2x2y5⎧-=⎨+=⎩B.3x2y23x y5⎧-=⎨+=⎩C.3x2y23x3y15⎧-=⎨+=⎩D.3x2y22x2y5⎧-=⎨+=⎩3.利用加减法解方程组2x5y10①5x-3y6②⎧+=-⎨=⎩,下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×24.用加减法解方程组2x y8①x y1②⎧+=⎨-=⎩,其解题步骤如下:(1)①+②得3x=9,解得x=3;(2)①-②×2得3y=6,解得y=2. 所以原方程组的解为x3y2⎧=⎨=⎩.则下列说法正确的是( )A.步骤(1)(2)都不对B.步骤(1)(2)都对C.本题不适宜用加减法解D.加减法不能用两次5.x y52x y4⎧+=⎨-=⎩的解为______. 6.5x2y13x4y3⎧+=⎨+=⎩.则x-y的值是______.7.(1)x2y53x y1⎧+=⎨-=⎩; (2)9x2y153x4y10⎧+=⎨+=⎩; (3)3(x1)y55(y1)3(x5)⎧-=+⎨+=-⎩.8.有一个两位数,它的十位数字比个位数字大2,且十位数字与个位数字之和为12,则这个两位数为( )A.46B.64C.57D.759.某少年宫管弦乐队共有46人,其中管乐队人数少于23,弦乐队人数不足45.现准备购买演出服装,下面是某服装厂给出的演出服装的价格.如果管乐队、弦乐队分别单独购买服装,一共需付2500元.(1)管乐队、弦乐队各有多少人?(2)如果管乐队、弦乐队联合起来购买服装,那么比两队各自购买服装共可以节省多少钱?解二元一次方程组(基础)1.用适当的方法解下列方程组:(1)x2y81y x14⎧-=⎪⎨=+⎪⎩(2)x4y23x2y8⎧+=-⎨-=⎩(3)5(y1)3(x5)3(x1)4(y4)⎧-=+⎨-=-⎩(4)3x2y10x y1123⎧+=⎪⎨+=+⎪⎩(5)2(x y)x y134125y x3⎧-+-=-⎪⎨⎪-=⎩(6)3(x y)2(x y)10x y x y7422⎧++-=⎪⎨+-+=⎪⎩2.某次考试结束后,班主任老师和小强进行了对话:老师:小强同学,你这次考试的语数英三科总分348分,在下次考试中,要使语数英三科总分达到382分,你有何计划?小强:老师,我争取在下次考试中,语文成绩保持124分,英语成绩再多16分,数学成绩增加15%,则刚好达到382分. 请问:小强这次考试的英语、数学成绩各是多少?参考答案1.C2.B先将①移项,得3y=2-2x,再两边同除以3,得y=22x3-.故选B.3.D【解析】2x y5①3x2y8②⎧-=⎨-=⎩,由①,得y=2x-5③,将③代入②,得3x-2(2x-5)=8.故选D.4.B【解析】造成错误的一步是(2).因为③是由①得到,所以应该将③代入②而不是①.故选B.5.x3y6⎧=⎨=⎩【解析】y2x①3x y15②⎧=⎨==⎩把①代入②,得3x+2x=15,解得x=3.把x=3代入①,得y=6.所以这个方程组的解为x3 y6⎧=⎨=⎩.6.4【解析】∵a:b=3:1,且a+b=8,∴a3b①a b8②⎧=⎨+=⎩,把①代入②,得3b+b=8,解得b=2.把b=2代入①,得a=6.a-b=6-2=4.7.【解析】(1)把②代入①,得2x+x-4=2,解这个方程,得x=2.把x=2代入②,得y=-2.所以这个方程组的解为x2y2⎧=⎨=-⎩.(2)由①,得y=2x-1③把③代入②,得5x-3(2x-1)=8,解这个方程,得x=-5.把x=-5代入③,得y=-11,所以这个方程组的解为x5y11⎧=-⎨=-⎩.(3)把①代入②,得5x-3×3=1,解这个方程,得x=2.把x=2代入①,得y=1.所以这个方程组的解是x2 y1⎧=⎨=⎩.8.B【解析】设练习本和水笔的单价分别为x元、y元,根据题意,得x y3①20x10y36②⎧+=⎨+=⎩,由①,得y=3-x③,把③代入②,得20x+10(3-x)=36,解得x=0.6.把x=0.6代入③,得y=2.4.所以练习本和水笔的单价分别为0.6元、2.4元.故选B.9.【解析】设隧道累计长度为xkm,桥梁累计长度为ykm,根据题意,得x y342①2x y36②⎧+=⎨=+⎩由①,得y=342-x③把③代入②,得2x=342-x+36,解得x=126.把x=126代入③,得y=342-126=216.所以这个方程组的解为x126 y216⎧=⎨=⎩.答:隧道累计长度为126km,桥梁累计长度为216km.代入消元法(过能力)参考答案1.C【解析】将m=y-5代入x+m=4,得x+y-5=4,所以x+y=9.故选C.2.±2【解析】将x2y1⎧=⎨=⎩代入mx ny8nx my1⎧+=⎨-=⎩,得2m n8①2n m1②⎧+=⎨-=⎩,由②,得m=2n-1,将m=2n-1代入①,得2(2n-1)+n=8,解得n=2.再将n=2代入m=2n-1,得m=3.所以2m-n=6-2=4,所以2m-n的平方根为±2. 3.0【解析】因为-2a m b4与5a n+2b2m+n可以合并成一项,所以n2m2m n4⎧+=⎨+=⎩,解得m2n0⎧=⎨=⎩,所以mn=0.4.11【解析】根据题意,得a4b52a b3⎧+=⎨+=⎩,解得a1b1⎧=⎨=⎩,∴x※y=x+y2,∴2※3=2+32=11.名师点睛:本题是新定义题,解题的关键是把陌生的问题转化为方程组问题.5.【解析】(1)整理得3y x7①2x5y6②⎧-=⎨-=-⎩所以这个方程组的解为x17y8⎧=⎨=⎩.(2)整理,得4x-y5①3x2y12②⎧=⎨+=⎩所以这个方程组的解为x2y3⎧=⎨=⎩.(1)设孔明同学的测试成绩为x分,平时成绩为y分,依题意得x y18580%x20%y91⎧+=⎨+=⎩,解得x90y95⎧=⎨=⎩,所以孔明同学的测试成绩为90分,平时成绩为95分.(2)不可能.理由如下:80-70×80%=24,24÷20%=120>100,故该同学的综合评价得分不可能达到A等.(3)依题意,得(80-100×20%)÷80%=75(分).故他的测试成绩至少为75分.课时2 加减消元法(过基础)参考答案1.D【解析】4x7y19①4x5y17②⎧+=-⎨-=⎩,①-②得7y+5y=-19-17,所以12y=-36.故选D.2.C3.D4.B5.x3y2⎧=⎨=⎩,【解析】x y5①2x y4②⎧+=⎨-=⎩。
七年级数学-二元一次方程组练习含解析基础闯关全练1.下列方程中,属于二元一次方程的是( )A .3x-2y=5 B.x ²+y=1 C .x-3=2x D.651=+y x2.已知关于x ,y 的方程81||56-++m n y x 是二元一次方程,则m=____,n=____.3.下列方程组中,不是二元一次方程组的是________,①⎩⎨⎧=-=+;254,10y x y x ②⎩⎨⎧==;5,3y x ③⎪⎩⎪⎨⎧=+=+;21,42y x y x ④⎪⎩⎪⎨⎧=-=+;52,32y x y x4.下列三组数值:①⎩⎨⎧==;2,1y x ②⎩⎨⎧==;2,3y x ③⎩⎨⎧=-=;3,2y x 其中是方程2x-y=4的解的是( )A .①B .②C .③ D.①③5.解为⎩⎨⎧==;2,1y x 的方程组是( )A.⎩⎨⎧=+=-;53,1y x y xB.⎩⎨⎧=--=-;53,1y x y xC.⎩⎨⎧=-=-;13,3y x y xD.⎩⎨⎧=+-=-;53,32y x y x6.在①⎩⎨⎧==,0,0y x ②⎩⎨⎧=-=,1,2y x ③⎩⎨⎧==,2,2y x ④⎪⎩⎪⎨⎧=-=,21,1y x 这四对数值中,____是x-y=0的解,____是x+2y=0的解,因此______是方程组⎩⎨⎧=+=-,02,0y x y x 的解.7.已知关于x ,y 的二元一次方程组⎩⎨⎧-=-=+37,24by x y ax 的解是⎩⎨⎧==,2,1y x 求(a+b)³的值.能力提升全练1.如果方程组⎩⎨⎧=+=+162,★y x y x 的解为⎩⎨⎧==■6y x .那么被“★”“■”遮住的两个数分别是( )A.10,4B.4,10C.3,10D.10,32.已知⎩⎨⎧-=-=2,3y x 是方程组⎩⎨⎧=-=+2,1by cx cy ax 的解,则a 、b 间的关系是( ) A .4b-9a=1 B .3a+2b=1 C .4b-9a= -1 D .9a+4b=13.请写出一个以x ,y 为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成,②方程组的解为⎩⎨⎧==,3,2y x 这样的方程组可以是________________.4.算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推,《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图①,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数,且根据此图可以列出方程:x+10y= 26.请你根据图②列出方程组:________.三年模拟全练 一、选择题1.下列各对x ,y 的值不是二元一次方程3x+2y=7的解的是( )A .⎩⎨⎧==21y xB .⎩⎨⎧-==13y xC .⎩⎨⎧-==45y xD .⎩⎨⎧-=-=51y x 2.如果⎩⎨⎧=-=1,2y x 是二元一次方程mx+y=3的一个解,则m 的值是( ) A.-2 B.2 C.-1 D .1二、填空题。
8.2消元——解二元一次方程组一、教学内容分析本节承接第8.1节中讨论的篮球联赛胜负场次问题,对比根据题意列出的二元一次方程组与一元一次方程,发现它们之间的关系,即把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中另一个方程,原来的二元一次方程组就转化为一元一次方程。
结合这个具体的例子,教科书指出这种转化对解二元一次方程组很重要,它的基本思路就是“将未知数的个数由多化少、逐一解决”的消元思想。
在提出消元思想后,教科书对代入消元法的基本步骤进行了归纳。
即通过“把一个方程(必要时先做适当变形)代入另一个方程”实现消元。
本节的教学重点是用代入消元法解二元一次方程组,教学难点是探索如何用代入法将“二元”转化为“一元”的“消元”过程和思想。
二、学生学习情况分析本节是在学习了第8.1节中讨论的篮球联赛胜负场次问题,学生了解了二元一次方程、二元一次方程组及它们的解之后,已经对如何求二元一次方程组的解产生了浓厚的兴趣,很想继续学习二元一次方程组的解法。
但学生对思想方法不能理解,现在还不知道具体应怎样去求解,或为什么要这样去求解。
三、教学设计理念代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化为比较熟悉的问题,从而充分调动已有的知识和经验,用于解决新问题。
基于这点认识,本课按照“从身边的数学问题引入→寻求一元一次方程的解法→探索二元一次方程组的代入消元法→典型例题→归纳代入法的一般步骤”的思路进行设计。
在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学。
教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中。
重视知识的发生过程,将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的。
8.1 二元一次方程组(大单元教学设计)一、【单元目标】通过情景导入,了解二元一次方程与二元一次方程组的概念与区别,学会根据题目的条件列出二元一次方程或二元一次方程组,学会根据实际情况,找出二元一次方程组的整数解情况等;(1)用生活中常见的事例,让学生可以根据题目中所给的条件,列出二元一次方程组,从中提炼出二元一次方程和二元一次方程组的概念;由之前所学内容“一元一次方程”,归纳总结出二元一次方程与一元一次方程的联系与区别,从而加深学生对方程的理解;(2)通过小组合作探究,让学生参与教学过程,加深对二元一次方程和二元一次方程组解的理解,同时会根据实际情况找出满足要求的整数解,提升了学生的数学抽象素养,进一步发展了学生的类比推理素养;(3)通过典型例题的训练,加强学生的做题技巧,训练做题的方法,提升学生的逻辑推理素养;(4)在师生共同思考与合作下,学生通过概括与抽象、类比的方法,体会了归因与转化的数学思想,同时提升了学生的数学抽象素养,并发展了学生的逻辑推理素养;(5)通过生活中的事例,提高学生对周围事物的感知能力,同时激发学生的学习兴趣,提升学生的人文素养;二、【单元知识结构框架】二元一次方程组{二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组三、【学情分析】1.认知基础二元一次方程和二元一次方程组及其解的定义,对我们后面学习的消元法解二元一次方程组和二元一次方程组的应用题具有关键作用,本节内容强调基础概念,锻炼学生的思维能力和判断能力;2.认知障碍学生在理解二元一次方程组的概念时,会和分式方程混淆,导致概念不清晰;在讲到二元一次方程的解时,要理解此时的解具有无数组,但一旦限定在整数范围内,那就要根据题目实际含义缩小范围;根据题意列二元一次方程组时,要读清题意,加强对逻辑关系的分辨,准确列出二元一次方程组;四、【教学设计思路/过程】课时安排: 约1课时教学重点: 二元一次方程及其解的定义,二元一次方程组及其解的定义;根据实际情况列二元一次方程组;教学难点: 二元一次方程组的认识与识别,根据二元一次方程组解的情况求参数的值;五、【教学问题诊断分析】 情境导入小红到邮局寄挂号信,需要邮费3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种票额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x 张,需要票额为8角的邮票y 张,你能列出方程吗?8.1.1二元一次方程及其解的定义问题1(利用二元一次方程的定义求参数):已知|m -1|x |m |+y 2n -1=3是二元一次方程,则m +n =________.问题2(二元一次方程的解):已知⎩⎪⎨⎪⎧x =1,y =-1是方程2x -ay =3的一个解,那么a 的值是( )A .1B .3C .-3D .-1 8.1.2二元一次方程组及其解的定义问题3(识别二元一次方程组):有下列方程组:①⎩⎪⎨⎪⎧xy =1,x +y =2;②⎩⎪⎨⎪⎧x -y =3,1x+y =1;③⎩⎪⎨⎪⎧2x +z =0,3x -y =15;④⎩⎪⎨⎪⎧x =5,x 2+y3=7;⑤⎩⎪⎨⎪⎧x +π=3,x -y =1,其中二元一次方程组有( )A .1个B .2个C .3个D .4个问题4(利用二元一次方程组的解求参数的值)甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15;①4x -by =-2.②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2014+(-110b )2015的值.8.1.3列二元一次方程组问题5:小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x 张,2元的贺卡y 张,那么可列方程组( )A.⎩⎪⎨⎪⎧x +y 2=10,x +y =8B.⎩⎪⎨⎪⎧x 2+y 10=8,x +2y =10C.⎩⎪⎨⎪⎧x +y =10,x +2y =8D.⎩⎪⎨⎪⎧x +y =8,x +2y =10六、【教学成果自我检测】 1.课前预习设计意图:落实与理解教材要求的基本教学内容. 1.下列方程组是二元一次方程组的是( ) A .57x y y z +=⎧⎨=+⎩B .24257x y x y ⎧+=⎨+=⎩C .23xy x y =⎧⎨+=⎩D .515328y x y =⎧⎨+=⎩2.下列方程的解为21x y =⎧⎨=-⎩的是( )A .3410x y -=B .1232x y += C .32x y += D .2()6x y y -=3.已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m n +的值是( )A .2B .2-C .3D .3-4.若方程()135mm x y ++=是关于x ,y 的二元一次方程,则m 的值为 ______ .5.已知11x y =⎧⎨=-⎩是方程35x ay -=的一个解,那么a 的值是______.6.哪些是二元一次方程?为什么?(1)x 2+y =20;(2)2x +5=10;(3)2a +3b =1;(4)x 2+2x +1=0;(5)2x +y +z =1.2.课堂检测设计意图:例题变式练.【变式1】在下列方程组中,不是二元一次方程组的是( )A .331x y y -=⎧⎨=-⎩B .1321x y +=⎧⎨+=-⎩C .23321x y x y +=⎧⎨-=-⎩D .34xy x y ⎧=⎪⎨⎪-=⎩【变式2】已知21x y =⎧⎨=-⎩是二元一次方程7y kx -=的解,则k 的值是( )A .2B .2-C .4D .4-【变式3】已知21x y =⎧⎨=⎩是方程3ax by +=的解,则代数式631a b +-的值为_________.【变式4】已知124x y ⎧=⎪⎨⎪=⎩是二元一次方程2x y a +=的一个解. (1)则=a _________(2)试直接写出二元一次方程2x y a +=的所有正整数解. 3.课后作业设计意图:巩固提升.1.下列是二元一次方程35x y +=的解为( )A .10x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .05x y =⎧⎨=-⎩2.下列方程组中,表示二元一次方程组的是( )A .35x y z x +=⎧⎨+=⎩B .51x y x y +=⎧⎪⎨=⎪⎩C .2512x y x y +=⎧⎨+=⎩D .11122x y y x =+⎧⎪⎨+=⎪⎩3.下列方程中,二元一次方程的个数是( ) ①423=-x ,②57=+y x ,③02=-y x ,④x y =,⑤122=++x yx ,⑥2210x x -+=,⑦z y x 4=+-,⑧20.x y -=,⑨1xy =. A .2B .3C .4D .54.方程22136m n x y -+-=是关于x ,y 的二元一次方程,则2m n +的值为______.5.若32x y =⎧⎨=-⎩是二元一次方程2ax by +=-的一个解,则322025a b -+的值为______________.6.哪些是二元一次方程组?为什么?(1)32950x y y x -=⎧⎨+=⎩;(2)39835x y z y z -+=⎧⎨+=⎩;(3)21x x y =⎧⎨+=⎩;(4)54xy y x y +=⎧⎨-=⎩7.(1)找到几组适合方程0x y +=的x ,y 值; (2)找到几组适合方程2x y -=的x ,y 值;(3)找出一组x ,y 值,使它们同时适合方程0x y +=和2x y -=;(4)根据上面的结论,你能直接写出二元一次方程组02x y x y +=⎧⎨-=⎩的解吗?七、【教学反思】。
初一数学下8二元一次方程组--试题及答案§8.1二元一次方程组一填空题1二元一次方程4x3y=12,当x=0,1,2,3时,y= 2在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3已知方程(k 21)x 2+(k+1)x+(k7)y=k+2,当k=时,方程为一元一次方程;当k=时,方程为二元一次方程。
4对二元一次方程2(5x)3(y2)=10,当x=0时,则y=;当y=0时,则x=。
5方程2x+y=5的正整数解是。
6若(4x3)2+|2y+1|=0,则x+2= 。
7方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。
二选择题1方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A1 B2 C3 D42方程2x+y=9在正整数范围内的解有( ) A1个 B2个 C3个D4个3与已知二元一次方程5xy=2组成的方程组有无数多个解的方程是( )A10x+2y=4 B4xy=7 C20x4y=3 D15x3y=6 4若是my x25与2214-++n m n y x同类项,则nm-2的值为 ( )A1 B -1 C -3 D 以上答案都不对5在方程(k 24)x 2+(23k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A2 B-2 C2或 2D 以上答案都不对. 6若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A ⎩⎨⎧=+=-5253y x y x B⎩⎨⎧=--=523x y x y C⎩⎨⎧=+=-152y x y xD⎩⎨⎧+==132y x yx 7在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A35-=x y B3--=x y C 35+=x yD 35--=x y 8已知x=3-k,y=k+2,则y与x的关系是( )Ax+y=5 Bx+y=1 Cx-y=1 Dy=x-19下列说法正确的是( )A二元一次方程只有一个解 B二元一次方程组有无数个解C二元一次方程组的解必是它所含的二元一次方程的解D三元一次方程组一定由三个三元一次方程组成10若方程组⎩⎨⎧=+=+16156653y x y x的解也是方程3x+ky=10的解,则k的值是( =)Ak=6 = Bk=10 Ck=9 Dk=101三解答题1解关于x 的方程)1(2)4)(1(+-=--x a x a a§8.2消元——二元一次方程组的解法一用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x (5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-qp q p 451332 二用加减法解下列方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x (3)⎩⎨⎧=--=-7441156y x y x(4)⎩⎨⎧-=+-=-53412911y x y x (5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+ay x ay x 343525(a为常数)三:用适当的方法解方程: 1⎩⎨⎧=-=+-6430524m n n m 2⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x3⎩⎨⎧=-=+110117.03.04.0y x y x 4⎪⎩⎪⎨⎧=+=+-722013152y x y x 5⎩⎨⎧-=+=--cy x cy x 72963112(c 为常数)1代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。
永丰中学七年级数学试卷(8.1—8.2)班级________________姓名________________一、仔细选一选,一定能选对!(每小题4分,共40分) 1. 下列方程组中是二元一次方程组的是( ).A 12x y xy -=⎧⎨=⎩ B 4123x y y x -=⎧⎨=+⎩ C 2201x x y x ⎧--=⎨=+⎩D 1130y x x y ⎧-=⎪⎨⎪+=⎩2. 已知21x y =⎧⎨=⎩是方程3kx y -=的解,那么k 的值是( ).A 、2B 、-2C 、1D 、-13. 方程组 ⎩⎨⎧=-=+12332y x y x 的解是 ( )(A ) ⎩⎨⎧==11y x (B ) ⎩⎨⎧-=-=11y x (C )⎩⎨⎧=-=35y x (D ) ⎩⎨⎧-==53y x 4. 已知25|3|(2)0x y x y +-+-=,则( ).(A )12x y =-⎧⎨=-⎩ (B )21x y =-⎧⎨=-⎩ (C )21x y =⎧⎨=⎩ (D )12x y =⎧⎨=⎩ 5.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方 形的面积为( )。
(A ) 600 cm 2(B ) 500 cm 2 (C ) 400 cm 2(D ) 4000 cm 26.古代有这样一个寓言故事,驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )。
(A )5 (B )6 (C )7 (D )87.表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )。
(A )272366x y x y +=⎧⎨+=⎩(B )2723100x y x y +=⎧⎨+=⎩(C )273266x y x y +=⎧⎨+=⎩(D )2732100x y x y +=⎧⎨+=⎩ 8.为了贫困家庭子女能完成初中学业,国家给他们免费提供教科书, 下表是某中学免费提供教科书补助的部分情况: 若设获得免费提供教科书补助的七年级为x 人,八年级为y 人,根据题意列出方程组为( )。
第八章 二元一次方程组
8.1 二元一次方程组
要点感知1 含有__________未知数,并且含有未知数的项的次数都是__________的方程叫
做二元一次方程.
预习练习1-1 下列各式中是二元一次方程的是( )
A.6x-y=7 B.15x-1y=0 C.4x-xy=5 D.x2+x+1=0
要点感知2 含有__________个未知数,并且每个未知数的项的次数都是__________,将这样
的__________方程合在一起组成的方程组叫做二元一次方程组.
预习练习2-1 下列方程组是二元一次方程组的是( )
A.12xyxy B.4123xyyx C.2201xxyx
D.1130yxxy
要点感知3 使二元一次方程两边的值__________的两个未知数的值,叫做二元一次方程的
解.
预习练习3-1 请写出二元一次方程x+3y=5的一组解:__________.
要点感知4 二元一次方程组的两个方程的__________叫做二元一次方程组的解.
预习练习4-1 下列哪组数是二元一次方程组3,24xyx的解( )
A.30xy B.12xy C.52xy D.21xy
知识点1 认识二元一次方程(组)
1.下列方程中,是二元一次方程的是( )
A.3x-2y=4z B.6xy+9=0 C.1x+4y=6
D.4x=24y
2.下列方程组中,是二元一次方程组的是( )
A.4237xyxy B.2311546abbc C.292xyx
D.284xyxy
3.写出一个未知数为a,b的二元一次方程组:____________________.
4.已知方程xm-3+y2-n=6是二元一次方程,则m-n=__________.
5.已知xm+ny2与xym-n的和是单项式,则可列得二元一次方程组____________________.
知识点2 二元一次方程(组)的解
6.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( )
A.012xy B.11xy C.10xy D.11xy
7.若1,2xy是关于x,y的二元一次方程ax―3y=1的解,则a的值为( )
A.-5 B.-1 C.2 D.7
8.请写出一个二元一次方程组_______________,使它的解是21.xy,
9.若,xayb是方程2x+y=0的解,则4x+2b+1=__________.
10.下列方程组中,是二元一次方程组的是( )
A.411 9xyxy B.57xyyz C.1326xxy
D.2130xaxy
11.下列哪组数是二元一次方程组2102xyyx,的解( )
A.43xy B.36xy C.24xy D.42xy
12.若方程6kx-2y=8有一组解3,2,xy则k的值等于( )
A.-16 B.16 C.23 D.-23
13.写出方程x+2y=6的正整数解:__________.
14.已知方程(2m-6)x|m-2|+(n-2)23ny=0是二元一次方程,求m,n的值.
15.已知两个二元一次方程:①3x-y=0,②7x-2y=2.
(1)对于给出x的值,在下表中分别写出对应的y的值;
x -2 -1 0 1 2 3 4
y①
y②
(2)请你写出方程组30,722xyxy的解.
16.二元一次方程组437,13xykxky的解x,y的值相等,求k.
17.根据题意列出方程组:
(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多
少枚?
(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5
只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
挑战自我
18.甲、乙两人共同解方程组515,42.axyxby①②由于甲看错了方程①中的a,得到方程组的解
为3,1;xy乙看错了方程②中的b,得到方程组的解为5,4.xy试计算a2 013+(-110b)2 014.
参考答案
课前预习
要点感知1 两个 1
预习练习1-1 A
要点感知2 两 1 两个
预习练习2-1 B
要点感知3 相等
预习练习3-1 如x=2,y=1
要点感知4 公共解
预习练习4-1 D
当堂训练
1.D 2.A 3.答案不唯一,如21,2abab等 4.3 5.12mnmn,
6.B 7.D 8.答案不唯一,如:13xyxy, 9.1
课后作业
10.C 11.C 12.D 13.2,2,xy4,1xy
14.根据题意,得221,31.mn且260,20.mn∴m=1,n=-2.
15.(1)-6 -3 0 3 6 9 12 -8 -4.5 -1 2.5 6 9.5
13
(2)2,6.xy
16.由题意可知x=y,
∴4x+3y=7可化为4x+3x=7.
∴x=1,y=1.
将x=1,y=1代入kx+(k-1)y=3中,得k+k-1=3,
∴k=2.
17.(1)设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得13,0.8220.xyxy
(2)设有x只鸡,y个笼,根据题意得41,51.yxyx
18.把3,1xy代入方程②中,得4×(-3)-b×(-1)=-2,解这个方程,得b=10.
把5,4xy代入方程①中,得5a+5×4=15,
解这个方程,得a=-1.
所以a2 013+(-110b)2 014=(-1)2 013+(-110×10)2 014=0.