带隙基准设计实例
- 格式:doc
- 大小:268.00 KB
- 文档页数:12
无运放带隙基准电路设计
运放带隙基准电路(opamp bandgap reference circuit)是一种基于运放的电路,用于提供稳定的参考电压。
它的设计基于运放的放大特性和电压反馈机制,通过差分放大和反馈调整,产生一个相对稳定的参考电压。
下面是一种常见的运放带隙基准电路的设计:
1. 选择一个适当的运放芯片,具有低噪声、高增益和低温漂移等特性。
2. 将运放芯片的非反相输入端与反相输入端相连,形成一个差分输入。
3. 将一个稳定的参考电压Vref1与非反相输入端相连。
4. 将运放芯片的反相输入端与一个电阻R1相连,然后将R1与一个稳流二极管D1的阴极相连。
5. 通过调整R1的值,使得二极管D1的电流可以产生一个正向电压降,并且与稳定的参考电压Vref1相等。
6. 将运放芯片的输出端与R1与D1的连接处相连,形成一个反馈回路。
7. 调整运放芯片的反馈电阻R2的值,使得输出电压与稳定的参考电压Vref2相等。
通过以上设计,运放正向反馈的放大特性和电压反馈机制可以保证输出电压与参考电压的稳定性。
同时,稳定的参考电压Vref1的产生通过差分放大和反馈调整的方式可以减少温度、电源等参数的影响。
需要注意的是,具体的设计参数需要根据具体的应用要求来确定,比如参考电压的稳定性要求、输出电压的范围等。
同时,在实际设计过程中,还需要考虑电源稳定性、电路布局和滤波等因素,以确保设计的稳定性和可靠性。
带隙基准设计实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN带隙基准电路的设计基准电压源是集成电路中一个重要的单元模块。
目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。
它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。
因此,设计一个高性能的基准电压源具有十分重要的意义。
自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。
带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。
一 设计指标:1、 温度系数:ref F VTC V T ∆=∆ 2、 电压系数:ref F ddV VC V V ∆=∆ 二 带隙基准电路结构:三 性能指标分析如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。
在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。
V REF = a 1V BE + a 2V T ㏑(n)其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。
对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ∂∂≈-,然而/0.087m /T V T V K ∂∂≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是2ln 17.2n α≈,表明零温度系数的基准为:17.2 1.25REF BE T V V V V ≈+≈对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。
一种低温漂低功耗的简易带隙基准电压设计模拟电路设计常常用到电压基准和电流基准。
这些基准受电源、温度或者工艺参数的影响很小,为电路提供一个相对稳定的参考电压或者电流,从而保证整个模拟电路稳定工作。
目前已经出现的高性能带隙基准,能够实现高精度、低温漂和低功耗,但这些电路中一般都有运放,调试难度较大;电路结构复杂,原理不便理解。
在一般的应用中,如果对带隙基准电压的要求不是特别高的情况下,完全可以采用一种更为简洁的电路结构。
因此,这里介绍一模拟电路设计常常用到电压基准和电流基准。
这些基准受电源、温度或者工艺参数的影响很小,为电路提供一个相对稳定的参考电压或者电流,从而保证整个模拟电路稳定工作。
目前已经出现的高性能带隙基准,能够实现高精度、低温漂和低功耗,但这些电路中一般都有运放,调试难度较大;电路结构复杂,原理不便理解。
在一般的应用中,如果对带隙基准电压的要求不是特别高的情况下,完全可以采用一种更为简洁的电路结构。
因此,这里介绍一种简易可行的带隙基准电压的设计,利用PTAT电压和双极性晶体管发射结电压的不同的温度特性,获取一个与温度无关的基准电压。
1 低温漂低功耗带隙基准电压设计带隙基准电压的设计目标,就是建立一个与电源和温度无关的直流电压VREF。
进一步将该目标分为2个设计问题:设计与电源无关的偏置,获取能抵消温度影响的电压值。
图1为其整体设计框图。
1.1 与电源无关的偏置首先设计与电源无关的偏置。
考虑采用2个NMOS管和电阻做近似的电流镜做偏置,并充分利用电流镜的“电流复制”特点,设计一个简单的电流产生电路,如图2所示。
在这个电路中,因为栅漏短接的MOS管都是由一个电流源驱动,所以I0和I1几乎与电源电压无关。
同时,2条支路的电流关系是确定的,只要已知I0,便可由宽长比得到左边支路电流的大小。
忽略沟道长度调制效应的影响,支路电流的比值和MOS管宽长比的比值成正比。
为了唯一确定电流,加入电阻R1。
则有:VGS1=VGS2+I0R1,忽略体效应,有:由式(1)可见,输出电流与电源电压无关,但仍与工艺和温度有关。
带隙基准参数设计基准源核心电路参数设计首先,考虑两个三极管发射极面积之比N的选取。
由上述公式可知:N值越大,则R2/R3的比例就越小,从而可以减小电阻的版图面积。
但是N值越大,也会导致三极管的静态电流增大。
折中选取N=8,这样版图可以采用中心对称布局,有利于减少匹配误差。
假设选取的工艺下的三极管的电流大于1uA时,V BE的输出曲线较为平滑。
从节省功耗的角度,假定流过三极管集电极的电流为1uA。
由上述公式可知,当N=8、IR3=1uA、T=300K时,计算得:考虑到R1和R2的数值数倍于R3,则电阻值太大,消耗版图面积太大。
因此,作为折中,选取R3为10K,电流值为5uA左右。
确定了以上参数后,考虑一阶补偿时R2的取值。
对上述公式在T0处求导可得:令上式为零,即进行一阶补偿,可得:化简得:代入参数,V G0=1.205V,查图可知V EB1在5uA的偏执电流下约为716mV,300K温度下V T0=26mV,r=3.2,a=1(三极管的偏置电流为PTA T),N=8,计算得:为了产生600mV的输出电压,需要调整R4的值。
由上式可以推出:在T=300K条件下代入各值,求得R4=48.5K。
考虑到各个电阻阻值偏大,故将各电阻设为高阻多晶型。
然而,高阻多晶虽然有很高的方阻,但是工艺稳定性不太好,故后期的Trimming 工序是必不可少的。
最后,确定电流镜的尺寸。
采用适当偏小的宽长比,可以提高电流镜的过驱动电压,进而可以减小电流镜阈值电压失配所带来的影响。
另外,沟道长度调制效应也是一个重要影响因素,考虑到低压应用不能使用Cascode结构,可以增大器件的栅长来减小沟道长度调制效应的影响。
但是过大的沟道长度会导致版图的面积的增加,需要在性能和版图面积之间做出折中。
经过计算与迭代仿真,选取M1、M2和M3的宽长比为10um/1um。
注意电流镜的版图设计中需采用中心对称布局以减小误差。
综上,通过理论分析,确定带隙核心电路的器件参数为:运算放大器设计运放的性能对带隙的性能有着直接的影响。
第一章 引言基准电压源或电压参考(Voltage Reference)通常是指在电路中用作电压基 准的高稳定度的电压源.随着集成电路规模的不断增大,尤其是系统集成技术 (SOC)的发展,它也成为大规模、超大规模集成电路和几乎所有数字模拟系统 中不可缺少的基本电路模块。
在许多集成电路和电路单元中,如数模转换器(DAC)、模数转换器(ADC)、线性稳压器和开关稳压器,都需要精密而又稳定的电压基准.在数模转换器中,DAC 根据呈现在其输入端上的数字输入信号,从DC 基准电压中选择和产生模拟输出; 在模数转换器中,DC 电压基准又与模拟输入信号一起用于产生数字化的输出信号。
在精密测量仪器仪表和广泛应用的数字通信系统中都经常把基准电压源用作系统测量和校准的基准。
因此,基准电压源在模拟集成电路中占有很重要的地位,它直接影响着电子系统的性能和精度.近年来对它的研究也一直很活跃,运用双极型工艺制成的基准电压源已能达到相当高的性能和精度。
在许多集成电路和电路单元中,如数模转换器(DAC)、模数转换器(ADC)、线性稳压器和开关稳压器,都需要精密而又稳定的电压基准.在数模转换器中,DAC 根据呈现在其输入端上的数字输入信号,从DC 基准电压中选择和产生模拟输出;在模数转换器中,DC 电压基准又与模拟输入信号一起用于产生数字化的输出信号。
在精密测量仪器仪表和广泛应用的数字通信系统中都经常把基准电压源用作系统测量和校准的基准。
因此,基准电压源在模拟集成电路中占有很重要的地位,它直接影响着电子系统的性能和精度.近年来对它的研究也一直很活跃,运用双极型工艺制成的基准电压源已能达到相当高的性能和精度。
1.1 带隙基准电压源的研究现状零温度系数的基准电压源,是人们在电子仪器和精密测量系统中长期追求的一种基本部件。
传统的基准电压源是基于晶体管或稳压管的原理制成的,其电压温漂在mV/℃级,电压温度系数高达V/℃ --V /℃,根本无法满足现代电子测量的需要.随着带隙基准电压源的问世,上述愿望才变为现实.带隙基准电压源由于其在电源电压、功耗、长期稳定性等方面的独特优势,一直为设计师所研究和关注,因而得到了更广泛的应用。
基本带隙基准电压源设计一、实验要求1、设计出基本的带隙基准2、设计出低压带隙基准二、实验目的1、掌握PSPICE的仿真2、熟悉带隙基准电压设计的原理三、实验原理模拟电路广泛的包含电压基准和电流基准。
这种基准是直流量,它与电源和工艺参数的关系很小,但与温度的关系是确定的。
产生基准的目的是建立一个与电源和工艺无关,具有确定温度特性的直流电压或电流。
要实现基准电压源所需解决的主要问题是如何提高其温度抑制与电源抑制,即如何实现与温度有确定关系且与电源基本无关的结构。
由于在现实中半导体几乎没有与温度无关的参数,因此只有找到一些具有正温度系数和负温度系数的参数,通过合适的组合,可以得到与温度无关的量,且这些参数与电源无关。
负温度系数电压:双极性晶体管的基极-发射极电压,或者更一般的说,p-n 结二极管的正向电压,具有负的温度系数。
正温度系数电压:如果两个双极晶体管工作在不相等的电流密度下,那么它们的基极-发射极电压的差值与绝对温度成正比,且正温度系数与温度或集电极电流的特性无关。
利用上面得到的正、负温度系数的电压,通过合适的组合,我们就可以设计出一个零温度系数的基准。
由于这个基准电压与硅的带隙电压差不多,因而称为带隙基准。
1、基本带隙基准1.1基本的原理图如图1所示:图1 基本带隙基准原理图其中,MOS 管M1-M3的宽长比相同,Q1由n 个与Q2相同的晶体管并联而成。
运放起嵌位作用,使得X 点和Y 点稳定在近似相等的电压。
1.2带隙电压公式推导:对于一个双极性晶体管,我们可以写出其集电极电流公式为:BETV V C S I I e =,其中T kT V q=,S I 为饱和电流,则可以推导出:lnC EB T SI V V I =。
假设运算放大器的增益足够高,在忽略电路失调的情况下有:21122EB EB R R V V I I R -==2ln ln C C T T SSI I V V I nI R -=2ln T V n R =则带隙基准电压为:(1)(2)131132ln ref EB R EB T R V V I R V V n R =+=+其中,E B V 具有负温度系数,T V 具有正温度系数,这样,通过调节n 和12R R ,就可以使ref V 得到一个零温度系数的值。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。