河南省焦作市2021届新高考数学五月模拟试卷含解析
- 格式:doc
- 大小:2.23 MB
- 文档页数:23
河南省洛阳市2021届新高考数学五模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知F 为抛物线24y x =的焦点,点A 在抛物线上,且5AF =,过点F 的动直线l 与抛物线,B C 交于两点,O 为坐标原点,抛物线的准线与x 轴的交点为M .给出下列四个命题: ①在抛物线上满足条件的点A 仅有一个;②若P 是抛物线准线上一动点,则PA PO +的最小值为 ③无论过点F 的直线l 在什么位置,总有OMB OMC ∠=∠;④若点C 在抛物线准线上的射影为D ,则三点B O D 、、在同一条直线上. 其中所有正确命题的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】①:由抛物线的定义可知15AF a =+=,从而可求A 的坐标;②:做A 关于准线1x =-的对称点为'A ,通过分析可知当',,A P O 三点共线时PA PO +取最小值,由两点间的距离公式,可求此时最小值'A O ;③:设出直线l 方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求0MB MC k k +=,从而可判断出,OMB OMC ∠∠的关系;④:计算直线,OD OB 的斜率之差,可得两直线斜率相等,进而可判断三点B O D 、、在同一条直线上. 【详解】解:对于①,设(),A a b ,由抛物线的方程得()1,0F ,则15AF a =+=, 故4a =, 所以()4,4A 或()4,4-,所以满足条件的点A 有二个,故①不正确; 对于②,不妨设()4,4A ,则A 关于准线1x =-的对称点为()'6,4A -,故''PA OP PA OP A O +=+≥==, 当且仅当',,A P O 三点共线时等号成立,故②正确;对于③,由题意知,()1,0M - ,且l 的斜率不为0,则设l 方程为:()10x my m =+≠, 设l 与抛物线的交点坐标为()()1122,,,B x y C x y ,联立直线与抛物线的方程为,214x my y x=+⎧⎨=⎩ ,整理得2440y my --=,则12124,4y y m y y +==-,所以21242x x m +=+,()()221212114411x x my my m m =++=-++=则()()()()1221121212121212121122211111MB MCy x y x y y y y my y k k x x x x x x x x ++++++=+==+++++++ 2242404211m m m ⨯-⨯==+++.故,MB MC 的倾斜角互补,所以OMB OMC ∠=∠,故③正确. 对于④,由题意知()21,D y - ,由③知,12124,4y y m y y +==- 则12114,OB OD y k k y x y ===- ,由12211440OB OD y y k k y y y +-=+==, 知OB OD k k =,即三点B O D 、、在同一条直线上,故④正确. 故选:C. 【点睛】本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值.2.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( )A .35B .36C .45D .54【答案】C 【解析】 【分析】由等差数列{}n a 通项公式得2375150a a a +-+=,求出5a ,再利用等差数列前n 项和公式能求出9S .【详解】Q 正项等差数列{}n a 的前n 项和n S ,2375150a a a +-+=,2552150a a ∴--=,解得55a =或53a =-(舍),()91959995452S a a a ∴=+==⨯=,故选C. 【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.3.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )A.3y x =±B.y = C .12y x =±D .2y x =±【答案】A 【解析】 【分析】根据双曲线的焦距是虚轴长的2倍,可得出2c b =,结合22224c b a b ==+,得出223a b =,即可求出双曲线的渐近线方程. 【详解】解:由双曲线()222210,0x y a b a b-=>>可知,焦点在x 轴上,则双曲线的渐近线方程为:by x a=±, 由于焦距是虚轴长的2倍,可得:2c b =, ∴22224c b a b ==+, 即:223a b =,b a =,所以双曲线的渐近线方程为:y x =. 故选:A. 【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.4.已知函数())33x x f x x -=+-,不等式()2(50f f x ++…对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞ B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦【答案】C 【解析】 【分析】确定函数为奇函数,且单调递减,不等式转化为2a ⎫=-,利用双勾函数单调性求最值得到答案. 【详解】())33(),()x x f x x f x f x --=+-=-是奇函数,())3333x x x x f x x --=+=+--,易知,33x x y y y -==-=均为减函数,故()f x 且在R 上单调递减,不等式()2(50f f x ++…,即()2(5f f x --…,结合函数的单调性可得25x --,即2a ⎫=-,设t =,2t ≥,故1y t t ⎛⎫=-+ ⎪⎝⎭单调递减,故max 52⎫-=-, 当2t =,即0x =时取最大值,所以52a -…. 故选:C . 【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.5.若x ,y 满足约束条件-0210x y x y x ≤⎧⎪+≤⎨⎪+≥⎩,,,则z=32x y ++的取值范围为( )A .[2453,] B .[25,3] C .[43,2] D .[25,2] 【答案】D 【解析】 【分析】由题意作出可行域,转化目标函数32x z y +=+为连接点()3,2D --和可行域内的点(),x y 的直线斜率的倒数,数形结合即可得解. 【详解】由题意作出可行域,如图, 目标函数32x z y +=+可表示连接点()3,2D --和可行域内的点(),x y 的直线斜率的倒数, 由图可知,直线DA 的斜率最小,直线DB 的斜率最大,由010x y x -=⎧⎨+=⎩可得()1,1A --,由210x y x +=⎧⎨+=⎩可得()1,3B -,所以121132DA k -+==-+,325132DB k +==-+,所以225z ≤≤.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.6.已知33a b ==r r ,且(2)(4)a b a b -⊥+r r r r ,则2a b -r r 在a r 方向上的投影为( )A .73B .14C .203D .7【答案】C 【解析】 【分析】由向量垂直的向量表示求出a b ⋅r r,再由投影的定义计算. 【详解】由(2)(4)a b a b -⊥+r r r r可得22(2)(4)2740a b a b a a b b -⋅+=+⋅-=r r r r r r r r ,因为||3||3a b ==r r ,所以2a b ⋅=-r r .故2a b -r r 在a r 方向上的投影为2(2)218220||||33a b a a a b a a -⋅-⋅+===r rr r r r r r. 故选:C . 【点睛】本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键.7.已知直线1l :x my =(0m ≠)与抛物线C :24y x =交于O (坐标原点),A 两点,直线2l :x my m=+与抛物线C 交于B ,D 两点.若||3||BD OA =,则实数m 的值为( ) A .14B .15C .13D .18【答案】D 【解析】 【分析】设()11,B x y ,()22,D x y ,联立直线与抛物线方程,消去x 、列出韦达定理,再由直线x my =与抛物线的交点求出A 点坐标,最后根据||3||BD OA =,得到方程,即可求出参数的值; 【详解】解:设()11,B x y ,()22,D x y ,由24x my m y x=+⎧⎨=⎩,得2440y my m --=,∵216160m m ∆=+>,解得1m <-或0m >,∴124y y m +=,124y y m =-. 又由24x my y x=⎧⎨=⎩,得240y my -=,∴0y =或4y m =,∴()24,4A m m , ∵||3||BD OA =, ∴)()()224212(191616my y m m +-=+,又∵()()22212121241616y y y y y y m m -=+-=+, ∴代入解得18m =. 故选:D 【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题. 8.在等差数列{}n a 中,25a =-,5679a a a ++=,若3n nb a =(n *∈N ),则数列{}n b 的最大值是( )A .3-B .13- C .1 D .3【答案】D 【解析】 【分析】在等差数列{}n a 中,利用已知可求得通项公式29n a n =-,进而3293n n b a n =-=,借助()329f x x =-函数的的单调性可知,当5n =时, n b 取最大即可求得结果. 【详解】因为5679a a a ++=,所以639a =,即63a =,又25a =-,所以公差2d =,所以29n a n =-,即329n b n =-,因为函数()329f x x =-,在 4.5x <时,单调递减,且()0f x <;在 4.5x >时,单调递减,且()0f x >.所以数列{}n b 的最大值是5b ,且5331b ==,所以数列{}n b 的最大值是3.故选:D. 【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易. 9.设函数1()ln1xf x x x+=-,则函数的图像可能为( ) A . B . C . D .【答案】B 【解析】 【分析】根据函数为偶函数排除,A C ,再计算11()22ln 30f =>排除D 得到答案. 【详解】1()ln1xf x x x +=-定义域为:(1,1)- 11()ln ln ()11x xf x x x f x x x-+-=-==+-,函数为偶函数,排除,A C11()22ln 30f => ,排除D 故选B 【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧. 10.已知集合{}{}2340,13A x x x B x x =-->=-≤≤,则R ()A B =I ð( ) A .()1,3- B .[]1,3- C .[]1,4- D .()1,4-【答案】B 【解析】 【分析】先由2340x x -->得4x >或1x <-,再计算R ()ðA B I 即可. 【详解】由2340x x -->得4x >或1x <-,()(),14,A ∴=-∞-⋃+∞,[]R 1,4ðA =-,又{}13B x x =-≤≤,[]R ()1,3A B ∴=-I ð. 故选:B 【点睛】本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.11.如果实数x y 、满足条件10{1010x y y x y -+≥+≥++≤,那么2x y -的最大值为( )A .2B .1C .2-D .3-【答案】B 【解析】 【分析】 【详解】解:当直线2x y z -=过点()0,1A -时,z 最大,故选B12.如图是一个几何体的三视图,则该几何体的体积为()A .3B .3C 23D 43【答案】A 【解析】 【分析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积. 【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,2AD =,3AE =,高为2AB =.∴该几何体的体积为1232232V =⨯⨯⨯= 故选:A. 【点睛】本题考查三视图及棱柱的体积,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
河南省焦作市2021届新高考二诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,λ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离与P 到点A 的距离相等,则点P 的轨迹上的点到β的距离的最小值是( ) A .33- B .3C .33- D .32【答案】D 【解析】 【分析】建立平面直角坐标系,将问题转化为点P 的轨迹上的点到x 轴的距离的最小值,利用P 到x 轴的距离等于P 到点A 的距离得到P 点轨迹方程,得到()26399y x =-+≥,进而得到所求最小值.【详解】如图,原题等价于在直角坐标系xOy 中,点()3,3A ,P 是第一象限内的动点,满足P 到x 轴的距离等于点P 到点A 的距离,求点P 的轨迹上的点到x 轴的距离的最小值. 设(),P x y ,则()()2233y x y =-+-,化简得:()23690x y --+=,则()26399y x =-+≥,解得:32y ≥, 即点P 的轨迹上的点到β的距离的最小值是32. 故选:D . 【点睛】本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨迹方程,进而根据轨迹方程构造不等关系求得最值.2.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( )A .74B .32C .2D .54【答案】C 【解析】由函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到[]1212g x sin x sin x πωπωω=-=-()()(),函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,可得3x π=时,()g x 取得最大值,即23122k πωππωπ⨯-=+(),k Z ∈,0ω>,当0k =时,解得2ω=,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出()g x ,根据函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得3x π=时,()g x 取得最大值,求解可得实数ω的值.3.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右两个焦点分别为1F ,2F ,若存在点P 满足1212::4:6:5PF PF F F =,则该双曲线的离心率为( )A .2B .52C .53D .5【答案】B 【解析】 【分析】利用双曲线的定义和条件中的比例关系可求. 【详解】122155642F F e PF PF ===--.选B. 【点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c 的关系式. 4.△ABC 的内角A ,B ,C 的对边分别为,,a b c,已知1,30a b B ===o ,则A 为( )A .60oB .120oC .60o 或150oD .60o 或120o【答案】D 【解析】 【分析】由正弦定理可求得3sin 2A =,再由角A 的范围可求得角A. 【详解】 由正弦定理可知sin sin a b A B =,所以31sin 30=o,解得3sin A =,又0180A <<o o ,且>a b ,所以60A ︒=或120︒。
2019年高三二模数 学(理科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{1,2,3,4,5},{0,2,4},M N P M N ===I ,则P 的子集共有(A )2个(B )4个(C )6个 (D )8个(2)若,x y 满足0,1,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩则2z x y =+的最大值为(A )0(B )1(C )2(D )23(3)执行如图所示的程序框图,若输入A的值为2,则输出的n 值为 (A )3 (B )4 (C )5 (D )6(4)在61()2x x -的展开式中,4x 的系数为(A )3- (B )12-(C )3 (D )6(5)设函数2()sin f x a x x =+,若(1)2f =,则(1)f -=(A )2 (B )-2 (C )1 (D )0(6)多面体MN ABCD -的底面ABCD 为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM的长为(A 3(B 5(C 6(D )22(7)已知等差数列{}n a 满足*n a N ∈,且前10项和10290S =,则9a 的最大值为 (A )29 (B )49(C )50(D )58(8)为促进资源节约型和环境友好型社会建设,引导居民合理用电、节约用电,北京居民生活用电试行阶梯电价. 其标准如下表: 用户类别 分档电量 (千瓦时/户.月) 电价标准 (元/千瓦时)试行阶梯电 价的用户一档1-240(含) 0.4883 二档 241-400(含) 0.5383 三档400以上0.7883,则该用户1月份的用电量为(A )350千瓦时 (B )300千瓦时 (C )250千瓦时 (D )200千瓦时二、填空题共6小题,每小题5分,共30分。
河南省焦作市2021届新高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A .75B .65C .55D .45【答案】B 【解析】 【分析】计算1225+++L 的和,然后除以5,得到“5阶幻方”的幻和. 【详解】依题意“5阶幻方”的幻和为12525122526555+⨯+++==L ,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前n 项和公式,属于基础题.2.正项等比数列{}n a 中,153759216a a a a a a ++=,且5a 与9a 的等差中项为4,则{}n a 的公比是 ( ) A .1 B .2 C .22D 2【答案】D 【解析】 【分析】设等比数列的公比为q ,q 0>,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q . 【详解】由题意,正项等比数列{}n a 中,153759a a 2a a a a 16++=,可得222337737a 2a a a (a a )16++=+=,即37a a 4+=,5a 与9a 的等差中项为4,即59a a 8+=,设公比为q ,则()2237q a a 4q 8+==,则q 2(=负的舍去),故选D .【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.3.已知双曲线2222:1(0,0)x y C a b a b-=>>,O 为坐标原点,1F 、2F 为其左、右焦点,点G 在C 的渐近线上,2F G OG ⊥,且16||||OG GF =,则该双曲线的渐近线方程为( ) A .22y x =± B .3y x =±C .y x =±D .2y x =±【答案】D 【解析】 【分析】根据2F G OG ⊥,先确定出2,GF GO 的长度,然后利用双曲线定义将16||||OG GF =转化为,,a b c 的关系式,化简后可得到ba的值,即可求渐近线方程. 【详解】 如图所示:因为2F G OG ⊥,所以22222,1bc aGF b OG c b a b a ===-=+,16GF =16OG GF =u u r u u u r 2216GF F F =+u u r u u u r u u u u r,所以222216OG GF F F =+u u u r u u u r u u u u r ,所以()222216422cos 180a b c b c GF F =++⨯⨯︒-∠,所以2226422b a b c b c c ⎛⎫=++⨯⨯-⎪⎝⎭,所以222,2b b a a ==所以渐近线方程为y =. 故选:D. 【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.4.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O 为坐标原点若.0PA PB =u u u v u u u v,则直线OA 与OB 的斜率之积为( )A .14-B .3-C .18-D .4-【答案】A 【解析】 【分析】设出A ,B 的坐标,利用导数求出过A ,B 的切线的斜率,结合0PA PB ⋅=u u u r u u u r,可得x 1x 2=﹣1.再写出OA ,OB 所在直线的斜率,作积得答案. 【详解】解:设A (2114x x ,),B (2224x x ,),由抛物线C :x 2=1y ,得214y x =,则y′12x =. ∴112AP k x =,212PB k x =, 由0PA PB ⋅=u u u r u u u r ,可得12114x x =-,即x 1x 2=﹣1.又14OA x k =,24OB xk =,∴124116164OA OB x x k k -⋅===-. 故选:A .点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A 2(2,)a a ,B 2(2,)b b ,a b ¹,再求切线PA,PB 方程,求点P 坐标,再根据.0PA PB =u u u v u u u v得到1,ab =-最后求直线OA 与OB 的斜率之积.如果先设点P 的坐标,计算量就大一些.5.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( )A.23,-2 B .23-,-9 C .-2,-9 D .2,-2【答案】B 【解析】 【分析】由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在[]2,1-上的最大值和最小值. 【详解】依题意,()151,2323111,13x x f x x x x x ⎧+-≤<-⎪⎪=-+=⎨⎪---≤≤⎪⎩,作出函数()f x 的图象如下所示;由函数图像可知,当13x =-时,()f x 有最大值23-, 当2x =-时,()f x 有最小值9-. 故选:B. 【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.6.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122 B .112 C .102 D .92【答案】D 【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.7.根据散点图,对两个具有非线性关系的相关变量x ,y 进行回归分析,设u= lny ,v=(x-4)2,利用最小二乘法,得到线性回归方程为ˆu=-0.5v+2,则变量y 的最大值的估计值是( ) A .e B .e 2C .ln2D .2ln2【答案】B 【解析】 【分析】将u= lny ,v=(x-4)2代入线性回归方程ˆu=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值. 【详解】解:将u= lny ,v=(x -4)2代入线性回归方程ˆu=-0.5v+2得: ()2ln 0.542y x =--+,即()20.542x y e --+=,当4x =时,()20.542x --+取到最大值2, 因为xy e =在R 上单调递增,则()20.542x y e --+=取到最大值2e .故选:B. 【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.8.双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,那么它的离心率为( )A B .C .2D 【答案】D 【解析】 【分析】根据双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,列出方程,求出m 的值即可.【详解】∵双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,12=,∴4m =,∴双曲线的离心率2c e a ==. 故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.9.已知集合{}{13,},|2xA x x x ZB x Z A =|-≤∈=∈∈,则集合B =( ) A .{}1,0,1- B .{}0,1C .{}1,2D .{}0,1,2【答案】D 【解析】 【分析】弄清集合B 的含义,它的元素x 来自于集合A ,且2x 也是集合A 的元素. 【详解】因|1|3x -≤,所以24x -≤≤,故{}2,1,0,1,2,3,4A =--,又x ∈Z ,2x A ∈ ,则0,1,2x =, 故集合B ={}0,1,2. 故选:D. 【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.10.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x+6y 最大值的变化范围[20,22],则t 的取值范围( ) A .[2,4] B .[4,6]C .[5,8]D .[6,7]【答案】B 【解析】 【分析】作出可行域,对t 进行分类讨论分析目标函数的最大值,即可求解. 【详解】画出不等式组0024x y x y ≥⎧⎪≥⎨⎪+=⎩所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM ,此时目标函数z =9x+6y 在A (2,0)取得最大值Z =18不符合题意t >2时可知目标函数Z =9x+6y 在224x y t x y +=⎧⎨+=⎩的交点(82433t t --,)处取得最大值,此时Z =t+16由题意可得,20≤t+16≤22解可得4≤t≤6 故选:B . 【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.11.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-【答案】A 【解析】 【分析】画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案. 【详解】画出不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩所表示平面区域,如图所示,由目标函数3z x y =-+,化为直线3y x z =+,当直线3y x z =+过点A 时, 此时直线3y x z =+在y 轴上的截距最大,目标函数取得最大值,又由210x y y -+=⎧⎨=⎩,解得(1,0)A -,所以目标函数的最大值为3(1)03z =-⨯-+=,故选A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.12.已知平面向量,,a b c r r r ,满足||2,||1,b a b c a b λμ=+==+r r r r r r 且21λμ+=,若对每一个确定的向量a r,记||c r 的最小值为m ,则当a r变化时,m 的最大值为( )A .14B .13C .12D .1【答案】B 【解析】 【分析】根据题意,建立平面直角坐标系.令,OP a OB b ==u u u r r u u u r r OC c =u u u r r.E 为OB 中点.由1a b +=r r 即可求得P 点的轨迹方程.将c a b λμ=+r r r变形,结合21λμ+=及平面向量基本定理可知,,P C E 三点共线.由圆切线的性质可知||c r的最小值m 即为O 到直线PE 的距离最小值,且当PE 与圆M 相切时,m 有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为m 的最大值. 【详解】根据题意,||2,b =r设()(),,2,0OP a x y OB b ====u u u r r u u u r r ,(),1,0OC c E =u u u r r则2b OE =r u u u r由1a b +=r r()2221x y ++=即P 点的轨迹方程为()2221x y ++=又因为c a b λμ=+r r r ,变形可得22b c a λμ⎛⎫=+ ⎪⎝⎭rr r ,即2OC OP OE λμ=+uuur uuu r uuu r ,且21λμ+=所以由平面向量基本定理可知,,P C E 三点共线,如下图所示:所以||c r的最小值m 即为O 到直线PE 的距离最小值根据圆的切线性质可知,当PE 与圆M 相切时,m 有最大值 设切线PE 的方程为()1y k x =-,化简可得kx y k 0--=由切线性质及点M 2211k k k --=+,化简可得281k =即24k =±220y -=220x y += 所以当a r变化时, O 到直线PE 的最大值为()222413214m -==⎛⎫+± ⎪⎝⎭即m 的最大值为13故选:B 【点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用, 圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.二、填空题:本题共4小题,每小题5分,共20分。
河南省焦作市2021届新高考第二次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.空气质量指数AQI是反映空气状况的指数,AQI指数值趋小,表明空气质量越好,下图是某市10月1日-20日AQI指数变化趋势,下列叙述错误的是()A.这20天中AQI指数值的中位数略高于100B.这20天中的中度污染及以上(AQI指数>150)的天数占1 4C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好【答案】C【解析】【分析】结合题意,根据题目中的20天的AQI指数值,判断选项中的命题是否正确.【详解】对于A,由图可知20天的AQI指数值中有10个低于100,10个高于100,其中第10个接近100,第11个高于100,所以中位数略高于100,故A正确.对于B,由图可知20天的AQI指数值中高于150的天数为5,即占总天数的14,故B正确.对于C,由图可知该市10月的前4天的空气质量越来越好,从第5天到第15天空气质量越来越差,故C错误.对于D,由图可知该市10月上旬大部分指数在100以下,中旬大部分指数在100以上,所以该市10月上旬的空气质量比中旬的空气质量好,故D正确.故选:C【点睛】础.2.已知函数2,()5,x x x af x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( ) A .(0,1)[5,)+∞ B .6(0,)[5,)5+∞C .(1,5]D .6(,5]5【答案】A 【解析】 【分析】分段求解函数零点,数形结合,分类讨论即可求得结果. 【详解】作出2y x x =-和5y x =-,4y x =的图像如下所示:函数()()4g x f x x =-有三个零点, 等价于()y f x =与4y x =有三个交点, 又因为0a >,且由图可知,当0x ≤时()y f x =与4y x =有两个交点,A O , 故只需当0x >时,()y f x =与4y x =有一个交点即可. 若当0x >时,()0,1a ∈时,显然y =y (y )与y =4|y |有一个交点y ,故满足题意; 1a =时,显然y =y (y )与y =4|y |没有交点,故不满足题意;1,5a ∈时,显然y =y (y )与y =4|y |也没有交点,故不满足题意;[)5,a ∈+∞时,显然()y f x =与4y x =有一个交点C ,故满足题意.综上所述,要满足题意,只需a ∈(0,1)[5,)+∞.故选:A. 【点睛】本题考查由函数零点的个数求参数范围,属中档题. 3.函数()()()22214f x xxx =--的图象可能是( )A .B .C .D .【答案】A 【解析】 【分析】先判断函数()y f x =的奇偶性,以及该函数在区间()0,1上的函数值符号,结合排除法可得出正确选项. 【详解】函数()y f x =的定义域为R ,()()()()()()()2222221414f x x x x xxx f x ⎡⎤⎡⎤-=-⋅--⋅--=--=⎣⎦⎣⎦,该函数为偶函数,排除B 、D 选项; 当01x <<时,()()()222140f x x xx =-->,排除C 选项.故选:A. 【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题. 4.已知复数21aibi i-=-,其中a ,b R ∈,i 是虚数单位,则a bi +=( ) A .12i -+ B .1C .5D 5【答案】D 【解析】 试题分析:由21aibi i-=-,得()21,1,2ai i bi b i a b -=-=+∴=-=,则()2212,12125a bi i a bi i +=-+∴+=-+=-+= D.5.正ABC ∆的边长为2,将它沿BC 边上的高AD 翻折,使点B 与点C 间的距离为3,此时四面体A BCD -的外接球表面积为( )A .103πB .4πC .133πD .7π【答案】D 【解析】 【分析】如图所示,设AD 的中点为2O ,BCD ∆的外接圆的圆心为1O ,四面体A BCD -的外接球的球心为O ,连接12,,OO OO OD ,利用正弦定理可得11DO =,利用球心的性质和线面垂直的性质可得四边形21OO DO 为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设AD 的中点为2O ,BCD ∆外接圆的圆心为1O ,四面体A BCD -的外接球的球心为O ,连接12,,OO OO OD ,则1OO ⊥平面BCD ,2OO AD ⊥. 因为1,3CD BD BC ===,故231cos 2112BDC -∠==-⨯⨯,因为()0,BDC π∠∈,故23BDC π∠=. 由正弦定理可得1322sin 3DO ==,故11DO =,又因为3AD =23DO =. 因为,,AD DB AD CD DB CD D ⊥⊥⋂=,故AD ⊥平面BCD ,所以1//OO AD , 因为AD ⊥平面BCD ,1DO ⊂平面BCD ,故1AD DO ⊥,故21//OO DO , 所以四边形21OO DO 为平行四边形,所以1232OO DO ==, 所以3714OD =+=72,外接球的表面积为74=74ππ⨯.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.6.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠, 长五尺在粗的一端截下一尺,重4斤;在细的一端截下一尺,重2斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是( ) A .73斤 B .72斤 C .52斤 D .3斤【答案】B 【解析】 【分析】依题意,金箠由粗到细各尺重量构成一个等差数列,14a =则52a =,由此利用等差数列性质求出结果. 【详解】设金箠由粗到细各尺重量依次所成得等差数列为{}n a ,设首项14a =,则52a =,∴公差5124151512a a d --===---,2172a a d ∴=+=. 故选B 【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.7.已知集合{|{|2,}A x N y B x x n n Z =∈===∈,则A B =( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]【答案】B 【解析】 【分析】计算{}0,1,2,3,4A =,再计算交集得到答案 【详解】{}{|0,1,2,3,4A x N y =∈==,{|2,}B x x n n Z ==∈表示偶数,故{0,2,4}AB =.本题考查了集合的交集,意在考查学生的计算能力. 8.下列说法正确的是( )A .“若1a >,则1a >”的否命题是“若1a >,则21a <”B .在ABC 中,“A B >”是“sin sin A B >”成立的必要不充分条件 C .“若tan 1α≠,则4πα≠”是真命题D .存在0(,0)x ∈-∞,使得0023x x <成立 【答案】C 【解析】 【分析】A :否命题既否条件又否结论,故A 错.B :由正弦定理和边角关系可判断B 错.C :可判断其逆否命题的真假,C 正确.D :根据幂函数的性质判断D 错. 【详解】解:A :“若1a >,则1a >”的否命题是“若1a ≤,则21a ≤”,故 A 错.B :在ABC 中,2sin 2sin A B a b R A R B >⇔>⇔>,故“A B >”是“sin sin A B >”成立的必要充分条件,故B 错. C :“若tan 1α≠,则4πα≠”⇔“若=4πα,则tan =1α”,故C 正确. D :由幂函数(0)n y x n =<在()0+∞,递减,故D 错. 故选:C 【点睛】考查判断命题的真假,是基础题.9.已知0a b >>,则下列不等式正确的是( )A b a <B b a >C .abe b e a -<- D .abe b e a ->-【答案】D 【解析】 【分析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.已知0a b >>,赋值法讨论0a b >>的情况: (1)当1a b >≥时,令2a =,1b =,则a b b a -<-,a b e b e a ->-,排除B 、C 选项;(2)当01b a <<≤时,令12a =,13b =,则a b b a ->-,排除A 选项.故选:D. 【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题. 10.ABC ∆中,25BC =,D 为BC 的中点,4BAD π∠=,1AD =,则AC =( )A .25B .22C .65-D .2【答案】D 【解析】 【分析】在ABD ∆中,由正弦定理得10sin 10B =;进而得5cos cos 45ADC B π⎛⎫∠=+= ⎪⎝⎭,在ADC ∆中,由余弦定理可得AC . 【详解】在ABD ∆中,由正弦定理得sin sin 4AD BD B π=,得10sin B =,又BD AD >,所以B 为锐角,所以310cos B =,5cos cos 4ADC B π⎛⎫∴∠=+= ⎪⎝⎭, 在ADC ∆中,由余弦定理可得2222cos 4AC AD DC AD DC ADC =+-⋅∠=,2AC ∴=.故选:D 【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.11.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A 【解析】 【详解】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形, 且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。
2021届高考冲刺金卷(新课改5月)数学试题一、单选题1.若1zi i =-,则z =( ) A .1i + B .1i --C .1i -D .1i -+【答案】C【分析】先由复数的乘法化简复数z ,再根据共轭复数的概念可得选项. 【详解】因为2zi i i i ⋅=-,1z i -=--,所以1z i =+,所以1z i =-. 故选:C . 2.已知集合02xA x x ⎧⎫=≤⎨⎬-⎩⎭,{}0 2.5B x N x =∈≤<,则A B =( )A .{}02x x ≤≤B .{}02x x ≤<C .{}0,1D .{}0,1,2【答案】C【分析】求出集合A 、B ,利用交集的定义可求得集合A B .【详解】{}0022xA xx x x ⎧⎫=≤=≤<⎨⎬-⎩⎭,{}{}0 2.50,1,2B x N x =∈≤<=,所以{}{}{}020,1,20,1A B x x ⋂=≤<⋂=. 故选:C .3.火车站流动旅客较多,本着“疫情防控不松懈,健健康康过春节”的精神,某火车站安排6名防疫工作人员每天分别在A ,B ,C 三个进出口对旅客进行防护宣传与检查工作,每名工作人员只去1个进出口,A 进出口安排1名,B 进出口安排2名,剩下的人员到C 进出口,则不同的安排方法共有( ) A .48种 B .60种 C .100种 D .120种【答案】B【分析】应用分步计数,首先从6人选1人去A ,再从5人选2人去B ,最后安排C ,由乘法公式求不同的安排方法数.【详解】1、从6名工作人员中选1名去A 进出口,方法数有16C ; 2、从其余5名工作人员中选2名去B 进出口,方法数有25C ; 3、剩下的3名工作人员去C 进出口,方法数有33C .∴故不同的安排方法共有12365360C C C ⋅⋅=种.故选:B .4.在平行四边形ABCD 中,设CB a =,CD b =,E 为AD 的中点,CE 与BD 交于F ,则AF =( )A .23a b+-B .23a b+-C .23a b--D .23a b--【答案】B【分析】连接AC 与BD 交于O ,根据F 为三角形ACD 的重心,结合向量的运算法则,即可求解.【详解】连接AC 与BD 交于O ,则O 为AC 的中点, 因为E 为AD 的中点,所以F 为三角形ACD 的重心, 所以()()112333a bAF AC AD a b a +=+=---=-. 故选:B.5.已知圆柱1OO 中,点A ,B ,C 为底面圆周上的三点,CD 为圆柱的母线,2AC =,60ACB ∠=︒,则点A 到平面BCD 的距离为( )A .3B .1C 3D 3【答案】A【分析】由圆柱母线的性质易得CD ⊥平面ABC ,过点A 作AE BC ⊥,根据面面垂直的判定及性质可知AE 为点A 到平面BCD 的距离,由sin ∠=AEACB AC结合已知,即可求AE .【详解】如图所示,由题意知:CD ⊥平面ABC ,CD ⊂平面BCD , ∴平面BCD ⊥平面ABC ,又面BCD面ABC BC =,∴过点A 作AE BC ⊥,则AE ⊥平面BCD ,即AE 为点A 到平面BCD 的距离,在△ABC 中,sin ∠=AEACB AC,故sin 2sin603=⋅∠=⨯︒=AE AC ACB , 故选:A6.已知双曲线2213-=-x y m m()03m <<的左右焦点分别为1F ,2F ,点P 在双曲线的右支上,O 为坐标原点,1230PF F ∠=︒,1212OP F F =,则m 的值为( ) A .32B .332C .1D .2【答案】B【分析】由题知12PF PF ⊥,进而根据双曲线的定义求解即可. 【详解】由题知223,a m b m =-=,所以3c =, 因为1212OP F F =,所以12PF PF ⊥, 又1230PF F ∠=︒,所以13PF =,23PF =,所以由双曲线的定义可知123323-=-=-PF PF m ,解得332m =. 故选:B .【点睛】本题考查双曲线的定义,考查运算求解能力,是基础题.本题解题的关键在于根据题意得12PF PF ⊥,进而结合双曲线的定义求解.7.2+=n n a a c (n N *∀∈,c 为非零常数)是数列{}n a 满足:4n n a a +=()*∀∈N n 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件 【答案】A【分析】由2+=n n a a c 可得4n n a a +=()*∀∈N n 成立,反之举反例2,,1,,n n a n ⎧=⎨-⎩为奇数为偶数可得必要性不成立;【详解】∵2+=n n a a c (n N *∀∈,c 为非零常数),∴24++=n n a a c ()*∀∈N n ,∴224+++=n n n n a a a a ()*∀∈N n , ∴4n n a a +=()*∀∈N n ,∴2+=n n a a c 是4n n a a +=的充分条件.若2,,1,,n n a n ⎧=⎨-⎩为奇数为偶数则4n n a a +=()*∀∈N n ,但2+=n n a a c (n N *∀∈,c 为非零常数)不成立,所以不是必要的. 故选:A.【点睛】本题考查数列与简易逻辑知识的交会,求解时证明结论不成立,可举反例说明. 8.已知随机变量ξ的分布列是随机变量η的分布列是以下错误的为( )A .01p ≤≤B .()203-==pP ξη C .()()2=+E E ηξ D .()()()E E E ηξξη+=+【答案】C【分析】根据分布列的性质,以及概率的计算和期望的计算公式,逐项判定,即可求解.【详解】对于A 中,由分布列的性质,可得2031020302p p p p -⎧≥⎪⎪-⎪≥⎪⎨⎪≥⎪⎪⎪≥⎩,解得01p ≤≤,所以A 正确.对于B 中,()()2003-====pP P ξηξ,所以B 正确. 对于C 中,()13-=p E ξ,()32+=pE η,所以()()15322332-+++=+=≠=p p pE E ξη,所以C 错误. 对于D 中,()()11101,1326+===-==⨯=P P ξηξη,()3216-+==pP ξη,()2226-++==p p P ξη,()22336-++==p p P ξη,()246+==p P ξη, 计算得()576++=p E ξη,所以()()()E E E ξηξη+=+,所以D 正确. 故选:C .二、多选题9.若21nax x ⎛⎫- ⎪⎝⎭展开式所有项的系数之和与二项式系数之和均为32,则下面结论正确的是( ) A .5n =B .展开式中含4x 的系数为270C .展开式的第4项为90-xD .展开式中含有常数项【答案】ABC【分析】令1x =,可得21nax x ⎛⎫- ⎪⎝⎭展开式所有项的系数之和()1232-==n na ,解之求得n ;可判断A 选项,再运用二项式的展开式的通项公式可判断BCD 选项.【详解】令1x =,由题意可得()1232-==nna ,∴5n =,3a =.∴二项式为5213⎛⎫- ⎪⎝⎭x x ,∴A对; ∴()()5251031551C 331C ---+⎛⎫=-=⋅-⋅⋅ ⎪⎝⎭rrr rr r rr T xxx ,令2r ,计算可知展开式中含4x 的系数为270,∴B 对;令3r =,所以()353310334531C 90T x x --⨯=⋅-⋅⋅=-,所以展开式的第4项为90-x .∴C 对;令1030r -=,解得103r =,而r N *∉,所以展开式中不含有常数项, 故选:ABC .【点睛】方法点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.10.流行病学调查,简称“流调”,是疫情防控工作中的重要一环,它为描绘清晰的病毒传播链、判定密切接触者、采取隔离措施以及划定消毒范围提供了科学依据.下图是某地183名“新冠”病例年龄分布“流调”数据,以下关于“流调”说法正确的是( )A .51~60岁的中年人感染风险最高B .年龄的中位数在51~60岁之间C .婴幼儿抵抗能力较强D .“隔离”相关人员是防止病毒传播的重要措施之一 【答案】ABD【分析】根据图表中的数据,逐项判定,即可求解.【详解】由图可知,51~60岁感染46人最多,所以A 正确;由于183********++=<,1833153446982+++=>, 所以年龄的中位数在51至60岁之间,故B 正确;中老年人外出较多,因此感染的风险就越高,而婴儿和外界接触少是感染者少的主要原因,并不是因为抵抗力强,所以C 错误, D 正确. 故选:ABD .11.函数()()cos f x x ωϕ=+()02π≤<ϕ的部分图象如图所示,则( )A .3ω=B .6π5=ϕ C .函数()f x 在3π14π,515⎡⎤⎢⎥⎣⎦上单调递增 D .函数()f x 图象的对称轴方程为ππ315=-k x ()k Z ∈ 【答案】AD【分析】由图象可得函数的周期2π3T =,求得3ω=,判定A 正确;根据五点对应法求得π5ϕ=,可判定B 错,由三角函数的图象与性质,可判定C 错,D 正确. 【详解】由图象可得函数的周期13ππ2π2π230103⎛⎫=⨯-== ⎪⎝⎭T ω,解得3ω=,所以A正确;由五点对应法得ππ32π102⋅+=+k ϕ()k Z ∈,因为0πϕ≤<2,所以π5ϕ=,所以B 错,所以()πcos 35⎛⎫=+ ⎪⎝⎭f x x , 当π2π32ππ5≤+≤+k x k ()k Z ∈时,函数()f x 单调递减, 取1k =,得()f x 的一个单调递减区间为3π14π,515⎡⎤⎢⎥⎣⎦,所以C 错,函数()f x 图象的对称轴方程为π3π5+=x k ()k Z ∈,即ππ315=-k x ()k Z ∈,所以D 对. 故选:AD.12.设函数()f x 满足:①()21,0,log ,02,x f x x x =⎧=⎨<≤⎩;②()()22f x f x +=-;③()()22f x f x +=-.当0x >时,函数()f x 与函数y kx b =+[)(),0,1∈k b 交点的横坐标从左到右依次构成数列{}n a ,则下列结论正确的是( ) A .函数()f x 的值域为0,1 B .函数()f x 是偶函数C .对任意的k ,[)0,1b ∈,数列{}n a 的前n 项和0n S ≠D .当0k =,0b ≠时,满足1128=>∑nii a的n 的最小值为17【答案】BCD【分析】A 应用特殊值直接判断正误;B 由递推关系判断()()f x f x -=是否成立;C 根据题设描述,直线与()f x 在0x >上恒有交点,可判断正误;D 结合图象,利用函数的对称性易知42=-x m ()m *∈N 为对称轴,即可判断正误.【详解】A :当13x =时,得2211log log 3133⎛⎫==> ⎪⎝⎭f ,错误;B :设0x <,0x ->,则()()()()()()()()222222-=-+-=-++=--+=f x f x f x f x f x ,故函数()f x 是偶函数,正确;C :对∀k ,[)0,1b ∈,由y kx b =+总与()f x 图象在第一象限有交点,如下图示,数列{}n a 的前n 项和0n S ≠,正确;D :由②③可知,函数()f x 是周期为4的周期函数,且42=-x m ()m *∈N 为周期内的对称轴.而()0,1b ∈时()1614261014128==⨯+++=∑ii a.要使1128=>∑ni i a ,则n 取到的最小值为17,正确.故选:BCD .【点睛】关键点点睛:对于D 选项,根据()f x 的周期性及对称性,易知在每个周期内与y b =的交点横坐标关于42=-x m 对称,即可求1i ni a =∑,进而判断选项的正误.三、填空题13.已知一组数据点()11,x y ,()22,x y ,()33,x y ,…,(),n n x y ,用最小二乘法得到其线性回归方程为24=-+y x ,若数据1x ,2x ,3x ,…n x 2计数据1y ,2y ,3y ,…n y 的均值为______. 【答案】2【分析】根据题意求得2x =2y =,即可得到答案.【详解】因为回归方程为24=-+y x ,且数据1x ,2x ,3x ,…,n x 2即2x =把x =42y ==,所以可以估计数据1y ,2y ,3y ,…,n y 的均值为2. 故答案为:2.14.过点()1,1P -作斜率为k 的直线l 与圆()22:29C x y -+=相交于A ,B 两点,若AB 4=,则k 的值为______.【答案】2-或12【分析】设直线l 的方程为()11y k x -=+,利用点到直线的距离公式和圆的弦长公式,列出方程,即可求解.【详解】依题可设直线l 的方程为()11y k x -=+,即10kx y k -++=, 设圆()2,0C 到直线l 的距离为d,则d =所以==AB所以4=,解得2k =-或12. 故答案为:2-或12. 15.已知133log 80a =,=b 4log 102=c ,则a ,b ,c 的大小关系为______.【答案】b a c <<【分析】由对数运算得380log 3a =,进而得23a <<,5log 242b =<,3c =>,进而得答案.【详解】因为133380log log 803a ==,3332780812log log log 3333=<<=,所以23a <<,55log 24log 252==<=b ,4log 10log 223==>c ,所以b a c <<.故答案为:b a c <<【点睛】本题考查对数式的大小比较,对数运算,考查运算求解能力,是中档题.本题解题的关键在于利用对数运算性质化简,,a b c ,进而借助中间量2,3实现大小比较.四、双空题16.飞车走壁技艺利用圆周运动特点和惯性原理,表演者驾驶飞车在球形大棚的内壁上行走,飞车忽高忽低,斜走横行,甚至直贯球顶,该技艺目前已成为中国国宝级杂技节目.已知球形飞车大棚内有4辆飞车A 、B 、C 、D ,分别飞行于上下平行两个的等圆周上,飞车D 飞行在上圆周,飞车A 、B 、C 飞行在下圆周,且满足30BAC ∠=,4m =BC ,则ABCS的最大值为______2m ;若三棱锥D ABC -的最大体积为()31683m +,则球形飞车大棚的直径约为______m .【答案】843+ 10【分析】利用余弦定理结合基本不等式可求得AB AC ⋅的最大值,进而可求得ABCS的最大值,求出ABC 的外接圆半径以及三棱锥D ABC -的高h 的最大值,利用球的截面圆的性质得出2222h R r ⎛⎫=+ ⎪⎝⎭可求出球形飞车大棚的半径,由此可得出结果.【详解】由余弦定理可得:(22162cos3023=+-⋅⋅︒≥⋅⋅AB AC AB AC AB AC , 111sin 3084322223=⋅⋅︒≤=+-ABC S AB AC △ 设三棱锥D ABC -的高为hm ,由题中最大体积知,(142316833⨯+⋅=+h 6h =.由正弦定理可得:截面圆的直径428sin 30r ==,所以4r =.由球的截面性质可知球的半径R 满足222169252⎛⎫=+=+= ⎪⎝⎭h R r ,故5R =,球形飞车大棚的直径大约为10m . 故答案为:843+10.【点睛】思路点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.五、解答题17.已知等差数列{}n a 的前n 项和为n S ,且636S =,______请在①35a =;②24621a a a ++=,③749=S 这三个条件中任选一个补充在上面题干中,并回答以下问题. (1)求数列{}n a 的通项公式; (2)求数列3n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】选择见解析;(1)21n a n =-;(2)113n nn T +=-. 【分析】(1)由636S =,得到12512a d +=,分别选择①②③,列出方程组求得1,a d 的值,即可求得数列的通项公式;(2)由(1)可得2133-=n n na n ,利用乘公比错位相减法,即可求解. 【详解】(1)设等差数列{}n a 的公差为d ,由636S =,可得1656362⨯+=a d ,即12512a d +=,选①:由35a =,可得11251225a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,所以数列{}n a 的通项公式为()()1111221n a a n d n n =+-=+-⨯=-. 选②:由24621a a a ++=,可得4321a =,即47a =, 所以11251237a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,所以()()1111221n a a n d n n =+-=+-⨯=-.选③:由749=S ,因为636S =,可得77613a S S =-=,所以112512613a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,所以()()1111221n a a n d n n =+-=+-⨯=-.(2)由(1)可得2133-=n n na n , 所以23135213333-=+++⋅⋅⋅+n n n T , 所以234113521333313+-+++⋅⋅⋅+=n n T n ,两式相减得2341222221333233133+-+++⋅⋅⋅+-=+n n n n T23411111112123333333+-⎛⎫=++++⋅⋅⋅+-- ⎪⎝⎭n n n 111111212223321333313++⎛⎫- ⎪-+⎝⎭=⨯--=--n n n n n所以113n nn T +=-. 【点睛】错位相减法求解数列的前n 项和的分法:(1)适用条件:若数列{}n a 为等差数列,数列{}n b 为等比数列,求解数列{}n n a b 的前n 项和n S ;(2)注意事项:①在写出n S 和n qS 的表达式时,应注意将两式“错位对齐”,以便下一步准确写出n n S qS -;②作差后,应注意减式中所剩各项的符号要变号; ③作差后,作差部分应用为1n -的等比数列求和.18.在梯形ABCD 中,//AB CD ,<AB CD .对角线AC ,BD 交于点O,且有AC =π4BDC ∠=,ACD α∠=. (1)用关于α的函数分别表示BD ,AB CD +; (2)若32AB =,52CD =,π0,4α⎛⎫∈ ⎪⎝⎭,求sin cos αα+的值和ABC 的面积.【答案】(1)=BD α,+=AB CD αα;(2)210sin cos 5αα+=;34. 【分析】(1)过A 点作//AE BD 交CD 的延长线于E ,,进而在三角形ACE 中,利用正弦定理得25sin =AE α,π25sin 10sin 10cos 4⎛⎫=+=+ ⎪⎝⎭EC ααα,进而得答案;(2)由题知210sin cos 5αα+=,此外由余弦定理222cos 2AE CE AC AEC AE CE +-∠=⋅得2BD =,进而得34ABD S =△,所以34ABCS =. 【详解】解(1)如图,过A 点作//AE BD 交CD 的延长线于E ,则π4∠=∠=AED BDC ,AB ED =,BD AE =, 在三角形ACE 中,由正弦定理得,sin sin sin ==∠∠∠AE АC ECACD AEC CAE,所以10ππsin sin sin 44==⎛⎫+ ⎪⎝⎭AE ECαα, 所以25sin =AE α,π2510104⎛⎫=+=+ ⎪⎝⎭EC ααα, 所以25sin =BD α,1010+=AB CD αα. (2)因为35422=+=+=EC AB CD ,10104=+=EC αα, 所以210sin cos 5αα+=; 因为4=+=+=CE DC DE DC AB ,AE BD =,代入余弦定理有222cos 2AE CE AC AEC AE CE +-∠=⋅,即221610=28BD BD+-, 解得2BD =或32BD =, 当32BD =,此时322πsin sin 242525==>=BD α,与π4<α矛盾,所以2BD =, 所以11323sin 222224=⋅⋅∠=⨯⨯⨯=ABD S AB BD ABD △.由于ABD △与ABC 等底等高,故ABD ABC S S =△△ 所以34ABCS=. 【点睛】本题考查利用正余弦定理解三角形,考查运算求解能力,是中档题.本题解题的关键在于过点A 作//AE BD 交CD 的延长线于E ,进而在三角形ACE 中,利用正弦定理求解.19.2022年北京冬季奥运会将在北京市和河北省张家口市联合举行,北京市延庆区张山营镇的2022北京冬奥森林公园于2020年4月22日正式启动了冬奥赛区的树木移植工作.本次移植的树木来自2022北京冬奥赛区树木假植区,包含暴马丁香、核桃楸、大叶白蜡等多个品种.现从冬奥赛区树木假植区中抽取300棵暴马丁香,并对树木高度H (单位:m )进行测量,将测量结果绘制为如图所示的频率分布直方图.(1)估计抽取的300棵暴马丁香树木高度的平均值(同一组中的数据可用该区间的中点值为代表);(2)北京冬奥赛区树木假植区内的暴马丁香的高度H (m )服从正态分布()2,0.122N μ,其中μ近似为样本平均数x .记X 为假植区内10000棵暴马丁香中高度位于区间()2.122,2.244的数量,求()E X ;(3)在树木移植完成后,采取施用生根粉、加挂营养液等方式确保了移植树木的成活率,经验收,单棵移植成活率达到了90%.假设各棵树木成活与否相互不影响,求移植五棵暴马丁香成活四棵及以上的概率.(保留三位小数)附:若()2~,H N μσ,则()0.6827-<<+=P H μσμσ,()220.9545-<<+=P H μσμσ.【答案】(1)()2m ;(2)()1359E X =;(3)0.919.【分析】(1)根据直方图中各矩形的面积之和为1,可求得抽取树木高度为1.95 2.05-的频率,再运用每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得样本的平均值;(2)根据(1)估计得2μ=,由正态分布密度曲线的性质求得概率()2.122 2.244P H <<,依题意知()~10000,0.1359X B ,从而根据二项分布的期望公式可得答案. (3)根据独立重复实验的概率公式可求得答案. 【详解】(1)抽取树木高度为1.95 2.05-的频率为()10.10.20.9 2.2 2.40.80.20.33-⨯+++++=,所以样本均值()1.70.02 1.80.09 1.90.222.00.33 2.10.24 2.20.08 2.30.022m =⨯+⨯+⨯+⨯+⨯+⨯+⨯=x .(2)由第一问估计2μ=,()()2.122 2.24420.122220.122<<=+<<+⨯P H P H()0.95450.682720.13592-=+<<+==P H μσμσ,一棵树的高度位于区间()2.122,2.244的概率为0.1359,依题意知()~10000,0.1359X B ,所以()100000.13591359=⨯=E X . (3)记移植五棵树中成活了Y 棵.()()()4455445C 0.90.10.90.919≥==+==⨯⨯+≈P Y P Y P Y .【点睛】方法点睛:本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.20.如图,等腰直角ACD △的斜边AC 为直角ABC 的直角边,E 是AC 的中点,F 在BC 上.将ACD △沿AC 翻折,分别连接DE ,DF ,EF ,使得平面DEF ⊥平面ABC .已知2AC =,30B ∠=,(1)证明://EF 平面ABD ;(2)若2DF =,求二面角A BC D --的余弦值.【答案】(1)证明见解析;(2)33. 【分析】(1)由面面垂直和下面垂直的性质可得DG AC ⊥,DE AC ⊥,从而得到AC ⊥平面DEF ,根据线面垂直性质知AC EF ⊥,从而得到//EF AB ,由线面平行的判定可得结论;(2)以E 为坐标原点可建立空间直角坐标系,在根据角度和长度关系求得所需点的坐标和向量坐标后,根据二面角的向量求法可直接求得结果. 【详解】(1)证明:过D 做DG EF ⊥,垂足为G ,平面DEF ⊥平面ABC ,平面DEF ⋂平面ABC EF =,DG ⊂平面DEF ,∴DG ⊥平面ABC ,AC ⊂平面ABC ,∴DG AC ⊥,E 是等腰直角三角形ADC 斜边AC 的中点,∴DE AC ⊥,又DEDG D =,,DE DG ⊂平面DEF ,AC ∴⊥平面DEF ,又EF ⊂平面DEF ,∴AC EF ⊥, AC AB ⊥,∴//EF AB ,EF ⊄平面ABD ,AB ⊂平面ABD ,//EF ∴平面ABD .(2)在等腰直角ADC 中,2AC =,∴112DE AC ==, 由(1)可知:EF 为直角三角形BAC 的中位线,30B ∠=,32AB AC EF ∴==,3EF ∴=,2DF =,222EF DE DF ∴=+,DE DF ∴⊥,∴63DG =,33EG =. 以E 为原点,建立如图所示的空间直角坐标系,则()1,0,0C ,()3,0F ,36⎛ ⎝⎭D , ∴()3,0=-CF ,361,33⎛=- ⎝⎭CD , 设平面CDF 的法向量(),,n x y z =,则3603330n CD x y z n CF x y ⎧⋅=-++=⎪⎨⎪⋅=-+=⎩,令1y =,解得:3x =2z =(3,1,2n ∴=,显然平面ABC 的一个法向量()0,0,1m =,23cos ,6m n m n m n⋅∴<>===⋅, 由图形知:二面角A BC D --为锐二面角,∴二面角A BC D --3【点睛】方法点睛:空间向量法求解二面角的基本步骤是: (1)建立空间直角坐标系,利用坐标表示出所需的点和向量;(2)分别求得二面角的两个半平面的法向量,根据向量夹角公式求得法向量的夹角; (3)根据图形或法向量的方向确定所求角为二面角的大小或二面角补角的大小.21.已知椭圆()2222:10x y C a b a b+=>>的右焦点F 与抛物线243y x =的焦点重合,且抛物线的准线与椭圆C 相交的弦长为1.(1)求椭圆C 的标准方程;(2)设两条不同的直线m 与直线l 交于点1,2⎛ ⎝⎭,且倾斜角之和为π,直线l 交椭圆C 于点A 、B ,直线m 交椭圆C 于点C 、D ,求22CD AB的取值范围.【答案】(1)2214x y +=;(2))(21,2⎡⋃⎣. 【分析】(1)利用椭圆的定义可求得a 的值,结合c 的值可求得b 的值,进而可求得椭圆C 的标准方程;(2)设直线l 为()12y k x -=-,直线m 为()1-=--y k x ,0k ≠,设点()11,A x y 、()22,B x y 、()33,C x y 、()44,D x y ,将直线l 的方程与椭圆C 的方程联立,利用韦达定理和弦长公式求得AB ,同理可得CD ,分0k >、0k <两种情况讨论,利用基本不等式与不等式的基本性质可求得22CD AB的取值范围.【详解】(1)抛物线2y =的焦点为)F ,准线方程为x =设c =c =由椭圆的定义可得122a =,则2a =,1b ==,则椭圆C 的标准方程为2214x y +=;(2)因为两条不同的直线m 与直线l 交于点1,2⎛ ⎝⎭,且倾斜角之和为π,所以可设直线l 为()1y k x -=-,直线m 为()1-=--y k x ,0k ≠,设()11,A x y 、()22,B x y 、()33,C x y 、()44,D x y ,将直线l 的方程代入椭圆方程2214x y +=得()()2222148420++-+--=k x k x k ,所以12+=x x,12=x x ,所以12=-==AB x同理214=+CD k所以2221116==-=-++CDAB k k, 当0k >时,所以1111216k k >-≥==++ 当且仅当16k k=时,即k =时,不等式中的等号成立, 所以22CDAB的取值范围为)2⎡⎣;当0k <时,所以111216<-≤=+++k k , 当且仅当16k k =,即k =时,不等式中的等号成立,所以22CD AB 的取值范围为(1,2+, 综上,22CDAB的取值范围为)(21,2⎡⋃+⎣.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.22.已知函数()2e =+-xf x ax x ,()a R ∈1310e 3.67⎛⎫≈ ⎪⎝⎭.(1)若函数()f x 为单调函数,求实数a 的取值范围;(2)当1a =-时,证明:()35f x >在()0,∞+恒成立. 【答案】(1)2ln 22a ≥-;(2)证明见解析.【分析】(1)求得()e 2'=+-x f x a x ,令()()g x f x '=,得到()e 2xg x '=-,求得函数()g x 的单调性,得到()()ln 2g x g ≥,由()f x 为单调函数,则()f x '恒不小于0或恒不大于0,即可求解;(2)当1a =-时,求得()e 12'=--xf x x ,由(1)得到()()min ln 20f x f ''=<,得到存在唯一的0131,10⎛⎫∈ ⎪⎝⎭x ,使()00f x '=,得出函数的单调性,求得()200min 1f x x x =-++,结合二次函数的性质,即可求解.【详解】(1)由()2e =+-x f x ax x ,可得()e 2'=+-xf x a x , 记()()e 2'==+-xg x f x a x ,则()e 2xg x '=-, 当(),ln 2x ∈-∞时,()0g x '<,()g x 单调递减;当()ln 2,x ∈+∞时,()0g x '>,()g x 单调递增;所以()()ln222ln2≥=+-g x g a ,因为()f x 为单调函数,则()f x '恒不小于0或恒不大于0,又当0x >时,且12a x +<时,()e 2120'=+->+->x f x a x a x , 所以()0f x '≥,即22ln 20+-≥a ,解得2ln 22a ≥-.(2)当1a =-时,()2e =--x f x x x ,所以()e 12'=--x f x x ,由(1)知()f x '在()0,ln 2上单调递减,在()ln 2,+∞单调递增,所以()()min ln212ln20''==-<f x f .又因为()00f '=,()130f e '=-<,13 3.67 3.6010⎛⎫'=-> ⎪⎝⎭f ,所以存在唯一的0131,10⎛⎫∈ ⎪⎝⎭x ,使()00f x '=, 所以当()00,x x ∈,()00f x '<,当()0,x x ∈+∞,()00f x '>,所以()f x 在()00,x 上单调递减;在()0,x +∞上单调递增,且()000e 120'=--=xf x x , 所以()()2220000000min 15e 124⎛⎫==--=-++=--+ ⎪⎝⎭xf x f x x x x x x , 又因为0131,10⎛⎫∈ ⎪⎝⎭x ,所以2201513156132410241005⎛⎫⎛⎫--+>--+=> ⎪ ⎪⎝⎭⎝⎭x , 所以()min 35>f x ,所以()35f x >恒成立. 【点睛】对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
河南省焦作市2021届新高考三诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC ∆中,60BAC ∠=︒,3AB =,4AC =,点M 满足2B M M C =u u u u v u u u u v ,则AB AM ⋅u u u v u u u u v等于( ) A .10 B .9C .8D .7【答案】D 【解析】 【分析】利用已知条件,表示出向量AM u u u u r,然后求解向量的数量积.【详解】在ABC ∆中,60BAC ∠=︒,3AB =,4AC =,点M 满足2B M M C =u u u u v u u u u v,可得12.33AM AB AC =+u u u u r u u u r u u u r则AB AM ⋅u u u v u u u u v =12()33AB AB AC ⋅+u u u r u u u r u u u r =212213347.3332AB AB AC +⋅=+⨯⨯⨯=u u u r u u u r u u u r【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.2.函数()3sin 3x f x x π=+的图象的大致形状是( )A .B .C .D .【答案】B 【解析】 【分析】根据函数奇偶性,可排除D ;求得()f x '及()f x '',由导函数符号可判断()f x 在R 上单调递增,即可排除AC 选项.【详解】函数()3sin 3x f x x π=+易知()f x 为奇函数,故排除D. 又()2cos x f x x π'=+,易知当0,2x π⎡⎤∈⎢⎥⎣⎦时,()0f x '>; 又当,2x π⎛⎫∈+∞⎪⎝⎭时,()2sin 1sin 0x f x x x π''=->-≥,故()f x '在,2π⎛⎫+∞⎪⎝⎭上单调递增,所以()24f x f ππ⎛⎫''>= ⎪⎝⎭, 综上,[)0,x ∈+∞时,()0f x '>,即()f x 单调递增. 又()f x 为奇函数,所以()f x 在R 上单调递增,故排除A ,C. 故选:B 【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.3.平行四边形ABCD 中,已知4AB =,3AD =,点E 、F 分别满足2AE ED =uu u r uu u r ,DF FC =u u ur u u u r ,且6AF BE ⋅=-u u u r u u u r ,则向量AD u u u r 在AB u u u r上的投影为( )A .2B .2-C .32D .32-【答案】C 【解析】 【分析】将,AF BE u u u r u u u r 用向量AD u u u r 和AB u u u r 表示,代入6AF BE ⋅=-u u u r u u u r 可求出6AD AB ⋅=u u u r u u u r ,再利用投影公式AD AB AB⋅u u u r u u u r u u u r 可得答案. 【详解】解:()()AF BE AD DF BA AE ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r21123223AD AB AD AD AB AB AB AD =⋅+⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r22421346332AD AB =⋅+⨯-⨯=u u ur u u u r , 得6AD AB ⋅=u u u r u u u r,则向量AD u u u r 在AB u u u r 上的投影为6342AD AB AB⋅==u u u r u u u ru u ur . 故选:C. 【点睛】本题考查向量的几何意义,考查向量的线性运算,将,AF BE u u u r u u u r 用向量AD u u u r 和AB u u u r表示是关键,是基础题.4.若函数()y f x =的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数()y f x =的图像可能是( )A .B .C .D .【答案】B 【解析】因为对A 不符合定义域当中的每一个元素都有象,即可排除; 对B 满足函数定义,故符合;对C 出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定; 对D 因为值域当中有的元素没有原象,故可否定. 故选B .5.复数z 的共轭复数记作z ,已知复数1z 对应复平面上的点()1,1--,复数2z :满足122z z ⋅=-.则2z 等于( ) A 2 B .2C 10D .10【答案】A 【解析】 【分析】根据复数1z 的几何意义得出复数1z ,进而得出1z ,由122z z ⋅=-得出212z z =-可计算出2z ,由此可计算出2z . 【详解】由于复数1z 对应复平面上的点()1,1--,11z i ∴=--,则11z i =-+,122z z ⋅=-Q,()()()2121221111i z i i i i z +∴=-===+--+,因此,222112z =+=. 故选:A. 【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题. 6.如图所示的程序框图,若输入4a =,3b =,则输出的结果是( )A .6B .7C .5D .8【答案】B 【解析】 【分析】列举出循环的每一步,可得出输出结果. 【详解】4i =,3S =,22S a b >不成立,239S ==,415i =+=;22S a b >不成立,2981S ==,516i =+=; 22S a b >不成立,2816561S ==,617i =+=; 22S a b >成立,输出i 的值为7.故选:B. 【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题. 7.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( ) A .40 B .60C .80D .100【答案】D 【解析】由正态分布的性质,根据题意,得到(110)(60)P X P X ≥=≤,求出概率,再由题中数据,即可求出结果. 【详解】由题意,成绩X 近似服从正态分布()285,N σ,则正态分布曲线的对称轴为85x =,根据正态分布曲线的对称性,求得(110)(60)0.50.30.2P X P X ≥=≤=-=, 所以该市某校有500人中,估计该校数学成绩不低于110分的人数为5000.2100⨯=人, 故选:D . 【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.8.已知实数x ,y 满足约束条件2202202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则22x y +的取值范围是( )A .25,225⎡⎤⎢⎥⎣ B .4,85⎡⎤⎢⎥⎣⎦C .2,85⎡⎤⎢⎥⎣⎦D .[]1,8【答案】B 【解析】 【分析】画出可行域,根据可行域上的点到原点距离,求得22x y +的取值范围.【详解】由约束条件作出可行域是由(2,0)A ,(0,1)B ,(2,2)C 三点所围成的三角形及其内部,如图中阴影部分,而22xy +可理解为可行域内的点到原点距离的平方,显然原点到AB 所在的直线220x y +-=的距离是可行域内的点到原点距离的最小值,此时222245OA OB x y OD AB ⋅⎛⎫+===⎪⎝⎭,点C 到原点的距离是可行域内的点到原点距离的最大值,此时2222228x y +=+=.所以22xy+的取值范围是4,85⎡⎤⎢⎥⎣⎦.【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识. 9.已知集合U ={1,2,3,4,5,6},A ={2,4},B ={3,4},则()()U UA B I 痧=( )A .{3,5,6}B .{1,5,6}C .{2,3,4}D .{1,2,3,5,6}【答案】B 【解析】 【分析】按补集、交集定义,即可求解. 【详解】U A ð={1,3,5,6},U B ð={1,2,5,6},所以()()U UA B I 痧={1,5,6}.故选:B. 【点睛】本题考查集合间的运算,属于基础题.10.集合{}|M y y x ==∈Z 的真子集的个数为( )A .7B .8C .31D .32【答案】A 【解析】 【分析】计算{}M =,再计算真子集个数得到答案. 【详解】{}{}|M y y x ==∈=Z ,故真子集个数为:3217-=.故选:A . 【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力. 11.等比数列{},n a 若3154,9a a ==则9a =( ) A .±6 B .6C .-6D .132【答案】B 【解析】 【分析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可. 【详解】由等比数列中等比中项性质可知,23159a a a ⋅=,所以96a ===±,而由等比数列性质可知奇数项符号相同,所以96a =, 故选:B. 【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.12.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .316【答案】A 【解析】 【分析】首先求出样本空间样本点为5232=个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解. 【详解】样本空间样本点为5232=个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”, 有以下3种位置1__ __,__1__,__ __1.剩下2个空位可是0或1,这三种排列的所有可能分别都是224⨯=, 但合并计算时会有重复,重复数量为224+=, 事件的样本点数为:444228++--=个. 故不同的样本点数为8个,81324=. 故选:A 【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题 二、填空题:本题共4小题,每小题5分,共20分。
2021年普通高等学校招生全国统一考试数学模拟测试一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,2z i i =-+则z= A.2-iB.1-2iC.-1+2iD.-2+i 2.已知集合2{|30},{2,2}A x x x a B =-+==-,若A∩B={2},则A ∪B=A.{-2,1,2}B.{-2,-1,2}C.{-2,3,2}D.{-2,2}3.62()x x-的展开式的常数项为 A.-120 B.-60 C.120 D.604.某实验室针对某种新型病毒研发了一种疫苗,并在500名志愿者身上进行了人体注射实验,发现注射疫苗的志愿者均产生了稳定的免疫应答。若这些志愿者的某免疫反应蛋白M 的数值X(单位:mg/L)近似服从正态分布2(15,),N σ且X 在区间(10,20)内的人数占总人数的19,25则这些志愿者中免疫反应蛋白M 的数值X 不低于20的人数大约为A.30B.60C.70D.140 5.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念。星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗。到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的亮度的概念。天体的明暗程度可以用星等或亮度来描述。两颗星的星等与亮度满足12212.5(lg lg )m m E E -=-,其中星等为i m 的星星的亮度为(1,2).i E i =已知"角宿一"的星等是0.97,"水委一"的星等是0.47.“水委一”的亮度是"角宿一"亮度的r 倍,则与r 最接近的是(当|x|较小时,2101 2.3 2.7x x x ≈++)A.1.56B.1.57C.1.58D.1.596.已知圆C:22(3)(3)9x y -++=,直线l:(m+1)x+(2-m)y-3m=0,则当圆心C 到直线l 的距离最大时,直线l 被圆C 所截得的弦长为A.4 .25B .23C .27D7.如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD,底面ABCD 是梯形,2//,,43AB CD BCD AB π∠==,PD=BC=CD=2,则四棱锥P-ABCD 的外接球的表面积为A.16πB.18πC.20πD.24π8.已知抛物线2:2(0)C y px p =>的焦点为F(1,0),准线为l,过焦点F 的直线交抛物线C 于点A 、B(A 在x 轴上方),且点A 的横坐标为3,D 是y 轴正半轴上一点,O 为坐标原点,∠ODA 的角平分线过AF 的中点,则点D 的坐标为A.(0,2) 53.(0,)2B C.(0,3) .(0,33)D二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。9.已知曲线C:221.x y a b+= A.若C 是双曲线,则ab<0B.若a>0,C 是离心率为2的双曲线,则3b a =- C.若ab>0,则C 是椭圆D.若C 是离心率为12的椭圆,则34b a = 10.已知()cos()(0,0,0)f x A x B A ωϕωϕπ=++>><<,其部分图象如图所示,M 、N 分别为最高点、最低点,则A.A=7B.B=29 .4C πϕ= D.f(11)=32.511.如图,平面α∩平面β=直线l,点A,C ∈α,点B,D ∈β,且A 、B 、C 、D ∉l,点M 、N 分别是线段AB 、CD 的中点。A.当直线AC 与BD 相交时,交点一定在直线l 上B.当直线AB 与CD 异面时,MN 可能与l 平行C.当A 、B 、C 、D 四点共面且AC//l 时,BD//lD.当M 、N 两点重合时,直线AC 与l 不可能相交12.已知数列{}n a 的通项公式是2,n n a =1a 和2a 之间插入1个数11,x 使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n n n x x x ,使121,,,,,n nn n n n a x x x a +成等差数列。这样得到新数列{}:n b 1112212233132334,,,,,,,,,a x a x x a x x x a …,记数列{}n b 的前n 项和为,n S 则836.A a b =B.112132n n n n n n n a x x x a n -++++++=⋅ 38.320C b = 45.6401D S =三、填空题:本题共4小题,每小题5分,共20分。把答案填在答题卡中的横线上。13.若向量a =(1,2),b -a =(-2,1),则a ·b =____.14.若函数21()7ln 2f x x x a x =-++在x=2处取极值,则a=____ ,f(x)的极大值为____.15.已知正实数a,b,c 满足22243,a b c +=则2c c a b +的最小值为____. 16.如图,在△ABC 中,,3BAC A π∠=B=3,AC=2,点D 为边BC 上一个动点,将△ABD 沿AD 翻折,使得点B到达B '的位置,且平面AB D '⊥平面ACD.当CD=_____时,B C '到最小值。四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)在3210,9,3a S b ==<-①②③这三个条件中任选一个,补充在下面问题中。设n S 为各项均为正数的数列{}n a 的前n 项和,满足____2,36nn n a a S b +=+是否存在实数b,使得数列{}n a 成为等差数列?若存在,求出b 和数列{}n a 的通项公式;若不存在,请说明理由。(注:如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)第七次全国人口普查是指中国在2020年开展的全国人口普查,普查标准时点是2020年11月1日零时,将彻查人口出生变动情况以及房屋情况。普查对象是普查标准时点在中华人民共和国境内的自然人以及在中华人民共和国境外但未定居的中国公民,不包括在中华人民共和国境内短期停留的境外人员。普查主要调查人口和住户的基本情况,内容包括:姓名、公民身份证号码、性别、年龄、民族、受教育程度、行业、职业、迁移流动、婚姻生育、死亡、住房情况等。普查登记方式全程电子化方式普查,由普查员使用手机上门入户登记或由普查对象通过互联网自主填报。某机构调查了100位居名的普查登记方式,数据统计如下表,部分数据缺失 普查员使用手机上门入户登记 通过互联网自主填报 年龄不超过40岁10 a 年龄超过40岁b 15已知从调查的居民中任取一人,其年龄不超过40岁的概率比其年龄超过40岁的概率大110. (1)求a,b 的值;(2)是否有99%的把握认为年龄与普查登记方式有关?附:22()()()()()n ad bc a b c K d a c b d -=++++其中n=a+b+c+d.P(K 2≥k 0) 0.050 0.010 0.001K 0 3.841 6.635 10.82819.(本小题满分12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知28sin 72cos2.2B C A -+-=(1)求A;(2)若7,a =b+c=5,求BC 边上的高.20.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,∠ACB=90°,1,.AC BC AB AA ==D 、E 分别是1CC 、1BB 的中点.(1)证明:1C E ⊥平面ACB 1;(2)求二面角1C AB D --的余弦值.21.(本小题满分12分)已知12F F 、分别为椭圆C:22184x y +=的左、右焦点,点M 是椭圆C 上异于左、右顶点的一点,过点1F 作12F MF ∠的外角平分线的垂线交2F M 的延长线于P 点.(1)当M 点在椭圆C.上运动时,求P 点的轨迹方程E.(2)设点N(t,0)(t≠0),过点N 作一条斜率存在且不为0的直线l 交椭圆C 于A,B 两点,点B 关于x 轴的对称点为B '直线AB '交x 轴于点T,O 是坐标原点,求证:|ON|·|OT|为定值.22.(本小题满分12分)已知函数2()ln 1.f x x x =-+(1)求曲线y= f(x)在点(1,f(1))处的切线方程;(2)若方程f(x)=b 有两个实数根12,,x x 且12,x x <证明:2112.x x b -<-。
2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)2021年高考数学真题试卷(新高考Ⅱ卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共8题;共40分)1.复数frac{2- i}{1-3i}$$在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合 $U=\{1,2,3,4,5,6\}$,$A=\{1,3,6\}$,$B=\{2,3,4\}$,则$A∩(\complement_U B)=()$A。
$\{3\}$ B。
$\{1,6\}$ C。
$\{5,6\}$ D。
$\{1,3\}$3.抛物线 $y^2=2px(p>0)$ 的焦点到直线 $y=x+1$ 的距离为 $\sqrt{2}$,则 $p=$()A。
1 B。
2 C。
$2\sqrt{2}$ D。
44.北斗三号全球卫星导航系统是我国航天事业的重要成果。
在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为km(轨道高度是指卫星到地球表面的距离)。
将地球看作是一个球心为O,半径$r$ 为6400km的球,其上点A的纬度是指$\angle OAB$ 与赤道平面所成角的度数。
地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为 $\alpha$,记卫星信号覆盖地球表面的表面积为$S=2\pi r^2(1-\cos\alpha)$(单位:$km^2$),则 $S$ 占地球表面积的百分比约为()A。
26% B。
34% C。
42% D。
50%5.正四棱台的上底面和下底面的边长分别为2,4,侧棱长为2,则其体积为()A。
$20+12\sqrt{3}$ B。
$28\sqrt{2}$ C。
$\frac{28\sqrt{2}}{3}$ D。
$56$6.某物理量的测量结果服从正态分布 $N(10,\sigma^2)$,下列结论中不正确的是()A。
河南省焦作市2021届新高考第三次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2(1ii +=- ) A .132i +B .32i+ C .32i- D .132i-+ 【答案】A 【解析】 【分析】直接利用复数代数形式的乘除运算化简得答案. 【详解】()()()()22122313131112222i i i i i i i i i i ++++++====+--+ 本题正确选项:A 【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.2.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过1F 的直线l 交双曲线的右支于点P ,以双曲线的实轴为直径的圆与直线l 相切,切点为H ,若113F P F H =,则双曲线C 的离心率为( )A .2B .C .D 【答案】A 【解析】 【分析】在12PF F ∆中,由余弦定理,得到2||PF ,再利用12||||2PF PF a -=即可建立,,a b c 的方程. 【详解】由已知,1||HF b ===,在12PF F ∆中,由余弦定理,得2||PF ===1133PF HF b ==,12||||2PF PF a -=,所以32b a =,32b a ⇒=e =∴=【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立,,a b c 三者间的关系,本题是一道中档题.3.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2- B .2C .12-D .12【答案】C 【解析】 【分析】把()12112z ai a R z i =+∈=+,代入12z z ,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可. 【详解】∵()12112z ai a R z i =+∈=+,,∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选C . 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.4.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件【答案】D 【解析】 【分析】由题意列出约束条件和目标函数,数形结合即可解决.设购买甲、乙两种商品的件数应分别x ,y 利润为z 元,由题意*4750,,,x y x y N +≤⎧⎨∈⎩ 1.8z x y =+, 画出可行域如图所示,显然当5599y x z =-+经过(2,6)A 时,z 最大. 故选:D. 【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断x ,y 是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.5.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( )A .[1,)-+∞B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A 【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-. 故选:A本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.6.已知函数()cos 221f x x x =++,则下列判断错误的是( ) A .()f x 的最小正周期为π B .()f x 的值域为[1,3]-C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,04π⎛⎫-⎪⎝⎭对称 【答案】D 【解析】 【分析】先将函数()cos 221f x x x =++化为()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,再由三角函数的性质,逐项判断,即可得出结果. 【详解】Q()cos 221f x x x =++可得1()2cos 2sin 212sin 2126f x x x x π⎛⎫⎛⎫=⋅+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭对于A ,()f x 的最小正周期为22||2T πππω===,故A 正确; 对于B ,由1sin 216x π⎛⎫-≤+≤ ⎪⎝⎭,可得1()3f x -≤≤,故B 正确; 对于C ,Q 正弦函数对称轴可得:()02,62x k k Z πππ+=+∈解得:()0,612x k k Z ππ=+∈, 当0k =,06x π=,故C 正确;对于D ,Q 正弦函数对称中心的横坐标为:()02,6x k k Z ππ+=∈解得:()01,212x k k Z ππ=+∈ 若图象关于点,04π⎛⎫- ⎪⎝⎭对称,则12124k πππ+=-解得:23k =-,故D 错误; 故选:D. 【点睛】力,属于基础题.7.已知抛物线220y x =的焦点与双曲线()222210,0x y a b a b-=>>的一个焦点重合,且抛物线的准线被双曲线截得的线段长为92,那么该双曲线的离心率为( )A .54 B .53C .52D 【答案】A 【解析】 【分析】由抛物线220y x =的焦点(5,0)得双曲线()222210,0x y a b a b-=>>的焦点(5,0)±,求出5c =,由抛物线准线方程5x =-被曲线截得的线段长为92,由焦半径公式2292b a =,联立求解.【详解】解:由抛物线220y x =,可得220p =,则10p =,故其准线方程为5x =-, Q 抛物线220y x =的准线过双曲线()222210,0x y a b a b-=>>的左焦点, 5c ∴=.Q 抛物线220y x =的准线被双曲线截得的线段长为92, 2292b a ∴=,又22225c a b +==,4,3a b ∴==,则双曲线的离心率为54c e a ==. 故选:A . 【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长.8.过直线0x y +=上一点P 作圆()()22152x y ++-=的两条切线1l ,2l ,A ,B 为切点,当直线1l ,2lA .30°B .45︒C .60︒D .90︒【答案】C 【解析】 【分析】判断圆心与直线0x y +=的关系,确定直线1l ,2l 关于直线0x y +=对称的充要条件是PC 与直线0x y +=垂直,从而PC 等于C 到直线0x y +=的距离,由切线性质求出sin APC ∠,得APC ∠,从而得APB ∠. 【详解】如图,设圆22(1)(5)2x y ++-=的圆心为(1,5)C -,半径为2,点C 不在直线0x y +=上,要满足直线1l ,2l 关于直线0x y +=对称,则PC 必垂直于直线0x y +=,∴15222PC -+==,设APC θ∠=,则2APB θ∠=,21sin 222AC PCθ===,∴30θ=︒,260APB θ∠==︒. 故选:C .【点睛】本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线0x y +=对称,得出PC 与直线0x y +=垂直,从而得PC 就是圆心到直线的距离,这样在直角三角形中可求得角.9.已知函数()32cos f x x x =+,若2(3a f =,(2)b f =,2(log 7)c f =,则a ,b ,c 的大小关系是( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<【分析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得()f x 在R 上为增函数,又由222log 4log 73=<<<【详解】解:根据题意,函数()32cos f x x x =+,其导数函数()32sin f x x '=-, 则有()32sin 0f x x '=->在R 上恒成立, 则()f x 在R 上为增函数;又由222log 4log 73=<<< 则b c a <<; 故选:D . 【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题. 10.已知集合A ={0,1},B ={0,1,2},则满足A ∪C =B 的集合C 的个数为( ) A .4 B .3C .2D .1【答案】A 【解析】 【分析】由A C B ⋃=可确定集合C 中元素一定有的元素,然后列出满足题意的情况,得到答案. 【详解】由A C B ⋃=可知集合C 中一定有元素2,所以符合要求的集合C 有{}{}{}{}2,2,0,2,1,2,0,1,共4种情况,所以选A 项. 【点睛】考查集合并集运算,属于简单题.11.已知随机变量X 服从正态分布()4,9N ,且()()2P X P X a ≤=≥,则a =( ) A .3 B .5C .6D .7【答案】C 【解析】 【分析】根据在关于4X =对称的区间上概率相等的性质求解. 【详解】(2)(42)(42)(6)()P X P X P X P X P X a ∴≤=≤-=≥+=≥=≥,6a ∴=.故选:C . 【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量X 服从正态分布()2,N μσ,则()()P X m P X m μμ≤-=≥+.12.设i 为虚数单位,z 为复数,若z i z+为实数m ,则m =( )A .1-B .0C .1D .2【答案】B 【解析】 【分析】可设(,)z a bi a b R =+∈,将z i z+化简,a b i +由复数为实数,0b =,解方程即可求解 【详解】设(,)z a bi a b R =+∈,则)22a b i za bi i i i z a bi ab +-+=+=+=++.00b a =⇒=,所以0m =. 故选:B 【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题 二、填空题:本题共4小题,每小题5分,共20分。
河南省焦作市2021届新高考数学五月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线C :()222210,0x y a b a b -=>>的焦距为2c ,焦点到双曲线C,则双曲线的渐近线方程为() A.y = B.y =C .y x =±D .2y x =±【答案】A 【解析】 【分析】利用双曲线C :()222210,0x y a b a b -=>>的焦点到渐近线的距离为2c ,求出a ,b 的关系式,然后求解双曲线的渐近线方程. 【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=,可得:2c =,可得b c =,ba =C的渐近线方程为y =.故选A . 【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.2.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图像上,则实数k 的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】可将问题转化,求直线 1y kx =-关于直线1y =-的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定k 的取值范围即可 【详解】可求得直线 1y kx =-关于直线1y =-的对称直线为1y mx =-()m k =-,当0x >时,()ln 2f x x x x =-,()'ln 1f x x =-,当x e =时,()'0f x =,则当()0,x e ∈时,()'0f x <,()f x 单减,当(),x e ∈+∞时,()'0f x >,()f x 单增;当0x ≤时,()232f x x x =+,()3'22f x x =+,当34x =-,()'0f x =,当34x <-时,()f x 单减,当304x -<<时,()f x 单增; 根据题意画出函数大致图像,如图:当1y mx =-与()232f x x x =+(0x ≤)相切时,得0∆=,解得12m =-;当1y mx =-与()ln 2f x x x x =-(0x >)相切时,满足ln 21ln 1y x x xy mx m x =-⎧⎪=-⎨⎪=-⎩,解得1,1x m ==-,结合图像可知11,2m ⎛⎫∈-- ⎪⎝⎭,即11,2k ⎛⎫-∈-- ⎪⎝⎭,1,12k ⎛⎫∈ ⎪⎝⎭故选:A 【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题 3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .12B .13C .41π- D .42π-【答案】C 【解析】令圆的半径为1,则()22'41S P S ππππ--===-,故选C . 4.设ln 2m =,lg 2n =,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .m n mn m n +>>- D .m n m n mn +>->【答案】D 【解析】 【分析】由不等式的性质及换底公式即可得解. 【详解】解:因为ln 2m =,lg 2n =,则m n >,且(),0,1m n ∈, 所以m n mn +>,m n m n +>-,又2222111110log 10log log log 21lg 2ln 2e n m e -=-=-=>=, 即1m nmn->,则m n mn ->, 即m n m n mn +>->,故选:D. 【点睛】本题考查了不等式的性质及换底公式,属基础题.5.已知20,()1(0),{|()},{|(())()}a f x ax x x A x f x x B x f f x f x x >=-+>=≤=≤≤,若A B φ=≠则实数a 的取值范围是( ) A .(0,1] B .3(0,]4C .3[,1]4D .[1,)+∞【答案】C 【解析】 【分析】根据A φ≠,得到2()1f x ax x x =-+≤有解,则440a ∆=-≥,得01a <≤,1211,x x a a +==,得到12{|()}[]11,[A x f x x x x a a-≤===,再根据{|(())()}B x f f x f x x =≤≤,有(())()f f x f x ≤,即()()22212110a ax x ax x -+--++≤,可化为()()2222110axx a x a +-+-≤,根据A B φ=≠,则2210a x a -≥+的解集包含11[,]a a+求解, 【详解】 因为A φ≠,所以2()1f x ax x x =-+≤有解, 即2()210f x ax x =-+≤有解,所以440a ∆=-≥,得01a <≤,12x x ==所以12{|()}[]11,[A x f x x x x a a-≤===, 又因为{|(())()}B x f f x f x x =≤≤, 所以(())()f f x f x ≤,即()()22212110a ax x ax x -+--++≤, 可化为()()2222110ax x a x a +-+-≤, 因为A B φ=≠,所以2210a x a -≥+的解集包含11[a a-+,≤≥, 解得314a ≤≤, 故选:C 【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题, 6.在ABC ∆中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=,设ABC ∆、PBC ∆、PCA ∆、PAB ∆的面积分别为S 、1S 、2S 、3S ,记ii S Sλ=(1,2,3i =),则23λλ⋅取到最大值时,2x y +的值为( ) A .-1 B .1C .32-D .32【答案】D 【解析】 【分析】根据三角形中位线的性质,可得P 到BC 的距离等于△ABC 的BC 边上高的一半,从而得到12312S SS S ==+,由此结合基本不等式求最值,得到当23λλ⋅取到最大值时,P 为EF 的中点,再由平行四边形法则得出11022PA PB PC ++=,根据平面向量基本定理可求得12x y ==,从而可求得结果.【详解】 如图所示:因为EF 是△ABC 的中位线,所以P 到BC 的距离等于△ABC 的BC 边上高的一半, 所以12312S S S S ==+, 由此可得22232322322()1216S S S S S S S S S S λλ+=⨯=≤=, 当且仅当23S S =时,即P 为EF 的中点时,等号成立, 所以0PE PF +=,由平行四边形法则可得2PA PB PE +=,2PA PC PF +=, 将以上两式相加可得22()0PA PB PC PE PF ++=+=, 所以11022PA PB PC ++=, 又已知0PA xPB yPC ++=, 根据平面向量基本定理可得12x y ==, 从而132122x y +=+=. 故选:D 【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.7.已知函数()2()2ln (0)f x a e x x a =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点(,())s f t ,(,)s t D ∈所构成的平面区域面积为2e 1-,则a =( )A .eB .1e 2- C .1 D .2e e - 【答案】D 【解析】 【分析】依题意,可得()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,于是可得()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,继而可得()221211a e e e e ⎛⎫---=- ⎪⎝⎭,解之即可. 【详解】解:()2222()a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,因为所有点(,())s f t (,)s t D ∈所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=-⎪⎝⎭, 解得2ea e =-, 故选:D. 【点睛】本题考查利用导数研究函数的单调性,理解题意,得到221(2)(1)1a e e e e---=-是关键,考查运算能力,属于中档题. 8.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A 发生的概率为 A .14B .58C .38D .12【答案】D 【解析】 【分析】【详解】 由(2)12{(2)4f f ≤-≤得4212424b c b c ++≤⎧⎨-+≤⎩,分别以,b c 为横纵坐标建立如图所示平面直角坐标系,由图可知,()12P A =.9.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .【答案】B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案是正确的,应选答案B 。
点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。