(整理)方位角计算公式
- 格式:doc
- 大小:663.00 KB
- 文档页数:33
二 计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的.下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式.一、坐标正算和坐标反算公式1.坐标正算根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。
如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为AB A B ABA B y y y x x x ∆+=∆+= }(5—1) 式中 AB x ∆ 、AB y ∆——坐标增量。
由图5—5可知AB AB AB AB AB AB S y S x ααsin cos =∆=∆ }(5—2)式中 AB S ——水平边长; AB α-—坐标方位角.将式(5-2)代入式(5—1),则有AB AB A B ABAB A B S y y S x x ααsin cos +=+= }(5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。
式(5—2)是计算坐标增量的基本公式,式(5-3)是计算坐标的基本公式,称为坐标正算公式.从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种情况,其正负符号取决于坐标方位角所在的象限,如图5-6所示。
从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3.图5-5 坐标计算图5—6 坐标增量符号表5—3 坐标增量符号表坐标方位角(°)所在象限坐标增量的正负号⊿x ⊿y0~9090~180180~270270~ⅠⅡⅢⅣ+--+++--例1 已知A 点坐标A x =100。
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
起算方位角计算公式方位角是指一个点相对于另一个点的方向角度,通常以北方向为基准,顺时针方向为正角度,逆时针方向为负角度。
在地理测量、导航和工程测量等领域,方位角的计算是非常重要的。
在本文中,我们将介绍起算方位角的计算公式及其应用。
起算方位角的计算公式如下:tan(θ) = (sin(Δλ) cos(φ2)) / (cos(φ1) sin(φ2) sin(φ1) cos(φ2) cos(Δλ))。
其中,θ表示起算方位角,Δλ表示目标点经度与起始点经度的差值,φ1和φ2分别表示起始点和目标点的纬度。
在实际应用中,我们通常使用这个公式来计算两个点之间的方位角,以便进行导航、测量或定位。
首先,我们需要确定起始点和目标点的经纬度坐标。
然后,根据上述公式,计算出起算方位角。
这个角度可以帮助我们确定目标点相对于起始点的方向,从而进行导航或测量。
在地理测量中,起算方位角的计算也经常用于确定地表上两个点之间的距离和方向。
通过测量起算方位角,我们可以计算出两点之间的直线距离,从而进行地图绘制、土地测量等工作。
另外,起算方位角的计算还可以应用于航空导航和航海导航中。
飞行员和航海员可以利用起算方位角来确定飞行或航行的方向,从而确保航线的准确性和安全性。
在工程测量中,起算方位角的计算也是必不可少的。
工程师们可以利用这个公式来确定工程项目中各个点之间的方向和距离,从而进行工程测量和设计。
总之,起算方位角的计算公式是地理测量、导航和工程测量等领域中非常重要的工具。
通过这个公式,我们可以准确地计算出两个点之间的方向角度,从而进行导航、测量和定位工作。
希望本文对您有所帮助,谢谢阅读!。
坐标方位角通用计算公式及编程方法1、坐标方位角通用计算公式:α=180°-90°sgn(ΔY)-arctan(ΔX/ΔY)坐标增量取值范围为:ΔY≠0,若ΔY=0则令ΔY等于一个无穷小量(可以用1E220作为无穷小量取代0),通式值域为[0°,360°])。
2、编程计算本程序在计算机上运行时应根据适当的语言进行改编。
If ΔY=0 then ΔY=1E-20I=pi-pi×sgn(ΔY)/2-tan-1(ΔX/ΔY)Endif3、相关转化常量表1弧度=206264.8062″1弧度=57.2957795130823°1度=1.74532925199433E-02弧度(0.0174532925199433弧度)π=3.141592653589794、取西安80坐标系的长半轴6378140m,以赤道为例:1(经)度=6378140*3.1415926/180=111319m=111.3km1(经)分=6378140*3.1415926/180/60=1855m=1.8km1(经)秒=6378140*3.1415926/180/3600=30.9m5、基础知识(1)我国位于东经135度02分至东经73度40分,经差61度22分。
以6度带投影的话,位于第13号至23号带。
中央经线75度至135度。
以3度带投影的话,位于第25号至45号带。
中央经线75度至135度。
(2)我国位于北纬3度52分至北纬53度33分,纬差49度41分。
X北坐标的范围X北坐标最小值= 3度*111.3km + 52分* 1.8km =427.5km X北坐标最大值= 53度* 111.3km + 33分* 1.8km =5948.4km以米为单位的话,X北坐标有6至7位(3)以6度带计算的话,不加500km时,Y东坐标轴的正值和负值最大的绝对值=3度*111.3km=333.9km,Y东坐标加上500km后,Y最小值=500-333.9=166.1km,Y最大=500+333.9=833.9km(当然这是是位于赤道上的最大值和最小值,我国大陆位于赤道以北,相应要小于这两个极值)另外完整的Y东坐标还要以带号开头,所以以米为单位的话,Y坐标有8位。
公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(K0~ZH):F=arctgΔY/ΔX 注:直线方位角要考虑象限角才能定出正确线路走向2、第一缓和曲线段(KZH~KHY):δ1=(K0-KZH)2/(2RLh)×180/π3、圆曲线段(KHY~KYH):δ2=[2(K0-KZH)-Lh]/2R×180/πδ2=(KHY-KZH)/2R×180/π+(K0-KHY)/R×180/π无缓和曲线时:δ2=(K0-KHY)/R×180/π(即圆曲线圆心角)4、第二缓和曲线段(KYH~KHZ):δ3=(KHZ-K0)2/(2RLh)×180/π5、第二直线段(KHZ~KZH):F±α(左偏时F-α,右偏时F+α)注:K0——计算点的里程α——曲线交点偏角Lh——缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算XZH=XJD-T?CosF XHZ=XJD+T?Cos(F±α)YZH=YJD-T?SinF YHZ=YJD+T?Sin(F±α)1、第一直线段:X=XZH+(K0-KZH)?CosF中桩Y=YZH+(K0-KZH)?SinFX边=X中±B?Cos(F-Δ)边桩Y边=Y中±B?Sin(F-Δ)注:B——中桩至所求点的距离(左幅时为+B,右幅时为-B,当设计轴线与线路不垂直时B取斜长,即B/SinΔ)设计轴线线路方向BΔ图S-12、第一缓和曲线段:XX=XZH-Y′?Sinθ+X′?Cosθ X X′ X′中桩′Y=YZH+Y′?Cosθ+X′?SinθYZH Y θ HZX边=X中±B?Cos(F+μδ1-Δ) HY YH边桩Y边=Y中±B?Sin(F+μδ1-Δ) JDY′注:(本公式只适用与图S-2线形)图S-2μ——曲线左转为-1,右转为+1θ——线路方位角与Y轴所夹的锐角,见图S-2Y′=L-L5/(40R2Lh2);X′=L3/(6RLh)-L7/(336R3Lh3);(R—圆曲线半径,L —缓和曲线上任一点至曲线起点长度)3、圆曲线段:X=XHY+2R?Sinφ?Cos(F+μ(ξ+φ))中桩Y=YHY+2R?Sinφ?Sin(F+μ(ξ+φ))X边=X中±B?Cos(F+μδ2-Δ)边桩Y边=Y中±B?Sin(F+μδ2-Δ)注:φ=(K0-KHY)/2R×180/π;ξ=(KHY-KZH)/2R×180/π4、第二缓和曲线段:X=XHZ-Y′?Sinθ+X′?Cosθ中桩Y=YHZ-Y′?Cosθ-X′?SinθX边=X中±B?Cos(F+μδ1-Δ)边桩Y边=Y中±B?Sin(F+μδ1-Δ)注:1、本公式只适用与图S-2线形,其他线形可根据本线形公式变换2、式中符号与第一缓和曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:X=XHZ+(K0-KHZ)?Cos(F±α)中桩Y=YHZ+(K0-KHZ)?Sin(F±α)X边=X中±B?Cos(F±α-Δ)边桩Y边=Y中±B?Sin(F±α-Δ)注:F——第一直线段的方位角(三)用CASIO fx-4500P计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标X、Y)Pol(X-XHZ,Y-YHZ):K=V?Cos(F-W)+KHZ B=V?Sin(F-W)注:1、在fx-4500P中计算结果存入变量储存区V和W,要显示储存区内容时按RCL V 、 W 键。
方位角弧度计算公式在物理学和工程学中,方位角是描述一个向量或者物体相对于参考方向的角度。
方位角通常使用弧度来表示,而不是以度数来表示。
在本文中,我们将讨论方位角弧度计算公式,以及如何使用这些公式来计算物体的方位角。
首先,让我们来看一下方位角是如何定义的。
在二维平面直角坐标系中,一个向量或者物体相对于参考方向的角度被称为方位角。
通常来说,参考方向被定义为x轴的正方向。
方位角的取值范围通常是从0到2π,或者从-π到π,取决于具体的定义。
现在让我们来看一下方位角弧度计算公式。
假设一个向量的坐标为(x, y),我们可以使用以下公式来计算这个向量的方位角:θ = arctan(y/x)。
在这个公式中,arctan代表反正切函数,y/x代表向量的斜率。
需要注意的是,这个公式只适用于x不等于0的情况。
如果x等于0,我们需要使用一些特殊的处理方法来计算方位角。
另外,如果我们希望方位角的取值范围在0到2π之间,我们需要对计算出来的方位角进行一些调整。
具体来说,如果x大于0并且y大于等于0,那么计算出来的方位角就是我们需要的结果。
如果x小于0,那么我们需要加上π来得到正确的结果。
如果x大于0并且y小于0,那么我们需要加上2π来得到正确的结果。
最后,如果x等于0并且y大于0,那么我们需要加上π/2来得到正确的结果。
如果x等于0并且y小于0,那么我们需要加上3π/2来得到正确的结果。
除了使用反正切函数来计算方位角之外,我们还可以使用其他的方法来计算方位角。
例如,我们可以使用反余切函数来计算方位角。
具体来说,我们可以使用以下公式来计算方位角:θ = arctan(x/y)。
在这个公式中,我们将x和y的位置互换了一下,然后再使用反正切函数来计算方位角。
同样地,我们需要对计算出来的方位角进行一些调整,以确保它的取值范围在0到2π之间。
除了使用反正切函数和反余切函数来计算方位角之外,我们还可以使用三角函数来计算方位角。
具体来说,我们可以使用以下公式来计算方位角:θ = arccos(x/√(x²+y²))。
方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角坐标增量的计算方法:平距×COS方位角=△X坐标增量平距×Sin方位角=△Y坐标增量坐标的计算方法:已知X坐标±△X坐标增量=X坐标已知Y坐标±△Y坐标增量=Y坐标高差、平距的计算方法:斜距×Sin倾角=高差斜距×COS倾角=平距高差÷Sin倾角=斜距平距÷cos已知度分秒=斜距高程的计算方法:已知高程-仪器高+前视高±高差=该点的顶板高差原始记录计算方法:前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″前视92°49′02″272°49′13″水平角= 92°49′03″实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″实例: 270°30′38″-270°= 00°30′38″激光的计算方法:两点的高程相减:比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、7988、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)测量:1、先测后视水平角:归零,倒镜180°不能误差15′2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。
要求方位角-已知方位角±180°=拨角方位画两千的图:展点用0.6正好.倾角的计算方法:180°以下的-90°270°-超过180°的两点的高差除平距按tan=倾角比如:2点1500、026-6点1484、096=15、932点~6点平距=127、8315、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。
方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(K0~ZH):F=arctgΔY/ΔX注:直线方位角要考虑象限角才能定出正确线路走向 2、第一缓和曲线段(KZH~KHY):δ1=(K0-KZH)2/(2RLh)×180/π 3、圆曲线段(KHY~KYH):δ2=[2(K0-KZH)-Lh]/2R×180/π δ2=(KHY-KZH)/2R×180/π+(K0-KHY)/R×180/π无缓和曲线时:δ2=(K0-KHY)/R×180/π(即圆曲线圆心角) 4、第二缓和曲线段(KYH~KHZ):δ3=(KHZ-K0)2/(2RLh)×180/π 5、第二直线段(KHZ~KZH):F±α (左偏时F-α,右偏时F+α)注:K0――计算点的程α――曲线交点偏角Lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算XZH=XJD-T?CosF XHZ=XJD+T?Cos(F±α) YZH=YJD-T?SinF YHZ=YJD+T?Sin(F±α) 1、第一直线段:X=XZH+(K0-KZH)?CosF 中桩Y=YZH+(K0-KZH)?SinF X边=X中±B?Cos(F-Δ)边桩Y边=Y中±B?Sin(F-Δ)注:B――中桩至所求点的距离(左幅时为+B,右幅时为-B,当设计轴线与线路不垂直时B取斜长,即B/SinΔ)设计轴线线路方向。
BΔ 图S-12、第一缓和曲线段: XX=XZH-Y′?Sinθ+X′?Cosθ X X′ X′ 中桩′Y=YZH+Y′?Cosθ+X′?Sinθ Y ZH Y θ HZX边=X中±B?Cos(F+μδ1-Δ) HY YH 边桩Y边=Y中±B?Sin(F+μδ1-Δ)JD Y′ 注:(本公式只适用与图S-2线形)图S-2 μ――曲线左转为-1,右转为+1θ――线路方位角与Y轴所夹的锐角,见图S-2 Y′=L-L5/(40R2Lh2);X′=L3/(6RLh)-L7/(336R3Lh3);(R―圆曲线半径,L―缓和曲线上任一点至曲线起点长度)3、圆曲线段:X=XHY+2R?Sinφ?Cos(F+μ(ξ+φ))中桩Y=YHY+2R?Sinφ?Sin(F+μ(ξ+φ)) X边=X中±B?Cos(F+μδ2-Δ)边桩Y边=Y中±B?Sin(F+μδ2-Δ)注:φ=(K0-KHY)/2R×180/π;ξ=(KHY-KZH)/2R×180/π 4、第二缓和曲线段:X=XHZ-Y′?Sinθ+X′?Cosθ 中桩Y=YHZ-Y′?Cosθ-X′?Sinθ X边=X中±B?Cos(F+μδ1-Δ)边桩Y边=Y中±B?Sin(F+μδ1-Δ)注:1、本公式只适用与图S-2线形,其他线形可根据本线形公式变换2、式中符号与第一缓和曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:X=XHZ+(K0-KHZ)?Cos(F±α)中桩Y=YHZ+(K0-KHZ)?Sin(F±α) X边=X中±B?Cos(F±α-Δ)边桩Y边=Y中±B?Sin(F±α-Δ)注:F――第一直线段的方位角(三)用CASIO fx-4500P计算已知坐标点在线路上的里程和距中线距离 1、直线段(已知坐标X、Y)Pol(X-XHZ,Y-YHZ):K=V?Cos(F-W)+KHZ B=V?Sin(F-W)注: 1、在fx-4500P中计算结果存入变量储存区V和W,要显示储存区内容时按RCL V 、 W 键。
计算细那么1、坐标计算:X 1=X+Dcosα,Y1=Y+Dsin α。
式中Y 、 X 为坐标, D 为两点之间的距离,Α 为方位角。
2、方位角计算:1〕、方位角 =tan=两坐标增量的比值,然后用计算器按出他们的反三角函数〔±号判断象限〕。
2〕、方位角: arctan〔 y2- y1)/(x2-x 1)。
加减 180〔大于 180 就减去 180〔还大于 360 就在减去 360〕、小于 180 就加 180 如果 x 轴坐标增量为负数,那么结果加 180°。
如果为正数,那么看 y 轴的坐标增量,如果 Y 轴上的结果为正,那么算出来的结果就是两点间的方位角,如果为负值,加360°。
S=√(y2- y1)+(x2-x 1),1)、当 y2- y1>0,x2-x 1>0 时;α =arctan〔 y2- y1)/(x2-x 1)。
2)、当 y2- y1<0,x2-x 1>0 时;α =360° +arctan〔y2- y1)/(x2-x 1)。
3)、当 x2-x 1<0 时;α =180° +arctan〔y2- y1)/(x2-x 1)。
再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加〕。
拨角: arctan〔y2- y1)/(x2-x 1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法〔前视边方位角减后视边方位〕在此后视边方位要加减 180°,假设拨角结果为负值为左偏“逆时针〞〔 +360°就可化为右偏,正值为右偏“顺时针〞。
2、在图上标识方位的方法:就是导线边与Y 轴的夹角。
3、高程计算:目标高程 =测点高程 +?h〔高差〕 +仪器高—占标高。
4、直角坐标与极坐标的换算:〔直角坐标用坐标增量表示;极坐标用方位角和边长表示〕1〕、坐标正算〔极坐标化为直角坐标〕一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya) 、Sab、αab,求 B(Xa,Ya)解: ?Xab=Sab×COSαab 那么有 Xb=Xa+?Xab ?Yab=Sab × SIN αab Yb=Ya+?Yab2)、坐标反算,两点的坐标,求两点的距离〔称反算边长〕和方位角(称反算方位角〕的方法A(Xa,Ya) 、 B(Xb,Yb), 求α ab、 Sab。
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式=第一象限(NE)第二象限(SE)=-=+第三象限(SW )第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
由图1中,根据三角函数,可写出坐标增量的计算公式为:ΔXAB=DAB·cosαABΔYAB=DAB·sinαAB式中ΔX、ΔY 均有正、负,其符号取决于直线的坐标方位角所在的象限,参见表1-5。
表1-5 不同象限坐标增量的符号坐标方位角及其所在象限之符号之符号(第一象限)(第二象限)(第三象限)(第四象限)+--+++--2、坐标的反算根据、两点的坐标、和、,推算直线的水平距离与坐标方位角,为坐标反算。
由图1可见,其计算公式为:= ( 1-20 )= ( 1-21 )注意,由(1-20)式计算时往往得到的是象限角的数值,必须参照表1-5表1-4,先根据、的正、负号,确定直线所在的象限,再将象限角化为坐标方位角。
例如、均为-1。
这时由(1-20)式计算得到的数值为,但根据、的符号判断,直线应在第三象限。
因此,最后得==,余类推。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-三、举例1、某导线12边方位角为45°,在导线上2点测得其左角为250°,求α32 ?解:1)23边的方位角:根据公式=+因α12=250°,α12 >180°,故计算公式中,前面应取“-”号:α23=α12+-=45°+250°-180°=115°2)求α23反方位角:根据公式=,本例α23<180°,故前面应取“+”号:α32=α23+=295°当前位置:首页-复习总结-基本计算2一、水准测量内业的方法:水准测量的内业即计算路线的高差闭合差,如其符合要求则予以调整,最终推算出待定点的高程。
1.高差闭合差的计算与检核附合水准路线高差闭合差为:=-()(2-8)闭合水准路线高差闭合差为:=(2-9)为了检查高差闭合差是否符合要求,还应计算高差闭合差的容许值(即其限差)。
一般水准测量该容许值规定为平地=mm山地=mm (2-11)式中,―水准路线全长,以km 为单位;―路线测站总数。
2.高差闭合差的调整若高差闭合差小于容许值,说明观测成果符合要求,但应进行调整。
方法是将高差闭合差反符号,按与测段的长度(平地)或测站数(山地)成正比,即依下式计算各测段的高差改正数,加入到测段的高差观测值中:⊿= -(平地)⊿= -(山地)式中,―路线总长;―第测段长度(km)(=1、2、3...);―测站总数;―第测段测站数。
3.计算待定点的高程将高差观测值加上改正数即得各测段改正后高差:h i改=hi+⊿h i i=1,2,3,……据此,即可依次推算各待定点的高程。
如上所述,闭合水准路线的计算方法除高差闭合差的计算有所区别而外,其余与附合路线的计算完全相同。
二、举例1.附合水准路线算例下图2-18所示附合水准路线为例,已知水准点A、B和待定点1、2、3将整个路线分为四个测段。
表2-2 附合水准路线计算测段号点名测站数观测高差/m 改正数 /m 改正后高差/m 高程/m 备注1 2 3 4 5 6 7 81 BM1 8 +8.364 -0.014+8.350 39.8331 48.1832 3 -1.433 -0.005 -1.4382 46.7453 4 -2.745 -0.007 -2.7523 43.9934 5 +4.661 -0.008 +4.653BM2 48.64620+ 8.847 -0.034 +8.813辅助计算=+ 0.034m== 54mm1)将点名、各测段测站数、各测段的观测高差、已知高程数填入表2-2内相应栏目2、3、4、7(如系平地测量,则将测站数栏改为公里数栏,填入各测段公里数;表内加粗字为已知数据)。
2)进行高差闭合差计算:=-() =8.847-(48.646-39.833)=+ 0.034m由于图中标注了测段的测站数,说明是山地观测,因此依据总测站数计算高差闭合差的容许值为:=== 54mm计算的高差闭合差及其容许值填于表2-2下方的辅助计算栏。
3)高差闭合差的调整fh≤fh容,故其精度符合要求。
本例中,将高差闭合差反符号,按下式依次计算各测段的高差改正数:⊿= -(―测站总数,―第测段测站数)第一测段的高差改正数为:⊿=-14mm同法算得其余各测段的高差改正数分别为-5、-7、-8mm,依次列入表2-2中第5栏。
注:1、所算得的高差改正数总和应与高差闭合差的数值相等,符号相反,以此对计算进行校核。
如因取整误差造成二者出现小的较差可对个别测段高差改正数的尾数适当取舍1mm,以满足改正数总和与闭合差数值相等的要求。
2、若为平地,高差改正数按各测段长度比例分配:用公式⊿=-计算,式中,―路线总长;―第测段长度(km)(=1、2、3...)。
4)计算待定点的高程将高差观测值加上改正数即得各测段改正后高差:h i改=hi+⊿h i i=1,2,3,4据此,即可依次推算各待定点的高程。
(上例计算结果列入表2-2之第6、7栏)。
H1=HA+H1改H2=H1+H2改……HB(算)=HB(已知)注:改正后的高差代数和,应等于高差的理论值(HB-HA),即: ∑h改=HB-HA 。
如不相等,说明计算中有错误存在。
最后推出的终点高程应与已知的高程相等。
2 闭合水准路线算例闭合水准路线的计算方法除高差闭合差的计算有所区别而外,其余与附合路线的计算完全相同。
计算时应当注意高差闭合差的公式为:fh=∑h测。
如图2所示一闭合水准路线,A为已知水准点,A点高程为51.732m,,其观测成果如图中所示,计算1、2、3各点的高程。
将图中各数据按高程计算顺序列入表2进行计算:表2 水准测量成果计算表测段号点名测站数观测高差/m 改正数/mm 改正后高差/m高程/m1 2 3 4 5 6 71 BMA11 -1.352 0.006 -1.34651.732 1 50.3862 8 2.158 0.004 2.1622 52.5483 6 2.574 0.003 2.5773 55.1254 7 -3.397 0.004 -3.393BMB 51.73232 -0.017 0.017 0辅助计算=30mm=mm=±68mm计算步骤如下:⑴计算实测高差之和∑h测=3.766m=3.766-3.736=0.030m=30mm⑶计算容许闭合差fh容==±68mmfh≤fh容,故其精度符合要求,可做下一步计算。
⑷计算高差改正数高差闭合差的调整方法和原则与符合水准路线的方法一样。
本例各测段改正数vi计算如下:⊿=-(fh/∑n)×n1=-(-17/32)×11=6mm⊿h2=-(fh/∑n)×n2=-(-17/32)×8=4mm……检核∑⊿h =-fh=-0.030m⑸计算改正后高差h改各测段观测高差hi分别加上相应的改正数后⊿hi,即得改正后高差:h1改=h1+⊿h 1=-1.352+0.006=-1.346mh2改=h2+⊿h 2=2.158+0.004=2.162m……注:改正后的高差代数和,应等于高差的理论值0,即:∑h改=0 ,如不相等,说明计算中有错误存在。
⑹高程计算测段起点高程加测段改正后高差,即得测段终点高程,以此类推。
最后推出的终点高程应与起始点的高程相等。
即:H1=HA+h1改=51.732-1.346=50.386mH2=H1+h2改=50.386+2.162=52.548m……HA(算)=HA(已知)=51.732m计算中应注意各项检核的正确性。
下一节:::当前位置:首页-复习总结-基本计算3一、经纬仪测回法测水平角1、基本数据:设、、为地面三点,为测定、两个方向之间的水平角,在O点安置经纬仪(图3-7),采用测回法进行观测。
1)上半测回(盘左)水平度盘读数:目标:=0°02′06″,目标:=68°49′18″;2)下半测回(盘右)水平度盘读数:目标:=248″49′30″,目标:=180°02′24″。
2、填表与计算:1)将目标A、目标B水平度盘读数填入表3-1第4栏。
表3-1 水平角观测手簿(测回法)测站目标竖盘位置水平度盘读数° ′ ″半测回角值° ′ ″一测回角值° ′ ″备注1 2 3 4 5 6 7左0 02 0668 47 1268 47 09 68 49 18右180 02 24 68 47 06248 49 302)计算半测回角,并将结果填入表3-1第5栏:盘左:==盘右:注:计算角值时,总是右目标读数减去左目标读数,若<,则应加。