浦东新区2017学年第二学期期末质量抽测七年级数学
- 格式:pdf
- 大小:259.56 KB
- 文档页数:6
专题02相交线 平行线(共56题)(选填、解答,含压轴题)上海各区期末试题为核心,上海名校试题为拓展一、单选题1.(2018·上海浦东新区·七年级期中)下列图形中,1∠和2∠不是同位角的是( )A .B .C .D .2.(2019·上海普陀区·七年级期中)如图,能与1∠构成同位角的有( )A .4个B .3个C .2个D .1个3.(2021·上海七年级期中)如图,下列说法中错误的是( )A .,GBD HCE ∠∠是同位角B .,ABD ACH ∠∠是同位角C .,FBC ACE ∠∠是内错角D .,GBC BCE ∠∠是同旁内角4.(2019·上海市培佳双语学校七年级月考)如图,在ABC 中,EB BC ⊥,BH AC ⊥,垂足分别为点B 和点H ,能表示点B 到直线AC 距离的是( )A .线段BE 的长度B .线段BH 的长度C .线段BA 的长度D .线段BC 的长度5.(2020·上海市静安区实验中学七年级课时练习)下列说法中不正确的是( )A .在同一平面内,经过一点能而且只能画一条直线与已知直线垂直B .一条线段有无数条垂线C .在同一平面内过射线的端点只能画一条直线与这条射线垂直D .如果直线AB 垂直平分线段CD ,那么CD 也垂直平分AB6.(2019·上海市培佳双语学校七年级月考)下列说法正确的是( )A .如果两个角相等,那么这两个角是对顶角;B .经过一点有且只有一条直线与已知直线平行;C .如果两条直线被第三条直线所截,那么同位角相等;D .联结直线外一点与直线上各点的所有线段中,垂线段最短.7.(2018·上海七年级期中)下列说法中,正确的是( )A .如果两个角相等,那么这两个角是对顶角B .连接直线外一点与直线上各点的所有线段中,垂线段最短C .如果两条直线被第三条直线所截,那么内错角相等D .经过一点有且只有一条直线与已知直线平行8.(2019·上海市市八初级中学七年级期中)下列语句中正确的有( )①经过一点,有且只有一条直线与已知直线平行;①有公共顶点且和为的两个角是邻补角;①两条直线被第三条直线所截,同旁内角互补;①不相交的两条直线叫做平行线;①直线外的一点到已知直线的垂线段叫做点到直线的距离;A .0个;B .1个;C .2个;D .3个;9.(2019·上海浦东新区·七年级月考)点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( ) A .a b > B .a b ≤C .a b ≥D .a b < 10.(2018·上海普陀区·)如图,已知1∠与2∠是内错角,则下列表达正确..的是( )A .由直线AD 、BC 被AC 所截而得到的; B .由直线AB 、CD 被BC 所截而得到的; C .由直线AB 、CD 被AC 所截而得到的; D .由直线AD 、BC 被CD 所截而得到的.11.(2019·上海浦东新区·)下列说法正确的是( )A .平面内两个相等的角是对顶角B .连接直线外的点和直线上的点的线段叫做点到直线的距离C .平面内相加之和等于180°的两个角是互为邻补角D .平面内经过直线上一点只有一条直线与已知直线垂直12.(2020·上海闵行区·七年级期末)点到直线的距离是指( )A .从直线外一点到这条直线的垂线段B .从直线外一点到这条直线的垂线,C .从直线外一点到这条直线的垂线段的长D .从直线外一点到这条直线的垂线的长13.(2020·上海松江区·七年级期末)如图,在下列条件中,能说明AC ①DE 的是( )A .①A =①CFDB .①BED =①EDFC .①BED =①A D .①A +①AFD =180°14.(2020·上海浦东新区·七年级期末)如图,BA//DE ,①B =30°,①D =40°,则①C 的度数是( )A .10°B .35°C .70°D .80°15.(2019·上海嘉定区·七年级期末)如图,将三角板的直角顶点放在直尺的一边上,如果170∠=︒,那么2∠的度数为( )A .10°B .15°C .20°D .25°16.(2019·上海杨浦区·七年级期末)下列说法中,正确的有( )①如果两条直线被第三条直线所载,那么内错角相等;①经过直线外的一点,有且只有一条直线与已知直线平行;①联结直线外一点与直线上各点的所有线段中,垂线段最短;①如果两个角相等,那么这两个角是对顶角. A .0个 B .1个 C .2个 D .3个17.(2020·上海外国语大学闵行外国语中学七年级期末)小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF AB ⊥,CD AB ⊥,G 是AC 边上一点(不与A 、C 重合), 小明说:“如果还知道CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”;小亮说:“把小明的已知和结论倒过来,即由AGD ACB ∠=∠,可得到CDG BFE ∠=∠”;小刚说:“①AGD 一定大于①ACD”小颖说:“如果联结GF ,则GF 一定平行于AB”;他们四人中,有几个人的说法是正确的?( )A .1个B .2个C .3个D .4个18.(2019·上海市培佳双语学校七年级月考)如图,FCAD ⊥于C ,GB AD ⊥于B ,DCE A ∠=∠,那么与AGB ∠相等的角有( )A .2个B .1个C .4个D .3个19.(2020·上海市民办立达中学七年级月考)在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm20.(2019·江苏无锡市·七年级期中)如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;①CA 平分BCG ∠;①ADC GCD ∠=∠;①12DFB CGE ∠=∠.其中正确的结论是( )A .①①①B .①①①C .①①D .①①二、填空题 21.(2020·上海同济大学实验学校七年级期中)如图,共有_____对同位角,有_____对内错角,有_____对同旁内角.22.(2018·上海七年级零模)已知,①B 与①A 互为邻补角,且①B=2①A ,那么①A 为________度.23.(2019·上海市松江区九亭中学七年级期中)平面内经过一点且垂直于已知直线的直线共有_______条 24.(2018·上海松江区·七年级期中)如图,已知BO DE ⊥,垂足为O .若42BOC ∠=︒,则AOD ∠=_______︒.25.(2017·上海长宁区·七年级期末)如图,直线AC 与直线BD 交于点O ,2AOB BOC ∠=∠,那么AOD ∠=______度.26.(2020·上海市静安区实验中学七年级课时练习)如图,已知AC①BC 于C ,CD①AB 于D ,BC=8,AC=6,CD=4.8,BD=6.4,AD=3.6.则:(1)点A 到直线CD 的距离为_________;(2)点A 到直线BC 的距离为_________;(3)点B 到直线CD 的距离为_________;(4)点B 到直线AC 的距离为_________;(5)点C 到直线AB 的距离为_________.27.(2019·上海长宁区·七年级期末)如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.28.(2020·上海浦东新区·七年级期末)如图,直线a 、b 被直线c 所截(即直线c 与直线a 、b 都相交),且a//b ,若①1=118°,则①2的度数=_____度.29.(2018·上海浦东新区·七年级期末)如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若①1=①2,那么①1的度数为__________.30.(2018·上海虹口区·七年级期末)如图,如果AB①CD ,①1 = 30º,①2 = 130º,那么①BEC =_______ 度.31.(2018·上海松江区·)如图,//AD BC ,ABD ∆的面积等于2,1AD =,3BC =,则DBC ∆的面积是_______.32.(2017·上海长宁区·七年级期末)如图,已知AB CD ∥,那么A E F C ∠+∠+∠+∠=_______度.33.(2020·上海市建平中学七年级期末)直线//a b ,点A 、B 位于直线a 上,点C 、D 位于直线b 上,如果ABC ∆和CBD ∆的 面积之比是9:16,那么:AB CD ____.34.(2020·上海闵行区·七年级期末)如图,已知直线a ①b ①c ,①ABC 的顶点B 、C 分别在直线b 、c 上,如果①ABC =60°,边BC 与直线b 的夹角①1=25°,那么边AB 与直线a 的夹角①2=_____度.35.(2020·上海松江区·七年级期末)如图,直线a ①b ,点A ,B 位于直线a 上,点C ,D 位于直线b 上,且AB :CD =1:2,如果①ABC 的面积为10,那么①BCD 的面积为_____.36.(2019·上海奉贤区·七年级期末)如图,在BDE 中,90E ∠=︒,AB CD ∥,20ABE ∠=︒,则EDC ∠=__________.37.(2020·上海市民办立达中学七年级期末)如图,直线a①直线b ,且被直线c 所截,若①1=(3x+70)度,①2=(2x+10)度,则x 的值为________.38.(2018·上海杨浦区·七年级期末)如图,利用直尺和三角尺过直线外一点画已知直线的平行线,第1步:画直线AB ,将三角尺的一边紧靠直线AB ,将直尺紧靠三角尺的另一边:第2步:将三角尺沿直尺下移:第3步:沿三角尺原先紧靠直线AB 的那一边画直线CD .这样就得到//AB CD .这种画平行线的依据是________.三、解答题39.(2019·上海普陀区·七年级期末)如图 ,已知 AB ① CD , ∠CDE = ∠ABF ,试说明 DE ①BF 的理由.解:因为 AB ① CD (已知),所以∠CDE = ( ).因为∠CDE = ∠ABF (已知),得 = (等量代换),所以 DE ① BF ( ).40.(2020·上海浦东新区·七年级期末)如图,已知①COF+①C =180°,①C =①B .说明AB//EF 的理由.41.(2020·上海松江区·七年级期末)如图,已知在①ABC 中,点D 为AC 边上一点,DE ①AB 交边BC 于点E ,点F 在DE 的延长线上,且①FBE =①ABD ,若①DEC =①BDA .(1)试说明①BDA =①ABC 的理由;(2)试说明BF ①AC 的理由.42.(2018·上海杨浦区·七年级期末)如图,已知在ABC ∆中,FG EB ,23∠∠=,说明180EDB DBC ∠+∠=︒的理由.解:①FG EB (已知),①_________=_____________(____________________).①23∠∠=(已知),①_________=_____________(____________________).①DE BC ∥(___________________).①180EDB DBC ∠+∠=︒(_________________________).43.(2019·上海崇明区·七年级期末)如图,已知A C ∠=∠,AB DC ,试说明E F ∠=∠的理由.44.(2019·上海嘉定区·七年级期末)如图,已知A ∠的两边与D ∠的两边分别平行,且D ∠比A ∠的2倍多30°,求D ∠的度数.45.(2019·上海嘉定区·七年级期末)阅读并填空.已知:如图,线BCF 、线AEF 是直线,,12,34AB CD ∠=∠∠=∠∥.试说明AD BC ∥.解:AB CD ∥(已知)4∴∠=∠______(_______)34∠∠=(已知)3∴∠=∠______(_______)12∠=∠(已知)12CAE CAE ∴∠+∠=∠+∠(_______)即BAE ∠=∠________3∴∠=∠______(_______)//AD BC ∴(_____)46.(2020·上海市民办立达中学七年级期末)如图,已知AB①CD ,点E 在BC 延长线上,联结AE 交CD 于点F ,若①1=①2,①3=①4,试说明AD①BE 的理由.47.(2017·上海虹口区·七年级期末)说理填空:如图,点E 是DC 的中点,EC =EB ,①CDA =120°,DF //BE ,且DF 平分①CDA ,若①BCE 的周长为18cm ,求DC 的长.解: 因为DF 平分①CDA,(已知)所以①FDC =12①_________.(____________________) 因为①CDA =120°,(已知)所以①FDC =______°.因为DF //BE ,(已知)所以①FDC =①_________=60°.(____________________________________)又因为EC =EB,(已知)所以①BCE 为等边三角形.(________________________________________)因为①BCE 的周长为18cm,(已知) 所以BE =EC =BC =6 cm.因为点E 是DC 的中点,(已知) 所以DC =2EC =12 cm .48.(2019·上海长宁区·七年级期末)如图,已知AB CD ∕∕,,130110A C ∠=∠=︒︒,求APC ∠的度数.(1)填空,在空白处填上结果或者理由.解:过点P 作PQ AB ∕∕,(如图)得1A ∠+∠=___________°, ( )又因为130A ∠=︒,(已知)所以1∠=___________°.因为,PQ AB AB CD ∕∕∕∕,所以PQ CD ∕∕, ( )又因为110C ∠=︒,(已知)所以2∠=___________°,所以12APC ∠=∠+∠=___________°.(2)请用另一种解法求APC ∠的度数.49.(2018·上海金山区·七年级期末)已知:如图,//CD EF ,BFE DHG ∠=∠,那么EG 与AB 平行吗?为什么?50.(2019·上海市培佳双语学校七年级月考)已知,如图1,四边形ABCD ,90D C ∠=∠=︒,点E 在BC 边上,P 为边AD 上一动点,过点P 作PQ PE ⊥,交直线DC 于点Q .(1)当70PEC ∠=︒时,求DPQ ∠;(2)当4PEC DPQ ∠=∠时,求APE ∠;(3)如图3,将PDQ 沿PQ 翻折使点D 的对应点D 落在BC 边上,当40QD C '∠=︒时,请直接写出PEC ∠的度数,答:______.51.(2020·上海静安区·)(1)如图a 所示,//AB CD ,且点E 在射线AB 与CD 之间,请说明AEC A C ∠=∠+∠的理由.(2)现在如图b 所示,仍有//AB CD ,但点E 在AB 与CD 的上方,①请尝试探索1∠,2∠,E ∠三者的数量关系.①请说明理由.52.(2018·上海普陀区·)如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;(问题应用):(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.53.(2018·上海金山区·七年级期中)问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.54.(2019·上海黄浦区·七年级期中)(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”)(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG,中间有条分界小路(图中折线ABC),左边区域为王爷爷的,右边区域为李爷爷的。
浦东新区2017学年度第二学期期中质量抽测初一数学试卷(完卷时间:90分钟 满分:100分)一、选择题(本大题共6题,每题2分,满分12分)(每题只有一个选项正确) 1.下列各数中:0、2-、227、π、0.3737737773 (它的位数无限且相邻两个“3”之间“7”的个数依次加1个),无理数有…………( ).(A) 1个;(B) 2个;(C) 3个; (D) 4个.2.如图,线段AB 将边长为1个单位长度的正方形分割为两个等腰直角三角形,以A 为圆心、AB 的长为半径画弧交数轴于点C ,那么点C 在数轴上表示的实数是………………( ) (A ) (B ; (C 1; (D )1.3.下列计算中,正确的是……………………………………………………( ). (A )283±=; (B )()()2223366-=-=-; (C )()222=--; (D )21)641(61=.4.下列说法:①任意三角形的内角和都是180°;②三角形的一个外角大于任何一个内角;③三角形的中线、角平分线和高线都是线段;④三角形的三条高线必在三角形内.其中正确的是……………………………………………………………………………………( ) (A )①②;(B )①③;(C )②③;(D )③④.5.下列说法错误的是 ………………………………………………( )(A) 无理数是无限小数;(B) 如果两条直线被第三条直线所截,那么内错角相等; (C) 经过直线外一点有且只有一条直线与已知直线平行;(D) 联结直线外一点与直线上各点的所有线段中,垂线段最短.6.在直角坐标平面内,已知在y 轴与直线x =3之间有一点M (a ,3),如果该点关于直线x =3(第2题图)的对称点M'的坐标为(5,3),那么a 的值为…………………………………………( )(A )4; (B )3; (C )2; (D )1. 二、填空题(本大题共12题,每题3分,满分36分) 7.16的平方根是 .8.据上海市统计局最新发布的统计公报显示,2015年末上海市常住人口总数约为24 152 700人,用科学记数法将24 152 700保留三个有效数字是 . 9.如图,∠2的同旁内角是 .10.如图,已知BC ∥DE ,∠ABC =120°,那么直线AB 、DE 的夹角是 °. 11.如果111+<<a a ,那么整数=a ___________.12.如图,在等腰△ABC 中,AB =AC ,点O 是△ABC 内一点,且OB =OC .联结AO 并延长交边BC 于点D .如果BD =6,那么BC 的值为 .13.如图,已知点A 、B 、C 、F 在同一条直线上,AD ∥EF ,∠D=40°,∠F =30°,那么∠ACD 的度数是 .14.如图,将△ABC 沿射线BA 方向平移得到△DEF ,AB =4,AE =3,那么DA 的长度是 .15.如图,直线//a c ,直线b 与直线a 、c 相交,∠1=∠42°,那么=∠2_______. 16.如图,写出图中∠A 所有的的内错角: .17.如图,正方形ABCD 的面积为5,正方形BEFG 面积为4,那么△GCE 的面积是_______.18.在等腰△ABC 中,如果过顶角的顶点A 的一条直线AD 将△ABC 分割成两个等腰三角形,那么∠BAC = °.(第9题图)(第14题图)(第10题图)(第12题图)(第13题图)a b c1 (第15题图)2(第16题图)(第17题图)H ABE C DF GA EE(第21题图)三、简答题(本大题共4题,第19题,每小题3分;第20题,每小题2分;第21题6分,第22题5分,满分21分) 19.计算(写出计算过程):(1)36533232+-; (2)521135÷⨯.解:解:20.利用幂的性质计算(写出计算过程,结果表示为含幂的形式):(1)212193⨯;(2)11243÷.解:解:21.如图,已知直线AB 、CD 被直线EF 所截,FG 平分∠EFD ,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB ∥CD ( ).所以∠BGF +∠3=180°( ). 因为∠2+∠EFD =180°(邻补角的意义), 所以∠EFD = °(等式性质). 因为FG 平分∠EFD (已知),所以∠3= ∠EFD (角平分线的意义). 所以∠3= °(等式性质). 所以∠BGF = °(等式性质).22.如图,AB∥DE,CM平分∠BCE,∠MCN=90°,∠B=50°,求∠DCN的度数.A BMNE C D四、解答题(本大题共4题,第23题6分,第24题7分,第25题8分,第26题10分,满分31分)23.如图,已知AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D、E.说明△ABD与△ACE 全等的理由.(第23题图)24.如图,点E是等边△ABC外一点,点D是BC边上一点,AD=BE,∠CAD=∠CBE,联结ED、EC.(1)试说明△ADC与△BEC全等的理由;(2)试判断△DCE的形状,并说明理由.(第24题图)25.如图,在直角坐标平面内,已知点A(8,0),点B的横坐标是2,△AOB的面积为12.(1)求点B的坐标;(2)如果P是直角坐标平面内的点,那么点P在什么位置时,S△AOP=2S△AOB?(第25题图)26.先阅读下列的解答过程,然后再解答: 形如n m 2±的化简,只要我们找到两个正数a 、b ,使m b a =+,n ab =,使得m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >例如:化简347+解:首先把347+化为1227+,这里7=m ,12=n ,由于734=+,1234=⨯ 即7)3()4(22=+,1234=⨯∴347+=1227+=32)34(2+=+(1)填空:=-324 , 549+= (2)化简:15419-;。
2017-2018学年上海市浦东新区七年级(下)期末数学试卷(五四学制)一、选择题(本大题共6小题,共12.0分)1.下列说法正确的是()A. 无理数都是带根号的数B. 无理数都是无限小数C. 一个无理数的平方一定是有理数D. 两个无理数的和、差、积、商仍是无理数2.在两个连续整数a和b之间(a<b),那么a b的值是()A. 5B. 6C. 8D. 93.如图,直线l1∥l2,∠1=110°,∠2=130°,那么∠3的度数是()A. B. C. D.4.设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形.下列四个图中,能正确表示它们之间关系的是()A. B.C. D.5.只给定三角形的两个元素,画出的三角形的形状和大小是不确定的,在下列给定的两个条件上增加一个“AB=5cm”的条件后,所画出的三角形的形状和大小仍不能完全确定的是()A. ,B. ,C. ,D. ,6.线段AB经过平移得到线段CD,其中点A、B的对应点分别为点C、D,这四个点都在如图所示的格点上,那么线段AB上的一点P(a,b)经过平移后,在线段CD 上的对应点Q的坐标是()A. B. C. D.二、填空题(本大题共12小题,共36.0分)7.4的平方根是______.8.比较大小:-3______(用“>”“=”“<”号填空).9.计算:3×9=______.10.数轴上点A表示的数是1-,那么点A到原点的距离是______.11.用科学记数法表示2018(保留两个有效数字),结果是______.12.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=______°.13.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是______.14.点P(2,-3)关于x轴的对称点坐标为______.15.经过点P(-2,4)且垂直于y轴的直线可以表示为直线______.16.在直角坐标平面内,点A(-m,5)和点B(-m,-3)之间的距离为______.17.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点G,请你添加一个适当的条件,使得△AEG≌△CEB,这个条件可以是______(只需填写一个).18.如图,在△ABC中,∠A=120°,∠B=40°,如果过点A的一条直线l把△ABC分割成两个等腰三角形,直线l与BC交于点D,那么∠ADC的度数是______.三、计算题(本大题共1小题,共5.0分)19.计算(写出计算过程):(×-2)÷3.四、解答题(本大题共7小题,共47.0分)20.利用幂的性质计算(写出计算过程):÷×.21.计算(写出计算过程):3÷-27+()-2-(+2)022.如图,是一个由4条线段构成的“鱼”形图案,已知:∠1=50°,∠2=50°,∠3=130°.找出图中所有的平行线,并说明理由.23.阅读、填空并将说理过程补充完整:如图,已知点D、E分别在△ABC的边AB、AC上,且∠AED=∠B,延长DE与BC的延长线交于点F,∠BAC和∠BFD的角平分线交于点G.那么AG与FG的位置关系如何?为什么?解:AG⊥FG.将AG、DF的交点记为点P,延长AG交BC于点Q.因为AG、FG分别平分∠BAC和∠BFD(已知)所以∠BAG=______,______(角平分线定义)又因为∠FPQ=______+∠AED,______=______+∠B(三角形的一个外角等于与它不相邻的两个内角的和)∠AED=∠B(已知)所以∠FPQ=______(等式性质)(请完成以下说理过程)24.在平面直角坐标系中,已知点A的坐标为(-2,0),点B在y轴的正半轴上,且OB=2OA,将线段AB绕着A点顺时针旋转90°,点B落在点C处.(1)分别求出点B、点C的坐标.(2)在x轴上有一点D,使得△ACD的面积为3,求:点D的坐标.25.如图,在△ABC中,已知点D、E、F分别在边BC、AC、AB上,且FD=DE,BF=CD,∠FDE=∠B,那么∠B与∠C的大小关系如何?为什么?26.在等边△ABC中,点P,Q是BC边上的两个动点(不与点B、C重合),且AP=AQ.(1)如图1,已知,∠BAP=20°,求∠AQB的度数;(2)点Q关于直线AC的对称点为M,分别联结AM、PM;①当点P分别在点Q左侧和右侧时,依据题意将图2、图3补全(不写画法);②小明提出这样的猜想:点P、Q在运动的过程中,始终有PA=PM.经过小红验证,这个猜想是正确的,请你在①的点P、Q的两种位置关系中选择一种说明理由.答案和解析1.【答案】B【解析】解:A、无理数都是带根号的数,说法错误;B、无理数都是无限小数,说法正确;C、一个无理数的平方一定是有理数,说法错误;D、两个无理数的和、差、积、商仍是无理数,说法错误;故选:B.根据无理数的概念:无限不循环小数叫无理数进行分析即可.此题主要考查了实数运算,关键是掌握无理数定义.2.【答案】C【解析】解:∵2<3,∴a=2,b=3,∴a b=23=8,故选:C.首先确定a、b的值,进而可得a b的值.此题主要考查了估算无理数的大小,关键是正确确定a、b的值.3.【答案】C【解析】解:如图,延长AC交FB的延长线于点D,∵AE∥BF,∴∠4=180°-∠1=70°,∴∠3=∠2-∠4=60°.故选:C.延长AC交FB的延长线于点D得到∠4,根据两直线平行,同旁内角互补得到∠4=180°-∠1,再根据三角形外角性质可得∠3=∠2-∠4,代入数据计算即可.主要考查两直线平行,同旁内角互补的性质,作辅助线和运用三角形的一个外角等于和它不相邻的两个内角的和也非常重要.4.【答案】C【解析】解:根据各类三角形的概念可知,C可以表示它们彼此之间的包含关系.故选:C.根据它们的概念:有一个角是直角的三角形是直角三角形;有两条边相等的三角形是等腰三角形;有三条边相等的三角形是等边三角形;有一个角是直角且有两条边相等的三角形是等腰直角三角形.根据概念就可找到它们之间的关系.考查了三角形中各类三角形的概念,根据定义就能够找到它们彼此之间的包含关系.5.【答案】A【解析】解:A、∠A=30°,BC=3cm,AB=5cm,SSA不能判定三角形的形状和大小,错误;B、∠A=30°,AC=6cm,AB=5cm,SAS能判定三角形的形状和大小,正确;C、∠A=30°,∠C=50°,AB=5cm,AAS能判定三角形的形状和大小,正确;D、BC=3cm,AC=6cm,AB=5cm,SSS能判定三角形的形状和大小,正确;故选:A.根据基本作图的方法,及唯一确定三角形形状和大小的条件可知.此题主要考查了唯一确定三角形形状和大小的条件,即符合三角形全等的判定.6.【答案】D【解析】解:由图可得,点A、B的对应点分别为点C、D,而B(1,3),D(2,0),∴线段AB向右平移1个单位,向下平移3个单位得到线段CD,又∵P(a,b),∴Q(a+1,b-3),故选:D.依据B(1,3),D(2,0),可得线段AB向右平移1个单位,向下平移3个单位得到线段CD,再根据P(a,b),即可得到对应点Q(a+1,b-3).本题主要考查了坐标与图形变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.7.【答案】±2【解析】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【答案】>【解析】解:∵32=9<=10,∴3,则-3.故填空答案:>.要比较的两个数为负数,则先比较它们绝对值的大小,在比较3和的大小时,先比较它们平方值的大小.此题主要考查了实数的大小的比较,如果比较的两个数为负数,则应先比较两数的绝对值,如果比较的两数带有根号,则先比较两数的平方值.本题先取两数的绝对值,在比较两数绝对值大小时比较它们的平方值大小,最终得到这两个数的大小关系.9.【答案】3【解析】解:原式=(3×9)=(33)=3故答案为:3逆运用幂的乘方法则求解.本题考查了幂的乘方法则:法则正用:(ab)n=a n×b n,法则逆用:a n b n=(ab)n10.【答案】-1【解析】解:点A到原点的距离=0-(1-)=-1+=-1.故答案为:-1.依据数轴上两点间的距离公式求解即可.本题主要考查的是实数与数轴,依据数轴上两点间的距离公式列出算式是解题的关键.11.【答案】2.0×103【解析】解:按定义,将2018用科学计数法表示为2.18×103,保留两位有效数字为2.0×103.故答案为:2.0×103按定义将小数点放到第一位数字后,10的次数为整个数位数减1,再将2.018保留两位对第三位四舍五入.本题考查科学计数法和有效数字,解答时应按照定义要求.12.【答案】80【解析】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.本题考查了平行线的性质,三角板的知识,比较简单,熟记性质是解题的关键.13.【答案】10【解析】解:2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10.故答案为:10.分2是腰长和底边两种情况讨论求解.本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.14.【答案】(2,3)【解析】解:点P(2,-3)关于x轴的对称点坐标为(2,3),故答案为:(2,3).根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.【答案】y=4【解析】解:如图所示:经过点P(-2,4)且垂直于y轴的直线可以表示为直线y=4.故答案为:y=4.直接根据题意画出图形,进而得出符合题意的答案.此题主要考查了点的坐标,正确利用图象分析是解题关键.16.【答案】8【解析】解:∵在直角坐标平面内,点A(-m,5),点B(-m,-3)∴AB==8,故答案为:8利用两点间的距离公式计算即可求出.此题考查了两点间的距离公式,熟练掌握两点间的距离公式是解本题的关键.17.【答案】GE=BE【解析】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEG中,∠EAG=90°-∠AGE,又∵∠EAG=∠BAD,∴∠BAD=90°-∠AGE,在Rt△AEG和Rt△CDG中,∠CGD=∠AGE,∴∠EAG=∠DCG,∴∠EAG=90°-∠CGD=∠BCE,所以根据AAS添加AG=CB或EG=EB;根据ASA添加AE=CE.可证△AEG≌△CEB.故答案为:GE=BE.开放型题型,根据垂直关系,可以判断△AEG与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18.【答案】140°或80°【解析】解:分两种情况:①如图1,把120°的角分为100°和20°,则△ABD与△ACD都是等腰三角形,其顶角的度数分别是100°,140°;∴∠ADC=140°②把120°的角分为40°和80°,则△ABD与△ACD都是等腰三角形,其顶角的度数分别是100°,20°,∴∠ADC=80°,故答案为140°或80°.有两种情况:把120°的角分为100°和20°或40°和80°,分别画出图形,即可求解.此题主要考查等腰三角形的性质以及三角形各角之间的关系,难度适中,画出图形是关键.19.【答案】解:原式==-=、【解析】先利用二次根式的乘法法则运算,然后根据二次根式的除法法则运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:原式=6÷2×3=3×3=3=.【解析】直接利用分数指数幂的性质将原式变形进而计算得出答案.此题主要考查了分数指数幂的性质,正确将原式变形是解题关键.21.【答案】解:原式=-3+3-1=-2+2.【解析】本题涉及二次根式的计算、分数指数幂、零指数幂、负指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.22.【答案】解:∵∠1=50°,∠2=50°,∴∠1=∠2,∴BF∥CE,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴BC∥EF.【解析】根据平行线的判定方法即可解决问题;本题考查平行线的判定,解题的关键是熟练掌握平行线的判定方法,属于中考常考题型.23.【答案】∠CAG∠PFG=∠QFG∠CAG∠FQG∠BAG∠FQG【解析】解:AG⊥FG.将AG、DF的交点记为点P,延长AG交BC于点Q.因为AG、FG分别平分∠BAC和∠BFD(已知)所以∠BAG=∠CAG,∠PFG=∠QFG(角平分线定义)又因为∠FPQ=∠CAG+∠AED,∠FQG=∠BAG+∠B(三角形的一个外角等于与它不相邻的两个内角的和)∠AED=∠B(已知)所以∠FPQ=∠FQG(等式性质)所以FP=FQ(等角对等边)又因为∠PFG=∠QFG所以AG⊥FG(等腰三角形三线合一).故答案为:∠CAG;∠PFG=∠QFG;∠CAG;∠FQG;∠BAG;∠FQG.根据角平分线的定义得到∠BAG=∠CAG,∠PFG=∠QFG,根据三角形的外角的性质得到∠FPQ=∠FQG得到FP=FQ,根据等腰三角形的三线合一证明.本题考查的是等腰三角形的性质、三角形的外角的性质,掌握等腰三角形的三线合一是解题的关键.24.【答案】解:(1)由图象可知,B(0,4),C(2,-2);(2)设D(m,0),由题意•|m-2|•2=3,解得m=-5和1,∴D(1,0)或(-5,0).【解析】(1)根据题意画出图形即可解决问题;(2)设D(m,0),由题意•|m-2|•2=3,求出m即可解决问题;本题考查坐标与图形的变化-旋转,解题的关键是正确作出图形,属于中考常考题型.25.【答案】解:∠B=∠C,理由如下:∵∠FDC=∠B+∠DFB(三角形的一个外角等于与它不相邻的两个内角的和),即∠FDE+∠EDC=∠B+∠DFB.又∵∠FDE=∠B(已知),∴∠DFB=∠EDC.在△DFB和△EDC中,已知,已知∴△DFB≌△EDC(SAS).∴∠B=∠C.【解析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠B+∠DFB,再根据∠FDE=∠B,证明∠DFB=∠EDC,然后根据边角边定理证明△DFB与△EDC全等,根据此思路写出相关的理由与步骤即可.本题考查了全等三角形的判定与全等三角形的性质,熟练掌握判定定理与性质定理,理清证明思路是写出理由与步骤的关键.26.【答案】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠BAP=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,3所示:(3)PA=PM,点P在点Q的左侧,QM交AC于点H,∵点Q关于直线AC的对称点为M,∴QH=MH,∠AHQ=∠AHM,∵AH=AH,∴△AQH≌△AMH(SAS),∴AQ=AM,∠QAH=∠MAH,∵AP=AQ,∴AP=AM,∵∠BAP=∠CAQ,∴∠QAH=∠MAH=∠BAP,∴∠PAM=∠PAQ+∠QAH+∠MAH=∠PAQ+∠QAH+∠BAP=∠BAC=60°,∴△APM是等边三角形,∴PA=PM.【解析】(1)根据等腰三角形的性质得到∠APQ=∠AQP,由等边三角形得到∠B=60°,根据三角形外角的性质即可得到结论;(2)①由轴对称性质画出图形解答即可;②根据全等三角形的判定和性质以及等边三角形的判定和性质分两种情况解答即可.本题属于三角形综合题,主要考查了等边三角形的性质和判定,等腰三角形的性质的综合应用,熟练掌握等边三角形的判定和性质是解题的关键.。
浦东新区2015学年度第二学期期末质量抽测初一数学题号一二三四总分得分(完卷时间:90分钟满分:100分)2016.6一、选择题(本大题共6题,每题2分,满分12分)(每题只有一个选项正确)1.下列关于无理数的说法,错误的是……………………………………………………()(A)无理数是实数;(B)无理数是无限不循环小数;(C)无理数是无限小数;(D)无理数是带根号的数.2.如图,线段AB将边长为1个单位长度的正方形分割为两个等腰直角三角形,以A为圆心、AB的长为半径画弧交数轴于点C,那么点C在数轴上表示的实数是………………()(A)1+2;(B)2;(C)2-1;(D)1.3.如图,直线l1∥l2,∠1=110°,∠2=130°,那么∠3的度数是………………………………()(A)40°;(B)50°;(C)60°;(D)70°.4.下列说法:①任意三角形的内角和都是180°;②三角形的一个外角大于任何一个内角;③三角形的中线、角平分线和高线都是线段;④三角形的三条高线必在三角形内.其中正确的是……………………………………………………………………………………()(第5题图)(第2题图)(第3题图)(A)①②;(B)①③;(C)②③;(D)③④.5.如图,已知两个三角形全等,那么∠1的度数是…………………………………………()(A)72°;(B)60°;(C)50°;(D)58°.6.在直角坐标平面内,已知在y轴与直线x=3之间有一点M(a,3),如果该点关于直线x=3的对称点M'的坐标为(5,3),那么a的值为…………………………………………()(A)4;(B)3;(C)2;(D)1.二、填空题(本大题共12题,每题3分,满分36分)7.计算:9=.8.据上海市统计局最新发布的统计公报显示,2015年末上海市常住人口总数约为24 152 700人,用科学记数法将24 152 700保留三个有效数字是.9.如图,∠2的同旁内角是.10.如图,已知BC∥DE,∠ABC=120°,那么直线AB、DE的夹角是°.11.已知三角形的三边长分别为3cm、x cm和7cm,那么x的取值范围是.(第9题图)(第10题图)(第12题图)12.如图,在等腰△ABC中,AB=AC,点O是△ABC内一点,且OB=OC.联结AO并延长交边BC于点D.如果BD=6,那么BC的值为.13.如图,已知点A、B、C、F在同一条直线上,AD∥EF,∠D=40°,∠F=30°,那么∠ACD 的度数是.14.如图,将△ABC沿射线BA方向平移得到△DEF,AB=4,AE=3,那么DA的长度是.15.如图,在四边形ABCD中,AD∥BC,要使△ABD≌△CDB,可添加一个条件为.16.在平面直角坐标系中,如果点M(-1,a-1)在第三象限,那么a的取值范围是.17.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.18.在等腰△ABC中,如果过顶角的顶点A的一条直线AD将△ABC分割成两个等腰三角形,那么∠BAC= °.(第15题图)(第14题图)(第17题图)(第13题图)(第21题图)三、简答题(本大题共4题,第19题,每小题3分;第20题,每小题2分;第21题6分,第22题5分,满分21分)19.计算(写出计算过程):(1)()62623-+; (2)521135÷⨯.解: 解:20.利用幂的性质计算(写出计算过程,结果表示为含幂的形式):(1)212193⨯;(2)342331010-⎛⎫÷ ⎪ ⎪⎝⎭.解:解:21.如图,已知直线AB 、CD 被直线EF 所截,FG 平分∠EFD ,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB ∥CD ( ).所以∠BGF +∠3=180°( ). 因为∠2+∠EFD =180°(邻补角的意义), 所以∠EFD = °(等式性质). 因为FG 平分∠EFD (已知),所以∠3=∠EFD (角平分线的意义). 所以∠3= °(等式性质). 所以∠BGF = °(等式性质).22.如图,在△ABC 中,AD ⊥BC ,垂足为点D ,∠C =2∠1,∠2=32∠1,求∠B 的度数.四、解答题(本大题共4题,第23题6分,第24题7分,第25题8分,第26题10分,满分31分)23.如图,已知AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为点D 、E .说明△ABD 与△ACE全等的理由.24.如图,点E 是等边△ABC 外一点,点D 是BC 边上一点,AD =BE ,∠CAD =∠CBE ,联结ED 、EC .(1)试说明△ADC 与△BEC 全等的理由; (2)试判断△DCE 的形状,并说明理由.(第22题图)(第23题图)25.如图,在直角坐标平面内,已知点A (8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是直角坐标平面内的点,那么点P 在什么位置时,S △AOP =2S △AOB ?26.如图1,以AB 为腰向两侧分别作全等的等腰△ABC 和△ABD ,过顶角的顶点A 作∠MAN ,使MAN BAC α∠=∠=(060α︒<<︒),将∠MAN 的边AM 与AC 叠合,绕点A 按逆时针方向旋转,与射线CB 、BD 分别交于点E 、F ,设旋转角度为β.(1)如图1,当0βα︒<<时,线段BE 与DF 相等吗?请说明理由.(第25题图)(2)当2αβα<<时,线段CE 、FD 与线段BD 具有怎样的数量关系?请在图2中画出图形并说明理由.(3)联结EF ,在∠MAN 绕点A 逆时针旋转过程中(02βα︒<<),当线段AD ⊥EF 时,请用含α的代数式直接表示出∠CEA 的度数.(第26题图3)(第26题图2)浦东新区2015学年度第二学期期末质量测试初一数学参考答案一、选择题:(本大题共6题,每小题2分,满分12分)(每题只有一个选项正确) 1.D . 2.A . 3.C . 4.B . 5.C . 6.D .二、填空题:(本大题共12题,每题3分,满分36分) 7.3. 8.72.4210⨯. 9.∠4. 10.60. 11.4<x <10. 12.12. 13.110°. 14.1. 15.略.16.1<a .17.(3,1).18.90或108.三、简答题(本大题共4题,第19、20题,每题3分;第20题,每小题2分;第21题6分,第22题5分,满分21分)19.(1)解:原式=62262-+………………………………………………………(1分) =226+………………………………………………………………(2分)(2)解:原式(1分)=25⨯⨯(1分)=…………………………………………………………………(1分) 20.(1)解:原式=1233⨯…………………………………………………………………(1分) =323………………………………………………………………………(1分)(2)解:原式=32310-⎛⎫ ⎪ ⎪⎝⎭……………………………………………………………………(1分)=210-…………………………………………………………………………(1分)21.同位角相等,两直线平行………………………………………………………………(1分) 两直线平行,同旁内角互补……………………………………………………………(1分) 100…………………………………………………………………………………………(1分)12…………………………………………………………………………………………(1分)50…………………………………………………………………………………………(1分) 130…………………………………………………………………………………………(1分)22.解:因为AD ⊥BC (已知),所以∠ADC=90°(垂直的意义). …………………(1分)因为∠C+∠1+∠ADC =180°(三角形内角和性质),∠C =2∠1(已知),……(1分) 所以3∠1+90°=180°(等量代换), 所以∠1=30°.……………………………………………………………………(1分) 因为∠2=32∠1,所以∠2=45°……………………………………………………(1分) 因为∠C+∠1+∠2+∠B =180°(三角形内角和性质),所以∠B =45°.………(1分)四、解答题(本大题共4题,第23题6分,第24题7分,第25题8分,第26题10分,满分31分)23.因为BD ⊥AC ,CE ⊥AB (已知),所以∠ADB =∠AEC =90°(垂直的意义).…(2分)在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,(已知)(公共角),,(已证)AC AB A A AEC ADB …………………………………………………………(3分) 所以△ABD ≌△ACE (A .A .S ).…………………………………………… (1分)24.解:(1)因为等边△ABC (已知),所以AC =BC ,∠ACB =60°(等边三角形的性质).…………………………(2分) 在△ADC 和△BEC 中,⎪⎩⎪⎨⎧=∠=∠=,(已知)(已知),(已证)BE AD CBE CAD BC AC ,…………………………………………………………(1分) 所以△ACE ≌△DBF (S .A .S ).…………………………………………… (1分)(2)因为△ACE ≌△DBF (已证),所以∠ACD =∠BCE =60°.(全等三角形对应角相等),………………………… (1分) DC =EC (全等三角形对应边相等),………………………………………… (1分) 即△DCE 是等腰三角形.所以△DCE 是等边三角形.(有一个内角等于60°的等腰三角形是等边三角形)…(1分) 25.解:(1)设点B 的纵坐标为y ,因为A (8,0),所以OA =8; ………………………………………………………(1分) 因为S △AOB =12OA ·|y |=12×8|y |=12,所以y =±3, ………………………………(2分) 所以点B 的坐标为(2,3)或(2,-3).………………………………………………(1分)(2)设点P 的纵坐标为h ,因为S △AOP =2S △AOB ,所以S △AOP =12OA ·|h |=12×8|h |=24,所以h =±6,………(2分)所以点P 在直线y =6或直线y =-6.………………………………………………………(2分)26.解:(1)BE =DF .………………………………………………………………………(1分) 因为等腰△ABC 和△ABD 全等所以AB =AC =AD ,∠C =∠ABC =∠ABD =∠D ,(全等三角形、等腰三角形的性质)∠BAC =∠BAD (全等三角形的对应角相等) ………………………………………(1分)因为MAN BAC α∠=∠=(已知),所以MAN BAD α∠=∠=(等量代换),所以∠MAN -∠BAN =∠BAD -∠BAN (等式性质),即∠EAB =∠F AD.… …………………… …………………………………………………(1分)在△AEB 和△AFD 中ABE D AB AD EAB FAD ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(已证)(已证) 所以△AEB ≌△AFD (A .S .A ),………………………………………………………(1分) 所以BE =DF .(全等三角形的对应边相等)(2)CE -FD =BD . …………………………………………………………………………(1分)图形正确. ……………………………………………………………………………………(1分) 因为MAN BAD α∠=∠=(等量代换),所以∠MAN -∠EAD =∠BAD -∠EAD (等式性质),即∠DAF =∠BAE .因为∠ABC =∠ADB (已证),所以180°-∠ABC =180°-∠ADB ,即∠ABE =∠ADF .在△AEB 和△AFD 中ABE ADF AB AD BAE DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(已证)(已证)所以△AEB≌△AFD(A.S.A),………………………………………………………(1分)所以BE=DF(全等三角形的对应边相等),所以CE-FD=CB+BE-DF=CB(等量代换).因为等腰△ABC与等腰△ABD全等,所以BC=BD(全等三角形的对应边相等),所以CE-FD=BD(等量代换).……………………………………………………………(1分)(3)90°-α.………………………………………………………………………………(2分)。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70° 【答案】A【解析】∵AB ∥CD ,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A .2.把22a a -分解因式,正确的是( )A .()2a a -B .()2a a +C .()222a -D .()2a a -【答案】A【解析】提取公因式a 即可.【详解】解:22=(2)a a a a --,故选:A.【点睛】 本题考查了分解因式,熟练掌握提取公因式法和公式法分解因式是解题关键.3.如图,△ABC ≌△ADE ,且∠B =25°,∠E =105°,∠DAC =10°,则∠EAC 等于( )A .40°B .50°C .55°D .60°【答案】D 【解析】根据全等三角形对应角相等可得∠D=∠B ,再根据三角形的内角和定理求出∠DAE ,然后根据∠EAC=∠EAD+∠DAC,代入数据计算即可得解.【详解】解:∵ABC ADE ≅∴∠D=∠B=25︒ 在ADE 中,∠DAE=180︒-∠D-∠E=180︒-25︒-105︒=50︒∴∠EAC=∠EAD+∠DAC=50︒+10︒=60︒故选D.【点睛】此题主要考查全等三角形对应角相等和三角形的内角和定理,熟练找准对应角是解题关键.4.若关于x 的不等式组5210x x m ->⎧⎨-≥⎩的整数解共有3个,则m 的取值范围是( ) A .10m -≤<B .10m -<≤C .21m ≤<-D .21m -<≤- 【答案】D【解析】分别求出不等式组中不等式的解集,利用确定解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解:5210x x m ->⎧⎨-≥⎩①②, 由①解得:x <2,由②解得:x≥m ,故不等式组的解集为m≤x <2,由不等式组的整数解有3个,得到整数解为1,0,−1,则m 的范围为−2<m≤−1.故选:D .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键. 5.下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得22a b -<-C .由112->-,得2a a ->- D .由ab >,得c a c b -<- 【答案】D【解析】根据不等式的性质,可得答案.【详解】解:A 、当c ≤0时,ac ≤bc ,故A 不符合题意;B 、不等式的两边都减2,不等号的方向不变,故B 不符合题意;C 、当a <0时,112->-,得2a a -<-,故C 不符合题意; D 、不等式的两边都乘−1,不等号的方向改变,故D 符合题意;故选D .【点睛】本题考查了不等式的性质,熟记不等式的性质是解题关键.6.一副直角三角板按如图所示的方式摆放,其中点C 在FD 的延长线上,且AB ∥FC ,则∠CBD 的度数为( )A .30︒B .25︒C .20︒D .15︒【答案】D 【解析】分析: 先根据平行线的性质得出∠ABD 的度数,进而可得出结论.详解: ∵AB ∥CD ,∴∠ABD=∠EDF=45°,∴∠CBD=∠ABD-∠ABC=45°-30°=15°.故选:A.点睛: 本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.对于非零的两个实数a ,b ,规定a ⊕b=am ﹣bn ,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为( )A .﹣13B .13C .2D .﹣2【答案】A【解析】解:根据题意得:3⊕(5)3515m n -=+=,4⊕(7)4728m n -=+= 35154728m n m n +=⎧∴⎨+=⎩,解得:3524m n =-⎧⎨=⎩∴(-1)⊕2=-m-2n=35-48=-13故选A8.下列图形不是轴对称图形的是( )A .B .C .D .【答案】A 【解析】解:A 不是轴对称图形;B 是轴对称图形;C 是轴对称图形;D 是轴对称图形,故选A.9.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是( )A .B .C .D . 【答案】A【解析】根据三角形按角分类的方法一一判断即可.【详解】观察图象可知:选项B ,D 的三角形是钝角三角形,选项C 中的三角形是锐角三角形,选项A 中的三角形无法判定三角形的类型.故选A .【点睛】本题考查了三角形的分类,解题的关键是熟练掌握基本知识,属于中考常考题型.10.已知x y ,()2320x y -+=,则x y 的立方根是( )A .36B .-8C .-2D .2±【答案】C【解析】直接利用非负数的性质得出x ,y 的值,再利用立方根的定义求出答案. ()2320x y -+=,∴x−3=0,y+2=0,解得:x=3,y=−2,则y x =(−2)3=−8的立方根是:−2.故选:C.【点睛】此题考查立方根,算术平方根的非负性,解题关键在于利用非负性求出x,y的值. 二、填空题题11.已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长为________. 【答案】11,1【解析】因为腰长没有明确,所以分①3是腰长,②5是腰长两种情况求解.【详解】解:①3是腰长时,能组成三角形,周长=3+3+5=11;②5是腰长时,能组成三角形,周长=5+5+3=1.所以,它的周长是11或1.故答案为:11或1.【点睛】本题考查了等腰三角形的性质,关键是分①3是腰长,②5是腰长两种情况求解.12.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=___________度.【答案】60【解析】如图所示,可根据邻补角、内错角以及三角形内角和求出∠3的度数.【详解】解:如图所示:∵∠2=110°,∴∠4=70°,∵AB∥CD,∴∠5=∠1=50°,∴∠3=180°−∠4−∠5=60°,故答案为60.【点睛】本题考查了三角形的内角和定理,以及平行线的性质:两直线平行,同旁内角互补.13.已知关于x的不等式组{321x ax-≥-≥-的整数解共有5个,则a的取值范围是.【答案】-3<a≤-1【解析】∵解不等式组得:a≤x≤1,∵不等式组的整数解有5个,∴整数解为:1,1,0,-1,-1,∴-3<a≤-1.故答案为-3<a≤-1.14.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A 等级的扇形的圆心角的大小为 .【答案】108°.【解析】试题分析:根据C 等级的人数与所占的百分比计算出参加中考的人数,再求出A 等级所占的百分比,然后乘以360°计算即可得解.试题解析:参加中考的人数为:60÷20%=300人,A 等级所占的百分比为:90300×100%=30%, 所以,表示A 等级的扇形的圆心角的大小为360°×30%=108°.考点:扇形统计图.15.观察下列等式:39×41=402-12,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,…请你把发现的规律用字母表示出来:m×n =________.【答案】2222m n n m +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭【解析】观察可以发现,4039412+=,141392-=;5048522+=,152482-=;6056642+=,464562-=∴m•n =(2m n +)1﹣(2n m -)1. 【详解】∵4039412+=,141392-=; ∴39×41=401﹣11=(39412+)1﹣(41392-)1; 同理5048522+=,152482-=;6056642+=,464562-= ∴48×51=501﹣11=(48522+)1﹣(52482-)1;56×64=601﹣41=(56642+)1﹣(64562-)1… ∴m•n =(2m n +)1﹣(2n m -)1. 故答案为(2m n +)1﹣(2n m -)1.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.有一个正方体小木块,六个面分别标有数字1,2,3,4,5,6,随机投掷一次正方体小木块,出现向上面的数字大于2的概率为_____. 【答案】23 【解析】根据概率的定义,首先判定出随机投掷一次正方体小木块,出现向上面的数字大于2的数字有3,4,5,6四种情况,然后即可求出其概率.【详解】解:根据题意,可得随机投掷一次正方体小木块,出现向上面的数字大于2的数字有3,4,5,6四种情况,则其概率为4263P ==. 【点睛】此题主要考查概率的运用,熟练掌握即可解题.17.如图,//AD BC ,ABD ∆的面积等于2,1AD =,3BC =,则DBC ∆的面积是_______.【答案】6【解析】过D 作DH ⊥BC ,根据三角形的面积公式即可得到结论.【详解】过D 作DH ⊥BC ,∵AD ∥BC ,△ABD 的面积等于2,AD=1,∴DH=4,∵BC=3,∴△DBC 的面积14362=⨯⨯=, 故答案为:1.【点睛】本题考查了三角形的面积,平行线间的距离.正确的识别图形是解题的关键.三、解答题18.规定:{x}表示不小于x 的最小整数,如{4}=4,{-2.6}=-2,{-5}=-5。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
2016-2017学年第二学期七年级期末数学模拟试卷二本次考试范围:苏科版七下全部内容,八年级数学上册《全等三角形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。
一、选择题(每小题3分,共30分)1.下列运算中,正确的是 ( ) A .a 2+a 2=2a 4 B .a 2•a 3=a 6 C .(-3x )2÷3x =3x D .(-ab 2)2=-a 2b 42.现有4根小木棒的长度分别为2cm ,3cm ,4cm 和5cm .用其中3根搭三角形,可以搭出不同三角形的个数是 ( ) A .1个 B .2个 C .3个 D .4个 3.如下图,下列判断正确的是 ( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2.则AB ∥CDC .若∠A =∠3,则 AD ∥BC D .若∠A +∠ADC =180°,则AD ∥BC4.如果a > b ,那么下列不等式的变形中,正确的是 ( ) A .a -1<b -1 B .2a <2b C .a -b <0 D .-a +2<-b +2 5.若5x 3m-2n-2y n -m +11=0是二元一次方程,则 ( )A .m =3,n =4B .m =2,n =1C .m =-1,n =2D .m =1,n =26.已知方程组⎩⎨⎧3x +5y = k +8,3x +y =-2k .的解满足x + y = 2 ,则k 的值为 ( )A .-4B .4C .-2D .27.若不等式组⎩⎨⎧3x +a <0,2x + 7>4x -1.的解集为x <4,则a 的取值范围为 ( )A .a <-12B .a ≤-12C .a >-12D .a ≥-12 8.四个同学对问题“若方程组 111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组 111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 ( ) A⎩⎨⎧==84y x ; B ⎩⎨⎧==129y x ; C ⎩⎨⎧==2015y x ; D ⎩⎨⎧==105y x9. 如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90° 10. 如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使得CC '∥AB ,则旋转角的度数为( ) A .35° ; B .40° ; C .50° ; D .65° 二、填空题(每空3分,共24分) 11.计算:3x 3·(-2x 2y ) = . 12.分解因式:4m 2-n 2 = .第3题图第9题图ABCB ′C ′第10题图13.已知一粒米的质量是0.000021千克,0.000021用科学记数法表示为 __ .14.若⎩⎨⎧x = 2,y = 1.是方程组⎩⎨⎧2ax +y = 5,x + 2y = b .的解,则ab = .15.二元一次方程3x +2y =15共有_______组正整数解....16.关于x 的不等式(a +1)x>(a +1)的解集为x <1,则a 的范围为 .17.如图,已知Rt △ABC 中∠A =90°,AB =3,AC =4.将其沿边AB 向右平移2个单位得到△FGE ,则四边形ACEG 的面积为 .18.某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线A B 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. (1)如图1,若已经向右摆放了3根小棒,且恰好有∠A 4A 3A =90°,则θ= . (2)如图2,若只能..摆放5根小棒,则θ的范围是 . 三、解答题(共11题,计76分)19.(本题满分6分)计算:(1)(-m )2·(m 2)2÷m 3; (2)(x -3)2-(x +2)(x -2).20.(本题满分6分)分解因式:(1)x 3-4xy 2; (2) 2m 2-12m +18.21.(本题满分6分)(1)解不等式621123x x ++-<; (2)解不等式组()523215122x x x x⎧-<-⎪⎨-<-⎪⎩22.(本题满分6分)已知长方形的长为a ,宽为b ,周长为16,两边的平方和为14.①求此长方形的面积; ②求ab 3+2a 2b 2+a 3b 的值.23.(本题满分6分)在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13. (1)求a 、b 的值;θA 4A 3A 2AA 1BCθA 6A 5A 4A 3A 2AA 1BC图1图2A B CEF G第16题图第18题图(2)当-1<x <2,求y 的取值范围.24. (本题满分6分)如图2,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E , BD 是△ABC 的角平分线.求∠DEB 的度数.25. (本题满分6分)已知,如图,AC 和BD 相交于点O ,OA=OC ,OB=OD ,求证:AB ∥CD .26.(本题8分) 某公司准备把240吨白砂糖运往A 、B 两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量 运往A 地的费用 运往B 地的费用 大车 15吨/辆 630元/辆 750元/辆 小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A 地,其中大车有m 辆,其余货车前往B 地,且运往A 地的白砂糖不少于115吨.①求m 的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.27.(8分)(1)如图①,在凹四边形ABCD 中,∠BDC =135°,∠B =∠C =30°,则∠A = °;(2)如图②,在凹四边形ABCD 中,∠ABD 与∠ACD 的角平分线交于点E ,∠A =60°,∠BDC =140°,则∠E = °;(3)如图③,∠ABD ,∠BAC 的平分线交于点E ,∠C =40°,∠BDC =150°,求∠AEB 的度数;(4)如图④,∠BAC ,∠DBC 的角平分线交于点E ,则∠B ,∠C 与∠E 之间有怎样的数量关系 。
上海市浦东新区2017学年度第二学期期末质量测试初一数学(完卷时间:90分钟,满分:100分)题号一二三四总分得分一、选择题:(本大题共4题,每题2分,满分8分)1.在实数0,,3.14,π中,无理数的个数有()A.0个B.1个C.2个D.3个2.如图,已知直线MN分别交△ABC的两条边AB、AC于点D和点E,那么与∠ADE 成内错角关系的角是()A.∠BDM B.∠CED C.∠AED D.∠AEN3.在直角坐标中,点P(2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列判断中,错误的是()A.有两边对应相等的两个等腰三角形一定全等B.有一边对应相等的两个等边三角形一定全等C.有两角及其夹边对应相等的两个三角形一定全等D.D有两角及其中一角的对边对应相等的两个三角形一定全等二、填空题(本大题共16题,每题2分,满分32分)5.64的平方根是.6.把方根化成幂的形式是.7.对于近似数8.10×10﹣3,它有个有效数字.8.在数轴上,如果点A所对应的数为﹣,那么点A到原点的距离是.9.已知直线AB和直线CD相交于点O,∠AOC+∠BOD=200°,那么这两条直线的夹角等于度.10.如图,已知直线a∥b,点A在直线a上,点B、C在直线b上,点P在线段AB上,∠1=70°,∠2=100°,那么∠PCB= 度.11.已知在△ABC中,AB=AC,∠B=40°,D是边BC的中点,那么∠CAD= 度.12.在平面直角坐标系xOy中,如果AB∥y轴,点A的坐标为(﹣3,4),A、B的距离为5,那么点B的坐标为.13.在不等边三角形ABC中,如果AB=4,BC=6,AC的长为偶数,那么AC= .2= °.14.如图是用一张长方形纸条折成的.如果∠1=130°,那么∠15.如果将点A(4,﹣2)向左平移5个单位,再向下平移2个单位,那么所得点的坐标为.16.如果点(m+5,2﹣4m)在x轴上,那么m的值等于.17.经过点B(7,﹣4)且垂直于x轴的直线可以表示为直线.18.已知点A(2,5)、B(﹣3,5)、C(﹣2,﹣3)、D(6,﹣3),那么四边形ABCD 的面积等于.19.如图,已知在△ABC中,∠A=40°,将一块直角三角板放在△ABC上使三角板的两条直角边分别经过B、C,直角顶点D落在△ABC的内部,那么∠ABD+∠ACD= 度.20.如图,已知O是等边三角形ABC内一点,D是线段BO延长线上一点,且OD=OA,∠AOB=120°,那么∠BDC= 度.三、解答题:(本大题满分24分)21.(12分)计算:(1)()3﹣(3+2)÷(2)(+2)2×(﹣2)2+3×9.22.(6分)如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知)所以∠DEF=∠CFE()因为(已知)所以∠DEF=∠CFE(角平分线的意义)所以∠=∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A= ()所以EF∥BC()23.(6分)已知:如图,AB∥CD,∠B=∠D,那么AD与BC平行吗?为什么?四、解答题:(本大题满分36分)24.(8分)如图,已知D是△ABC的边BC上一点,AB=AC=BD,AD=CD,求∠B的度数.25.(8分)已知:如图,在△ABC中,AB=AC,高BD和CE相交于点F,试说明△BFC 是等腰三角形的理由.26.(10分)已知:如图,OA=OB,OC=OD,∠AOB=∠BOC=∠COD,线段AC交线段OB于点M,线段BD交线段OC于点N.(1)请说明△AOC≌△BOD的理由;(2)请说明OM=ON的理由.27.(10分)如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A 关于点B的对称点.(1)求点C的坐标;(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.2017学年上海市浦东新区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共4题,每题2分,满分8分)1.(2分)在实数0,,3.14,π中,无理数的个数有()A.0个B.1个 C.2个 D.3个【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,π是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(2分)如图,已知直线MN分别交△ABC的两条边AB、AC于点D和点E,那么与∠ADE成内错角关系的角是()A.∠BDM B.∠CED C.∠AED D.∠AEN【分析】内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.依此即可求解.【解答】解:由图形可知,与∠ADE成内错角关系的角是∠CED.故选:B.【点评】考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.(2分)在直角坐标中,点P(2,﹣3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据平面直角坐标系内各象限内点的坐标符号特点,可以确定点P的位置,本题得以解决.【解答】解:∵在直角坐标中,点P(2,﹣3),∴点P在第四象限,故选D.【点评】本题考查点的坐标,解题的关键是明确直角坐标系中各象限内点的坐标符号.4.(2分)下列判断中,错误的是()A.有两边对应相等的两个等腰三角形一定全等B.有一边对应相等的两个等边三角形一定全等C.有两角及其夹边对应相等的两个三角形一定全等D.D有两角及其中一角的对边对应相等的两个三角形一定全等【分析】根据全等三角形的判定,可得答案.【解答】解:A、有两边对应相等的两个等腰三角形不一定全等,可能这两边是两腰,错误;B、有一边对应相等的两个等边三角形一定全等,正确;C、有两角及其夹边对应相等的两个三角形一定全等,正确;D、有两角及其中一角的对边对应相等的两个三角形一定全等,正确;故选A【点评】本题考查了全等三角形的判定,熟记全等三角形的判定定理是解题关键.二、填空题(本大题共16题,每题2分,满分32分)5.(2分)64的平方根是±8 .【分析】直接根据平方根的定义即可求解.【解答】解:∵(±8)2=64,∴64的平方根是±8.故答案为:±8.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2分)把方根化成幂的形式是.【分析】根据分数指数次幂的意义即可求解.【解答】解:把方根化成幂的形式是.故答案为:.【点评】本题考查了分数的指数次幂,理解分数的指数次幂的意义是关键.7.(2分)对于近似数8.10×10﹣3,它有 3 个有效数字.【分析】根据有效数字的定义可以得到题目中的数有几个有效数字,从而可以解答本题.【解答】解:近似数8.10×10﹣3,它有3个有效数字,故答案为:3.【点评】本题考查近似数和有效数字,解答本题的关键是明确有效数字的定义.8.(2分)在数轴上,如果点A所对应的数为﹣,那么点A到原点的距离是.【分析】根据绝对值的定义可知,点A到原点的距离即为点A所对应的数的绝对值,根据绝对值的意义求解即可.【解答】解:∵在数轴上,点A所对应的数为﹣,∴点A到原点的距离是|﹣|=.故答案为.【点评】本题考查了实数与数轴,在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离.9.(2分)已知直线AB和直线CD相交于点O,∠AOC+∠BOD=200°,那么这两条直线的夹角等于80 度.【分析】首先根据题意画出图形,然后根据对顶角和邻补角的性质计算即可.【解答】解:如图所示:由对顶角的性质可知:∠AOC=∠BOD,又∵∠AOC+∠BOD=200°,∴∠AOC=×200°=100°.∵∠AOD+∠AOC=180°,∴∠AOD=180°﹣100°=80°.故答案为:80.【点评】本题主要考查的是对顶角和邻补角的性质,掌握对应角和邻补角的性质是解题的关键.10.(2分)如图,已知直线a∥b,点A在直线a上,点B、C在直线b上,点P在线段AB上,∠1=70°,∠2=100°,那么∠PCB= 30 度.【分析】先根据平行线的性质,得出∠ABC的度数,再根据三角形外角性质,即可得到∠PCB的度数.【解答】解:∵a∥b,∠1=70°,∴∠ABC=∠1=70°,∵∠2=100°,∴∠PCB=∠2﹣∠ABC=100°﹣70°=30°,故答案为:30.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.11.(2分)已知在△ABC中,AB=AC,∠B=40°,D是边BC的中点,那么∠CAD= 50 度.【分析】根据等腰三角形的性质即可得到结论.【解答】解:∵AB=AC,∠B=40°,∴∠C=∠B=40°,∵D是边BC的中点,∴AD⊥BC,∴∠CAD=50°,故答案为:50.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2分)在平面直角坐标系xOy中,如果AB∥y轴,点A的坐标为(﹣3,4),A、B 的距离为5,那么点B的坐标为(﹣3,9)或(﹣3,﹣1).【分析】AB∥y轴,说明A,B的横坐标相等为﹣3,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥y轴,点A坐标为(﹣3,4),∴A,B的横坐标相等为﹣3,设点B的纵坐标为y,则有AB=|y﹣4|=5,解得:y=9或﹣1,∴点B的坐标为(﹣3,9)或(﹣3,﹣1).故本题答案为:(﹣3,9)或(﹣3,﹣1).【点评】本题考查了坐标与图形得变换,平行于y轴得点的横坐标相等是解题的关键.13.(2分)在不等边三角形ABC中,如果AB=4,BC=6,AC的长为偶数,那么AC= 8 .【分析】根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得AC的取值范围,再解即可.【解答】解:根据三角形的三边关系定理可得,6﹣4<AC<4+6,即2<AC<10,因为AC的长为偶数,所以AC=8,故答案为:8【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.2= 65 °.14.(2分)如图是用一张长方形纸条折成的.如果∠1=130°,那么∠【分析】根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【解答】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣130°=50°,由翻折的性质得,∠2=(180°﹣∠3)=(180°﹣50°)=65°.故答案为:65.【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.15.(2分)如果将点A(4,﹣2)向左平移5个单位,再向下平移2个单位,那么所得点的坐标为(﹣1,﹣4).【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:∵点A(4,﹣2)向左平移5个单位,再向下平移2个单位,∴所得到的点的横坐标为4﹣5=﹣1,纵坐标为﹣2﹣2=﹣4,∴所得点的坐标为(﹣1,﹣4).故答案为:(﹣1,﹣4).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.(2分)如果点(m+5,2﹣4m)在x轴上,那么m的值等于.【分析】根据x轴上的点其纵坐标为0列出不等式,解之即可得.【解答】解:根据题意,得:2﹣4m=0,解得:m=,故答案为:.【点评】本题主要考查解一元一次不等式的能力,根据坐标轴上点的坐标特点得出关于m 的不等式是解题的关键.17.(2分)经过点B(7,﹣4)且垂直于x轴的直线可以表示为直线x=7 .【分析】垂直于x轴的直线与y轴平行,横坐标等于点B的横坐标.【解答】解:经过点B(7,﹣4)且垂直于x轴的直线可以表示为直线x=7.故答案为:x=7.【点评】本题考查了坐标与图形的性质,掌握与坐标轴垂直的直线的解析式写法是解题的关键.18.(2分)已知点A(2,5)、B(﹣3,5)、C(﹣2,﹣3)、D(6,﹣3),那么四边形ABCD的面积等于52 .【分析】根据平面直角坐标系找出点A、B、C、D的位置,然后顺次连接即可得到四边形ABCD所在的矩形的面积+直角三角形的面积,列式计算即可得解.【解答】解:如图所示;四边形ABCD的面积=(5+4)×8×+×4×8=36+16,=52.故答案为52.【点评】本题考查了坐标与图形得性质,不规则四边形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.(2分)如图,已知在△ABC中,∠A=40°,将一块直角三角板放在△ABC上使三角板的两条直角边分别经过B、C,直角顶点D落在△ABC的内部,那么∠ABD+∠ACD= 50 度.【分析】根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数.【解答】解:在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案是:50.【点评】本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.20.(2分)如图,已知O是等边三角形ABC内一点,D是线段BO延长线上一点,且OD=OA,∠AOB=120°,那么∠BDC= 60 度.【分析】由△ABC为等边三角形可得出AB=AC、∠BAC=60°,由∠AOB的度数利用邻结合OD=OA可得出△AOD为等边三角形,根据等边三角补角互补可得出∠AOD=60°,形的性质可得出AO=AD、∠OAD=60°,根据∠BAO+∠OAC=∠OAC+∠CAD=60°可得出∠BAO=∠CAD,利用全等三角形的判定定理SAS可证出△BAO≌△CAD,根据全等三角形的性质可得出∠ADC的度数,再根据∠BDC=∠ADC﹣∠ADO即可求出∠BDC的度数.【解答】解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.∵∠AOB=120°,∠AOD+∠AOB=180°,∴∠AOD=60°.又∵OD=OA,∴△AOD为等边三角形,∴AO=AD,∠OAD=60°,∠ADO=60°.∵∠BAO+∠OAC=∠OAC+∠CAD=60°,∴∠BAO=∠CAD.在△BAO和△CAD中,,∴△BAO≌△CAD(SAS),∴∠ADC=∠AOB=120°,∴∠BDC=∠ADC﹣∠ADO=60°.故答案为:60.【点评】本题考查了等边三角形的判定与性质、全等三角形的判定与性质以及角的计算,通过证明△BAO≌△CAD,找出∠ADC=∠AOB=120°是解题的关键.三、解答题:(本大题满分24分)21.(12分)计算:(1)()3﹣(3+2)÷(2)(+2)2×(﹣2)2+3×9.【分析】(1)根据二次根式的乘除法则运算;(2)根据平方差公式和同底数幂的乘法法则运算.【解答】解:(1)原式=3﹣﹣2=2﹣2;(2)原式=[(+2)(﹣2)]2+?=(3﹣4)2+=1+1=2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(6分)如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知)所以∠DEF=∠CFE(两直线平行,内错角相等)因为EF平分∠CED (已知)所以∠DEF=∠CFE(角平分线的意义)所以∠CFE =∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A= ∠CEF (等量代换)所以EF∥BC(同位角相等,两直线平行)【分析】先根据两直线平行,内错角相等,得到∠DEF=∠CFE,再根据角平分线得出∠DEF=∠CEF,进而得到∠CFE=∠CEF,再根据∠A=∠CFE,即可得出∠A=∠CEF,进而根据同位角相等,两直线平行,判定EF∥BC.【解答】解:因为DE∥BC(已知)所以∠DEF=∠CFE(两直线平行,内错角相等)因为EF平分∠CED(已知)所以∠DEF=∠CEF(角平分线的意义)所以∠CFE=∠CEF(等量代换)因为∠A=∠CFE(已知)所以∠A=∠CEF(等量代换)所以EF∥BC(同位角相等,两直线平行)故答案为:两直线平行,内错角相等,EF平分∠CED,CFE,∠CEF,等量代换,同位角相等,两直线平行.【点评】本题主要考查了平行线的性质与判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.(6分)已知:如图,AB∥CD,∠B=∠D,那么AD与BC平行吗?为什么?【分析】先根据AB∥CD,得到∠B+∠C=180°,再根据∠B=∠D,即可得出∠C+∠D=180°,进而判定AD∥BC.【解答】解:AD与BC平行.理由:∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠D,∴∠C+∠D=180°,∴AD∥BC.【点评】本题考查了对平行线的性质和判定的应用,解题时注意:两直线平行,同旁内角互补;反之亦然.四、解答题:(本大题满分36分)24.(8分)如图,已知D是△ABC的边BC上一点,AB=AC=BD,AD=CD,求∠B的度数.【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°.【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.25.(8分)已知:如图,在△ABC中,AB=AC,高BD和CE相交于点F,试说明△BFC 是等腰三角形的理由.【分析】首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,又∵∠BEC=∠CDB=90°,BC=CB,在△BEC与△CDB中,,∴△BEC≌△CDB (AAS),∴∠DBC=∠ECB,∴FB=FC,∴△BFC是等腰三角形.【点评】本题考查了等腰三角形的性质和判定的应用,关键是根据AAS证明三角形全等和判定解答.26.(10分)已知:如图,OA=OB,OC=OD,∠AOB=∠BOC=∠COD,线段AC交线段OB于点M,线段BD交线段OC于点N.(1)请说明△AOC≌△BOD的理由;(2)请说明OM=ON的理由.【分析】(1)根据已知条件得到∠AOC=∠BOD,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质即可得到结论.【解答】解:(1)∵∠AOB=∠BOC=∠COD,∴∠AOC=∠BOD,在△AOC与△BOD中,,∴△AOC≌△BOD;(2)∵△AOC≌△BOD,∴∠A=∠B,在△AOM与△BON中,,∴△AOM≌△BON,∴OM=ON.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.27.(10分)如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A关于点B的对称点.(1)求点C的坐标;(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.【分析】(1)由A、B坐标得出AB=5,根据点C是点A关于点B的对称点知BC=AB=5,据此可得;(2)根据S△BCD=BC?AD=10且BC=5,可得AD=4,即可知OP=2,据此可得答案.【解答】解:(1)∵点A(8,0),点B(3,0),∴AB=5,∵点C是点A关于点B的对称点,∴BC=AB,则点C的坐标为(﹣2,0);(2)如图,。
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。
1个B。
2个C。
3个D。
4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。
原点B。
x轴上C。
y轴上D。
x轴上或y轴上3.不等式组2x-1>1。
4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。
图形的平移是指把图形沿水平方向移动B。
“相等的角是对顶角”是一个真命题C。
平移前后图形的形状和大小都没有发生改变D。
“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。
1500B。
1000C。
150D。
5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。
①③④B。
①②③C。
①②④D。
②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。
8.-364的绝对值等于______。
9.不等式组{x-2≤x-1>的整数解是______。
10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。
11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。
某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。
12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。
则老师知道XXX与XXX之间的距离是______。
13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,连接AD.若△ABC的周长是17cm,AE=2cm,则△ABD的周长是()A.13cm B.15cm C.17cm D.19cm【答案】A【解析】分析:根据“线段垂直平分线的定义和性质”结合已知条件分析解答即可.详解:∵AC的垂直平分线交BC于点D,交AC于点E,∴AC=2AE=4cm,AD=CD,∵AB+BC+AC=17cm,∴AB+BC=17cm-4cm=13cm,∵△ABD的周长=AB+BD+AD,∴△ABD的周长=AB+BD+CD=AB+BC=13cm.故选A.点睛:熟记“线段垂直平分线的定义和性质”是解答本题的关键.2.若∠1 与∠2 是同旁内角,∠1=130°,则A.∠2=50°B.∠2=130°C.∠2=50°或者∠2=130°D.∠2 的大小不确定【答案】D【解析】根据两直线的关系即可判断.【详解】∵若∠1 与∠2 是同旁内角,由于∠1与∠2不公共的那条直线不一定平行,故不能确定∠2的大小,故选D.【点睛】此题主要考查两直线间的关系,解题的关键是熟知两直线平行,同旁内角互补.3.如图,在下列的条件中,能判定DE∥AC的是()A.B.C.D.【答案】B【解析】可以从直线DE,AC的截线所组成的“三线八角"图形入手进行判断.【详解】解:由∠1=∠4,可判定AB∥DF,不能判定DE//AC,故A选项错误;由∠1=∠A,可得DE//AC,故B选项正确;由∠A=∠3,可判定AB∥DF,不能判定DE//AC,故C选项错误;由可判定AB∥DF,不能判定DE//AC, 故D选项错误;故选:B.【点睛】本题考查平行线的判定,关键是对平行线的判定方法灵活应用.4.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C=24°,则∠B′=( )A.150°B.120°C.90°D.60°【答案】B【解析】根据三角形内角和算出∠B的度数,再利用全等三角形的性质即可得出结果.【详解】解:∵∠A=36°,∠C=24°,∴∠B=120°,∵△ABC≌△A′B′C′,∴∠B=∠B′=120°,故选:B.【点睛】本题考查三角形内角和定理及全等三角形的性质,熟练掌握全等三角形的性质是解题关键.5.如图是测量嘉琪跳远成绩的示意图,直线l是起跳线,以下线段的长度能作为嘉琪跳远成绩的是()A .BPB .CPC .APD .AO【答案】D 【解析】利用垂线最短的性质,找出与起跳线垂直的线段即可.【详解】嘉琪的跳远成绩的依据是垂线段最短,符合题意的垂线段是AO.故选:D.【点睛】此题主要考查垂线的性质,熟练掌握,即可解题.6.如图,为了估计池塘岸边两点A B 、的距离,小明在池塘的一侧选取一点O ,测得64OA m OB m ==,,则点A B 、间的距离不可能是( )A .3cmB .4cmC .6cmD .10cm【答案】D 【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【详解】∵6−4<AB <6+4,∴2<AB <1.∴所以不可能是1cm .故选:D .【点睛】此题考查三角形三边关系,已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和. 7.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介,在下面的四个京剧脸中,不是轴对称图形的是( )A .B .C .D .【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A .【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.如果一个图形沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.8.把不等式组31234x x +>-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是( ) A .B .C .D .【答案】B【解析】先求出不等式组的解集,然后将解集在数轴上表示即可.【详解】解:解不等式3x+1>﹣2,得:x >﹣1,解不等式x+3≤4,得:x ≤1,所以不等式组的解集为:﹣1<x ≤1,故选B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.也考查了不等式组解集在数轴上的表示方法.9.如图所示,直线a 、b 被直线c 所截,下列条件不能使//a b 的是( )A .25∠=∠B .17∠=∠C .37∠=∠D .18180∠+∠=︒【解析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【详解】解:A 、24∠∠=,4∠与5∠是同旁内角,同旁内角相等不能说明//a b ;故A 符合题意; B 、57∠=∠,1∠与5∠是同位角,同位角相等能说明//a b ;故B 不符合题意;C 、37∠=∠,同位角相等能说明//a b ,故C 不符合题意;D 、1∠=5∠,8∠与5∠是邻补角,则18180∠+∠=︒能说明//a b ;故D 不符合题意;故选:A .【点睛】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 10.运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.则10节火车车厢和20辆汽车能运输多少吨化肥?( )A .720B .860C .1100D .580 【答案】D【解析】设每节火车车厢能够运输x 吨化肥,每辆汽车能够运输y 吨化肥,等量关系:运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车.再根据求得的每节火车车厢和每辆汽车各能够运输吨数,分别乘以车的数量,求它们的和即可.【详解】根据题意:{6x+15y=3608x+10y=440, 解得:{x=50y=4,1050+420=580⨯⨯.故选D.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.二、填空题题11.一个班级有40人,一次数学考试中,优秀的有12人,在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是______.【答案】108°【解析】优秀的人数所占的百分比的圆心角的度数等于优秀率乘以周角度数. 【详解】解:扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是1240×360°=108°, 故答案为:108°.【点睛】本题考查了扇形统计图的知识,了解扇形统计图中扇形所占的百分比的意义是解题的关键.12.如图,在直角坐标系中,已知点A (-3,0),B (0,4),AB=5,对△OAB 连续做旋转变换,依次得到△1,△2,△3,△4,…,则△2017的直角顶点的坐标为______.【答案】(8064,0)【解析】得到△ABC 的周长为12,根据旋转变换可得△OAB 的旋转变换为每3次一个循环,由于2017÷3=672…1,于是可判断三角形2017与三角形1的状态一样,然后计算672×12即可得到三角形2017的直角顶点坐标.【详解】解:∵A (-3,0),B (0,4),∴OA=3,OB=4,∵AB=5,∴△ABC 的周长=3+4+5=12,∵△OAB 每连续3次后与原来的状态一样,∵2017÷3=672…1,∴△2017的直角顶点是第672个循环组后第一个三角形的直角顶点,∴三角形2017的直角顶点的横坐标=672×12=8064,∴三角形2017的直角顶点坐标为(8064,0),故答案为:(8064,0).【点睛】本题考查了坐标与图形变化—旋转,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.13.实数a ,b 在数轴上的位置如图所示,则22()a b b a b +---=________.【答案】-2a +b【解析】根据数轴判断a 、b 的大小,从而化简原式,求出答案.【详解】利用数轴可以得出:b <0,a >0,b +a <0,∴b -a <0,∴原式=-(a +b )-[-(b -a )]-(-b )=-a -b +b -a +b =-2a +b ,故答案为-2a +b .【点睛】本题主要考查了二次根式的性质与化简以及数轴上点的坐标性质,根据题意得出b +a <0,b -a <0是解决问题的关键.14.如图,将ABC ∆沿BC 方向平移4cm 得到DEF ∆,如果四边形ABFD 的周长是28cm ,则DEF ∆的周长是______cm .【答案】20【解析】先利用平移的性质得AC=DF,AD=CF=4,然后利用AB+BC+CF+DF+AD=28得到AB+BC+AC=20,从而得到△ABC的周长为20cm.【详解】解:∵△ABC沿BC方向平移4cm得到△DEF,∴AC=DF,AD=CF=4,∵四边形ABFD的周长是28cm,即AB+BC+CF+DF+AD=28,∴AB+BC+AC+4+4=28,即AB+BC+AC=20,∴△ABC的周长为20cm.∴△DEF的周长是20cm,故答案为:20【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.15.如图,△ABC中,DE垂直平分AC,与AC交于E,与BC交于D,∠C=15°,∠BAD=60°.若CD=10,则AB的长度为_____.【答案】1【解析】根据线段垂直平分线的性质得到DA=DC=10,根据三角形的外角的性质得到∠ADB=30°,根据含30°角的直角三角形的性质得到答案.【详解】解:∵DE垂直平分AC,∴DA=DC=10,∴∠DAC=∠C=11°,∴∠ADB=30°,又∠BAD=60°,∴∠B=90°,又∠ADB =30°∴AB =12AD =12×10=1. 故答案为:1.【点睛】本题考查的是线段垂直平分线的性质和含30°角的直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、4,则第5组的频率是________【答案】0.2【解析】先求出第5组的频数,根据频率=频数÷总数,再求出频率即可.【详解】由题可知:第5组频数=40-12-10-6-4=8,840÷=0.2故答案是0.2.【点睛】本题考查了数据的统计,属于简单题,熟悉频率的求法是解题关键.17.如图,直线AB ,CD ,EF 交于点O ,OG 平分BOF ∠,且CD EF ⊥,70AOE ∠=︒,则DOG ∠=______.【答案】55︒【解析】首先根据对顶角相等可得∠BOF =70︒,再根据角平分线的性质可得∠GOF =35︒,然后再算出∠DOF =90︒,进而可以根据角的和差关系算出∠DOG 的度数.【详解】∵∠AOE =70︒,∴∠BOF =70︒,∵OG 平分∠BOF ,∴∠GOF =35︒,∵CD ⊥EF ,∴∠DOF =90︒,∴∠DOG =90︒−35︒=55︒,故答案为:55︒.【点睛】此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.三、解答题18.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【答案】(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图19.已知点()1,3A ,()4,0B ,()2,3C --,()1在如图所示的平面直角坐标系中描出各点.()2点A 到y 轴的距离为______;点C 到x 轴的距离为______;()3顺次连接A ,B ,C 三点,得到ABC ,求ABC 的面积.【答案】(1)如图所示,见解析;(2)1,3;(3)△ABC 的面积为:13.5.【解析】(1)在如图所示的平面直角坐标系中描出各点.(2)根据点A 的横坐标的绝对值就是点A 到y 轴的距离,点C 的纵坐标的绝对值就是点C 到x 轴的距离解答;(3)根据三角形的面积公式列式进行计算即可求解.【详解】(1)如图所示,(2)1,3;(3)△ABC的面积为:111 66633363 222⨯-⨯⨯-⨯⨯-⨯⨯=36-9-45-9=13.5.【点睛】本题考查了坐标与图形的关系,并根据题意作出图形,利用数形结合的思想是解题的关键.20.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=1.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).【答案】【应用】:(1)3;(4)(1,4)或(1,﹣4);【拓展】:(1)1;(4)t=±4;(3)d(P,Q)的值为4或4.【解析】(1)根据若y1=y4,则AB∥x轴,且线段AB的长度为|x1-x4|,代入数据即可得出结论;(4)由CD∥y轴,可设点D的坐标为(1,m),根据CD=4即可得出|0-m|=4,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(4)根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB的长度为|﹣1﹣4|=3.故答案为:3.(4)由CD∥y轴,可设点D的坐标为(1,m),∵CD=4,∴|0﹣m|=4,解得:m=±4,∴点D的坐标为(1,4)或(1,﹣4).【拓展】:(1)d(E,F)=|4﹣(﹣1)|+|0﹣(﹣4)|=1.故答案为:1.(4)∵E(4,0),H(1,t),d(E,H)=3,∴|4﹣1|+|0﹣t|=3,解得:t=±4.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴1|x|×3=3,解得:x=±4.2当点Q的坐标为(4,0)时,d(P,Q)=|3﹣4|+|3﹣0|=4;当点Q的坐标为(﹣4,0)时,d(P,Q)=|3﹣(﹣4)|+|3﹣0|=4综上所述,d(P,Q)的值为4或4.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.21.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+1b)(a+b)=a1+3ab+1b1.请解答下列问题:(1)写出图1中所表示的数学等式;(1)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=47,求a1+b1+c1的值;(3)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长为a、b的长方形纸片拼出了一个面积为(15a+8b)(17a+44b)长方形,求x+y+z的值.【答案】(1)(a+b+c)1=a1+b1+c1+1ab+1bc+1ca(1)2(3)1013【解析】(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(1)将a+b+c=11,ab+bc+ac=47代入(1)中得到的关系式,然后进行计算即可;(3)长方形的面积xa1+yb1+zab=(15a+8b)(17a+44b),然后运算多项式乘多项式法则求得(15a+8b)(17a+44b)的结果,从而得到x、y、z的值,代入即可求解.【详解】(1)正方形的面积可表示为=(a+b+c)1;正方形的面积=各个矩形的面积之和=a1+b1+c1+1ab+1bc+1ca,∴(a+b+c)1=a1+b1+c1+1ab+1bc+1ca.(1)由(1)可知:a1+b1+c1=(a+b+c)1-1(ab+bc+ca)=111-47×1=2.(3)∵长方形的面积=xa1+yb1+zab=(15a+8b)(17a+44b)=415a1+1136ab+351b1,∴x=415,y=351,z=1136∴x+y+z=1013.【点睛】本题考查的是多项式乘多项式、因式分解的应用,利用面积法列出等式是解题的关键.22.如图,已知同一平面内∠AOB=90°,∠AOC=60°.(1)问题发现:∠BOD的余角是,∠BOC的度数是;(2)拓展探究:若OD平分∠BOC,OE平分∠AOC,则∠DOE的度数是;(3)类比延伸:在(2)条件下,如果将题目中的∠AOB=90°改为∠AOB=2∠β;∠AOC=60°改为∠AOC =2α(α<45°),其他条件不变,你能求出∠DOE吗?若能,请你写出求解过程:若不能,请说明理由.【答案】(1)∠AOD,150°;(2)45°;(3)∠DOE=β,理由详见解析.【解析】(1)直接根据余角的定义得到∠BOD的余角,利用∠BOC=∠AOB+∠AOC求出即可;(2)利用角平分线的性质和(1)中所求得出答案即可;(3)根据角平分线的性质求出即可.【详解】(1)∵∠AOB=90°,∴∠AOD+∠BOD=90°,∴∠BOD的余角是∠AOD,∵∠AOC=60°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,故答案为:∠AOD,150°;(2)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=12∠BOC=75°,∠COE=12∠AOC=30°,∴∠DOE的度数为:∠COD﹣∠COE=45°;故答案为:45°;(3)∵∠AOB=2β°,∠AOC=2α,∴∠BOC=2β+2α,∵OD、OE平分∠BOC,∠AOC,∴∠DOC=12∠BOC=β+α,∠COE=12∠AOC=α,∴∠DOE=∠COD﹣∠COE=β+α﹣α=β.【点睛】此题主要考查了角平分线的性质以及有关角的计算,熟练利用角平分线的性质得出是解题关键.23.甲于某日下午1时骑自行车从A地出发前往B地,乙于同日下午骑摩托车从A地出发前往B地,如图所示,图中折线PQR和线段MN分别表示甲和乙所行驶的路程和时间之间的关系图象,试根据图象回答下列问题.(1)A、B两地相距多少千米?甲出发几小时,乙才开始出发?(2)甲骑自行车的平均速度是多少?乙骑摩托车的平均速度是多少?(3)乙在该日下午几时追上了甲?这时两人离B地还有多少千米?【答案】(1)由图象可知,A、B两地相距50千米,甲出发1小时,乙才开始出发;(2)甲骑自行车的平均速度为12.5千米/小时,乙骑摩托车的平均速度为50千米/小时;(3)乙在该日下午2时30分追上甲,此时两人离B 地还有25千米.【解析】(1)由图象找出相应数据即可;(2)分别找到两人的路程与时间的变化量,则速度可求;(3)计算甲在QR 段的速度,进而得到甲的路程,则问题可解.【详解】(1)由图象可知,A 、B 两地相距50千米,甲出发1小时,乙才开始出发;(2)由图象可知甲骑自行车的平均速度为5051-=12.5(千米/小时), 乙骑摩托车的平均速度为505032=-(千米/小时); (3)甲在QR 段的平均速度为50201052-=-(千米/小时), 用时为200.55010=-小时, 路程为50×0.5=25(千米),50-25=25(千米),则乙在该日下午2时30分追上甲,此时两人离B 地还有25千米.【点睛】本题考查了从函数图象获取信息,解答关键通过数形结合找到相应的数量关系.24.如图,12180∠+∠=︒,3B ∠=∠,65C =︒∠,求DEC ∠的度数.(请填空完成下面的解答,其中括号内填说理的依据)解:因为12180∠+∠=︒所以 (同旁内角互补,两直线平行)所以3ADE ∠=∠ 又因为3B ∠=∠,所以 (等量代换)所以//DE BC 所以180C DEC ∠+∠=︒ 又因为65C =︒∠所以180********DEC C ∠=︒-∠=︒-︒=︒.【答案】答案见解析.【解析】根据平行线的判定得出AB ∥EF ,根据平行线的性质得出∠ADE=∠3,求出∠ADE=∠B ,根据平行线的判定得出DE ∥BC ;根据平行线的性质得出∠C+∠DEC=180°,即可求出答案.。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。