算法设计和分析资料报告课程论文设计
- 格式:doc
- 大小:97.00 KB
- 文档页数:9
程序设计与算法分析结课论文在当今数字化的时代,程序设计与算法分析已经成为计算机科学领域的核心组成部分。
从智能手机中的各种应用程序,到互联网上的搜索引擎和电子商务平台,再到科学研究中的模拟和数据分析,程序设计和算法的身影无处不在。
它们不仅影响着我们的日常生活,还推动着科技的不断进步和社会的发展。
程序设计,简单来说,就是告诉计算机要做什么以及如何去做。
它涉及到使用特定的编程语言来编写指令,让计算机按照我们的意愿执行任务。
一个好的程序设计应该具有清晰的逻辑结构、易于理解和维护的代码,以及高效的性能。
而要实现这些目标,就需要对编程语言的语法、数据结构和控制结构有深入的理解。
以常见的编程语言如 Python 为例,它提供了丰富的数据类型,如整数、浮点数、字符串、列表、字典等,以及各种控制结构,如条件语句(ifelse)、循环语句(for、while)等。
通过合理地运用这些元素,我们可以编写出解决各种问题的程序。
比如,要编写一个程序计算两个数的平均值,我们可以使用以下的 Python 代码:```pythonnum1 = 5num2 = 10average =(num1 + num2) / 2print("平均值为:", average)```这只是一个简单的例子,但它展示了程序设计的基本思路:明确问题、选择合适的数据结构和算法、编写代码并进行测试。
算法分析则是对程序所使用的算法的性能进行评估和优化。
一个算法的性能通常用时间复杂度和空间复杂度来衡量。
时间复杂度表示算法运行所需的时间与输入规模之间的关系,而空间复杂度表示算法运行所需的存储空间与输入规模之间的关系。
例如,对于一个排序算法,我们可以比较冒泡排序、插入排序和快速排序的时间复杂度。
冒泡排序的时间复杂度为 O(n^2),插入排序的时间复杂度也为 O(n^2),而快速排序的平均时间复杂度为 O(nlogn)。
在处理大规模数据时,快速排序的性能通常要优于冒泡排序和插入排序。
算法设计与分析课程报告第一章算法问题求解基础1、算法的概念:算法是指解决问题的一种方法或过程,是由若干条指令组成的有穷序列。
2、算法的特性①有穷性:一个算法必须保证执行有限步之后结束;②确切性:算法的每一步骤必须有确切的定义;③输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;④输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。
没有输出的算法是毫无意义的;⑤可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成3、算法与程序的关系:区别:程序可以不一定满足可终止性。
但算法必须在有限时间内结束;程序可以没有输出,而算法则必须有输出;算法是面向问题求解的过程描述,程序则是算法的实现。
联系:程序是算法用某种程序设计语言的具体实现;程序可以不满足算法的有限性性质。
4、算法描述方式:自然语言,流程图,伪代码,高级语言。
第二章算法分析基础1、算法复杂性分析:算法复杂性的高低体现运行该算法所需计算机资源(时间,空间)的多少。
算法复杂性度量:期望反映算法本身性能,与环境无关。
理论上不能用算法在机器上真正的运行开销作为标准(硬件性能、代码质量影响)。
一般是针对问题选择基本运算和基本存储单位,用算法针对基本运算与基本存储单位的开销作为标准。
算法复杂性C依赖于问题规模N、算法输入I和算法本身A。
即C=F(N, I, A)。
第五章分治法1、递归算法:直接或间接地调用自身的算法。
用函数自身给出定义的函数称为递归函数。
注:边界条件与递归方程是递归函数的二个要素。
实例:①阶乘函数;②Fibonacci数列;③Ackerman函数;④排列问题;⑤整数划分问题;⑥Hanoi塔问题优缺点:①优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
②缺点:递归算法的运行效率低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。
算法设计与分析论文题目0-1背包问题的算法设计策略对比与分析专业班级学号姓名引言对于计算机科学来说,算法(Algorithm)的概念是至关重要的。
算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。
一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。
或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。
一个算法应该具有以下五个重要的特征:有穷性:一个算法必须保证执行有限步之后结束;确切性:算法的每一步骤必须有确切的定义;输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。
没有输出的算法是毫无意义的;可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
计算机科学家尼克劳斯-沃思曾著过一本著名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。
1 算法复杂性分析的方法介绍算法的复杂性是算法效率的度量,是评价算法优劣的重要依据。
一个算法的复杂性的高低体现在运行该算法所需要的计算机资源的多少上面,所需的资源越多,我们就说该算法的复杂性越高;反之,所需的资源越低,则该算法的复杂性越低。
计算机的资源,最重要的是时间和空间(即存储器)资源。
因而,算法的复杂性有时间复杂性和空间复杂性之分。
不言而喻,对于任意给定的问题,设计出复杂性尽可能地的算法是我们在设计算法是追求的一个重要目标;另一方面,当给定的问题已有多种算法时,选择其中复杂性最低者,是我们在选用算法适应遵循的一个重要准则。
《算法设计与分析》1什么是算法?算法的特征有哪些?根据我自己的理解,算法是解决问题的方法步骤。
比如在解决高数问题的时候,可以分步骤进行解答,在编程的过程算法可以得到最好的体现。
算法是一系列解决问题的清晰指令,因为我最近在考研复习,对于会的题目还有进行多次的巩固,但是一步步的写很浪费时间,所以我只是写出关键指令,比如化简通分,洛必达法则,上下同阶。
这样可以提高效率。
算法的指令也是同样的。
能够对一定规范的输入,在有限时间内获得所要求的输出。
一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
2若给定某一算法,一般如何对其分析与评价?一个算法的复杂性的高低体现在运行该算法所需要的计算机资源的多少上面,所需的资源越多,我们就说该算法的复杂性越高;反之,所需的资源越低,则该算法的复杂性越低。
计算机的资源,最重要的是时间和空间(存储器)资源。
算法的复杂性有时间复杂性和空间复杂性之分。
1.时间复杂性:例1:设一程序段如下(为讨论方便,每行前加一行号)(1) for i:=1 to n do(2) for j:=1 to n do(3) x:=x+1......试问在程序运行中各步执行的次数各为多少?解答:行号次数(频度)(1) n+1(2) n*(n+1)(3) n*n可见,这段程序总的执行次数是:f(n)=2n2+2n+1。
在这里,n可以表示问题的规模,当n趋向无穷大时,如果f(n)的值很小,则算法优。
作为初学者,我们可以用f(n)的数量级O来粗略地判断算法的时间复杂性,如上例中的时间复杂性可粗略地表示为T(n)=O(n2)。
2.空间复杂性:例2:将一一维数组的数据(n个)逆序存放到原数组中,下面是实现该问题的两种算法:算法1:for i:=1 to n dob[i]:=a[n-i+1];for i:=1 to n doa[i]:=b[i];算法2:for i:=1 to n div 2 dobegint:=a[i];a[i]:=a[n-i-1];a[n-i-1]:=tend;算法1的时间复杂度为2n,空间复杂度为2n算法2的时间复杂度为3*n/2,空间复杂度为n+1显然算法2比算法1优,这两种算法的空间复杂度可粗略地表示为S(n)=O(n)3、从下面算法策略中自选一组,结合某具体问题的求解来介绍算法思想,并加以总结、比较:递归与分治、动态规划与贪心法、回溯法与分支限界法动态规划算法类似于分治法,基本思想也是将待求解问题分解成若干个子问题。
算法设计与分析报告在当今数字化的时代,算法无处不在,从我们日常使用的智能手机应用到复杂的科学研究和金融交易系统,都离不开算法的支持。
算法设计与分析作为计算机科学的核心领域之一,对于提高计算效率、优化资源利用以及解决实际问题具有至关重要的意义。
算法,简单来说,就是为解决特定问题而制定的一系列清晰、准确的步骤。
一个好的算法不仅要能够正确地解决问题,还需要在时间和空间复杂度上尽可能地高效。
这就要求我们在设计算法时,充分考虑问题的特点和约束条件,选择最合适的算法策略。
在算法设计的过程中,首先要对问题进行深入的理解和分析。
明确问题的输入和输出,以及所期望达到的目标。
例如,在排序问题中,我们需要将一组无序的数据按照一定的顺序排列。
常见的排序算法有冒泡排序、插入排序、选择排序、快速排序等。
对于较小规模的数据,冒泡排序和插入排序可能是简单而有效的选择;而对于大规模的数据,快速排序通常能够提供更好的性能。
接下来,我们要根据问题的特点和要求选择合适的算法策略。
算法策略可以大致分为贪心算法、分治算法、动态规划、回溯算法等。
贪心算法通过在每一步都做出当前看起来最优的选择来逐步逼近最终的解,但并不一定能得到全局最优解。
分治算法则是将一个大问题分解为若干个规模较小且相互独立的子问题,分别求解这些子问题,然后将子问题的解合并得到原问题的解。
动态规划通过保存已解决子问题的结果,避免重复计算,从而有效地解决具有重叠子问题的优化问题。
回溯算法则是一种通过尝试逐步构建解,如果发现当前构建的解不满足条件就回溯并重新尝试的方法。
以背包问题为例,如果我们要在有限的背包容量内选择一些物品,使得物品的总价值最大,就可以使用贪心算法或者动态规划来解决。
贪心算法可能会在某些情况下得到次优解,而动态规划则可以保证得到最优解,但在实现上相对复杂一些。
在算法的实现过程中,数据结构的选择也非常重要。
数据结构是组织和存储数据的方式,不同的数据结构适用于不同的算法和操作。
目录前言 (1)项目概况 (1)2.1开发工具简介 (1)2.2基本情况 (1)正文 (1)3.1设计的目的和意义 (1)3.2目标与总体方案 (1)3.2.1 设计目标 (1)2.2.2 工作进度安排 (1)3.3设计方法和内容 (2)3.3.1硬件环境 (2)3.3.2软件环境 (2)3.3.3设计算法的基本思想 (2)3.3.4 运行环境及所用函数解析 (4)3.4设计创新与关键技术 (5)3.5结论 (5)有关说明 (5)致谢 (5)参考文献 (6)附录: (7)前言人类已经跨入了新世纪,正在进入信息时代。
现在信息技术的应用越来越普及,不但促进了社会的高速发展,也改变着人们的工作、学习、生活和娱乐的方式以及思想观念。
随着计算机的日益普及,计算机软件无处不在。
软件在计算机的发展和应用中至关重要,在人类进入信息化社会时成为新兴信息产业的支柱。
随着人类社会的发展,随着计算机及网络技术的飞速发展,Internet应用在全球范围内日益普及,当今社会正快速向信息化社会前进,信息系统的作用也越来越大。
要熟练而又灵活的运用与操作计算机,就要用到一些程序,程序的强大又简练,主要是靠程序的思想与算法,合理的设计程序思想,运用算法,才能更加体现出程序对计算机的操作,更能体现出计算机的强大。
项目概况2.1开发工具简介C语言是国际上广泛流行的计算机高级语言,它适合作为系统描述语言,既可以用于编写系统软件,也可以用来编写应用软件。
它具有语言简洁,使用灵活,运算符丰富,数据类型丰富,生成目标代码质量高,程序执行效率高,程序可移植性好,此次设计的项目是在Microsoft Visual C++的环境下编辑。
2.2基本情况此次项目是在校机房408室和宿舍,用了14天的时间编辑出来的。
前7天在查阅资料,规划系统结构,后面的几天中,在编辑系统程序,并且调试次程序。
此项目是皇后算法,我们所学的知识有限,时间也有限,所编辑的系统比较简单。
湖南理工学院课程论文论文题目贪心法的应用课程名称算法设计与分析姓名学号专业计算机科学与技术年级学院计算机日期(2014年4月10日)课程论文评价标准贪心法的应用摘要:在解决问题的过程中,通过逐步获得最优解从而获得整体最优解的策略就是贪心策略,在已经学会在解的范围可以确定的情况下,可以采用枚举或递归策略,一一比较它们最后找到最优解;但当解的范围非常大时,枚举和递归的效率会非常低。
这时就可以考虑用贪心策略。
贪心算法没有固定的框架,算法设计的关键是贪心策略的选择,贪心策略要具有无后向性,即某阶段状态一旦确定以后,不受这个状态以后的策略的影响。
当一个问题有好几种解决方法时,贪心法应该是最好的选择之一。
本文讲述了贪心算法的含义、基本思路以及贪心算法在实例中的应用。
关键词:贪心算法;删数问题;最小生成树一、引言在平时解决问题的过程中,当一个问题就有无后向性和贪心选择性质时,贪心算法通常会给出一个简单、直观和高效的解法。
贪心算法通过一系列的选择来得到一个问题的解。
它所做的每一个选择都是当前状态下就有某种意义的最好选择,即贪心选择;并且每次贪心选择都能将问题化解为一个更小的与原问题具有相同形式的子问题。
尽管贪心算法对于很多问题不能总是产生整体最优解,但对于最短路径、最小生成树问题,以及删数问题等却可以获得整体最优解,而且所给出的算法一般比动态规划算法更为简单、直观和高效。
二、贪心算法的含义和特点(一)贪心算法的含义贪心算法是通过一系列的选择来得到问题解的过程。
贪心算法是一种能够得到某种度量意义下的最优解的分级处理方法,它总是做出在当前看来是最有的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解算法。
(二)贪心算法的特点1、从全局来看,运用贪心策略解决的问题在程序运行过程中无回溯过程,后面的每一步都是当前看似最佳的选择,这种选择依赖已作出的选择,但并不依赖未作出的选择。
2、不能保证最后求出的解是最佳的。
算法设计与分析结课论文Hash技术学生姓名:***学号:**********专业:计算机科学与技术年级:2009级完成日期:2010年月日指导教师:***成绩:Hash技术摘要:随着科技日益发展,Hash函数的重要性越来越突出。
本文介绍了几种构造Hash 的方法,例如直接定址法、数字分析法、平方取中法、折叠法、除留余数法等,在构造Hash函数时,应当注意两点问题:(1)函数值应在1至记录总数之间。
(2)尽量避免冲突。
还介绍了几种处理Hash算法冲突的方法。
除此之外,阐明了Hash函数的优缺点和它在现实生活中的应用。
关键词:Hash函数,构造方法,应用,优缺点目录1.绪论1.1 什么是算法1.2 搜索算法2.Hash函数2.1 Hash函数的基本概念2.2 Hash函数的基本思想与一般模型2.3 Hash函数的构造3. 处理冲突的方法3.1 开放定址法3.2 再哈希法3.3 链地址法3.4 建立一个公共溢出区4. Hash算法的优劣分析5. Hash函数的应用5.1 完整性的验证5.2 数字签名5.3 认证协议5.4 加密算法6. 总结1. 绪论1.1 什么是算法算法的概念在计算机科学与技术领域几乎无处不在,在各种计算机系统的实现中,算法的设计往往处于核心的位置。
1.2 搜索算法搜索问题是计算机技术面对的基本课题之一,自20世纪70年代以来,计算机应用的主流逐渐从计算机密集型向着数据密集型转化,计算机存储和处理的数据量越来越大,结构越来越复杂,因此,对搜索算法的研究始终是人们研究的重要领域。
搜索算法与其他问题不同,它与数据结合的组织形式密切相关。
在大多数情况下,搜索算法实际上是作为某种数据类型的运算或操作而不断的被调用的,搜索算法的优劣与数据结构密切相关。
2. Hash函数2.1 Hash函数的基本概念Hash函数是把任意长度的二进制串映射到特定长度的二进制串函数,是最基本的二进制函数之一。
Hash函数也被称为“凑数函数”,但这个名称很少被采用,70年代之前也被称为散列函数,现在我们经常将其称之为Hash或译为哈什。
XXXX大学算法设计与分析课程设计报告院 (系):年 级:姓 名: 专 业: 计算机科学与技术研究方向: 互联网与网络技术 指导教师:X X X X 大 学目 录题目1 电梯调度 (1)11.1 题目描述 ..................................................................................11.2 算法文字描述 ..............................................................................1.3 算法程序流程 ..............................................................................481.4 算法的程序实现代码 ........................................................................题目2 切割木材 .. (10)2.1题目描述 ..................................................................................10102.2算法文字描述 ..............................................................................112.3算法程序流程 ..............................................................................2.4算法的程序实现代码 ........................................................................15题目3 设计题 (17)173.1题目描述 ..................................................................................173.2 输入要求 ..................................................................................173.3输出要求 ..................................................................................173.4样例输入 ..................................................................................173.5样例输出 ..................................................................................173.6测试样例输入 ..............................................................................183.7测试样例输出 ..............................................................................183.8算法实现的文字描述 ........................................................................193.9算法程序流程 ..............................................................................3.10算法的程序实现代码 .......................................................................20算法分析与设计课程总结 (23)参考文献 (24)题目1 电梯调度1.1 题目描述一栋高达31层的写字楼只有一部电梯,其中电梯每走一层需花费4秒,并且在每一层楼停靠的时间为10秒,乘客上下一楼需要20秒,在此求解最后一位乘客到达目的楼层的最短时间以及具体的停靠计划。
算法设计与分析课程论文五篇范文第一篇:算法设计与分析课程论文“卓越工程师教育培养计划”(简称卓越计划)旨在培养一批创新能力强、适应经济社会发展需要的高质量工程技术人才。
在南通大学计算机科学与技术学院制定的软件工程专业卓越工程师的培养计划中,算法设计与分析被设置为一门核心必修课程。
通过该门课程的系统授课,重点培养学生的计算机问题求解能力,该能力是软件工程专业学生成长为卓越工程师必备的一项核心竞争力。
一个典型的计算机问题的求解一般需要经历5个阶段:①问题的分析和建模;②算法设计方法和相应数据结构的选择;③算法的实现;④算法的正确性证明和复杂度分析;⑤算法实现的优化等。
经过多轮的教学实践发现,学生之间水平参差不齐是教学过程中面临的最大问题。
随着高校招生规模的不断增大,不同学生之间在基础知识、智力水平、兴趣爱好、学习动机和学习方法上存在较大的差异性。
相同的教学内容,对于一些基础较好的学生来说理解难度不大,但对于一些基础较弱的学生来说,则难以理解。
因此,如何尊重学生个性差异、发展学生个性特长,在考虑学生整体发展的同时兼顾学生的个性特长发展,从而最终提高各个层次学生的综合素质是算法设计与分析课程的教学改革实践中需要重点关注的问题。
通过多次与学生的深入交流发现,学生在这门课程的学习过程中面临如下问题:1)课程教学内容难度高。
课程需要学生掌握常见的算法设计策略,如分治法、动态规划法和贪婪法等,对设计出的算法能进行正确性证明和复杂度分析。
很多知识点抽象层次高,需要学生具备一定的数学分析能力,同时,通常算法内部逻辑比较复杂,因此需要学生具备较强的编程功底。
笔者在讲授这些知识点时,均假设学生具备一定的数学分析能力和编程基础,但实际情况却不容乐观,很多学生在大一和大二的时候并未重视相关课程的学习,很多知识点都已经还给授课老师,在课堂上需要花费一定时间帮助学生回忆这些知识点。
同时,部分学生因编程经验较为匾乏,难以顺利地将伪代码转化成可运行的程序代码。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。