第七节 闸室的结构计算
- 格式:doc
- 大小:264.00 KB
- 文档页数:10
计算书名称:进水闸、冲沙闸坝段水力及结构计算书目录1工程概况 (1)2水力计算 (1)2.1进水闸坝段过水能力计算 (1)2.2消能防冲设计 (3)2.3冲砂闸过水能力复核 (4)2.4消能防冲设计 (5)3稳定及应力计算 (6)3.1基本资料与数据 (6)3.2结构简化 (6)3.3计算公式 (6)3.4荷载计算及组合 (8)3.5计算成果 (9)3.6冲沙闸荷载计算 (12)3.7计算成果 (13)3.8计算简图 (17)1工程概况某调水工程由关山低坝引水枢纽和穿越秦岭山区的输水隧洞两大部分组成,按其供水对象及性质,根据《防洪标准》(GB50201—94)和《水利水电工程等级划分及洪水标准》(SL252—2000),工程等别为三等中型工程,主要建筑物按3级建筑物设计。
低坝无调节引水枢纽由拦河坝、冲砂闸、进水闸和输水暗渠四部分组成,前三部分在平面上呈一条直线南北方向并列布置,输水暗渠紧接进水闸并连接进水闸和输水隧洞。
两个闸均设在坝的左侧。
坝轴线位于两河口下游95m ,关山村上游约1km 处,此处河谷宽度74m ,河床宽度约60m ,高程为1467.2m ,河床漂卵石覆盖层厚5~12m ,最大15m ,其下的基岩为黑云片麻岩和斜长片麻岩,岩石强风化层厚约2~3m ,岩体分类为Ⅱ~Ⅲ类,岩层倾向上游,对防渗有利。
进水闸位于冲砂闸左侧,设计流量13.5m 3/s ,单孔布置,孔口尺寸3.0m ×2.5m ,设潜孔式弧形工作闸门和平面检修闸门。
闸室后接4m 长的1:4陡坡,陡坡后接消力池,消力池池长14m ,池深1.0m ,底板厚度1.0m ,为C20钢筋混凝土结构;消力池后与输水暗渠相接。
2水力计算2.1进水闸坝段过水能力计算 2.1.1引水渠内水深的确定Q=3/22/11R Ai n式中Q -引水渠流量,13.5m 3/s ; n -引水渠糙率,0.015;A 、χ、R 、b 、h 、m 分别为过水断面面积、湿周、水力半径、渠道底宽、水深及边坡系数,其表达式如下: A=(b+mh)h χ=b+2h 21m +; R=χA =212)(mh b h mh b +++故 13.5=1/0.015×(3+0 h )h ×(1/1000)1/2×3/2)23).03((hh h ++经试算求得:h=2.282m 2.1.2过流能力复核设计流量下的渠内水深为h=2.282m ,进口闸底板高程取为1469.00m ,即下游水位为1471.282m ,进口翼墙为圆弧形翼墙。
目录1 水闸配筋及裂缝计算 (1)1.1 基本情况 (1)1.1.1 主要计算依据规范 (1)1.1.2 计算方法 (1)1.1.3 主要参数的选取 (5)1.1.4 计算软件 (6)1.1.5 基本概况 (6)1.2 闸室段荷载及内力计算 (6)1.2.1 完建无水期 (6)1.2.2 检修期 (10)1.3 闸室段配筋计算及裂缝宽度验算 (14)1.3.1 底板底层 (14)1.3.2 底板面层 (17)1.3.3 边墩 (19)1.3.4 中墩 (21)1.4 箱涵段荷载及内力计算 (22)1.4.1 完建无水期 (22)1.4.2检修期 (26)1.5 箱涵段配筋计算及裂缝宽度验算 (26)1.5.1 底板底层 (26)1.5.2 底板面层 (29)1.5.3 顶板面层 (31)1.5.4 顶板底层 (34)1.5.5 边墩外侧 (36)2 箱涵配筋及裂缝计算 (40)2.1 基本情况 (40)2.1.1 主要计算依据规范 (40)2.1.2 计算方法及计算软件 (40)2.1.3 主要参数的选取 (40)2.1.4基本概况 (41)2.2 荷载及内力计算 (41)2.2.1 完建无水期 (42)2.2.2 校核洪水期 (47)2.3 配筋计算及裂缝宽度验算 (51)2.3.1底板 (51)2.3.2 箱涵边墩 (55)2.3.3 箱涵中墩 (58)2.3.4 箱涵顶板 (58)3 移动泵房配筋及裂缝计算 (63)3.1 基本情况 (63)3.1.1 主要计算依据规范 (63)3.1.2 计算方法及计算软件 (63)3.1.3 主要参数的选取 (63)3.1.4基本概况 (64)3.2 荷载及内力计算 (64)3.2.1 荷载计算 (65)3.2.2 内力计算 (65)3.3 配筋计算及抗裂验算 (67)3.3.1 边墩 (67)3.3.2 底板底层 (69)3.3.3 底板面层 (71)4 水闸扶壁式挡墙配筋及裂缝计算 (73)4.1 基本情况 (73)4.1.1 主要计算依据规范 (73)4.1.2 计算方法及计算软件 (73)4.1.3 主要参数的选取 (73)4.1.4基本概况 (74)4.2 内力计算 (75)4.2.1 内河扶壁挡墙 (75)4.2.2 外河扶壁挡墙 (78)4.3 配筋计算及裂缝宽度验算 (82)4.3.1 内河扶壁挡墙 (82)4.3.2 外河扶壁挡墙 (91)2.2.3 渗流稳定计算 (119)1 水闸配筋及裂缝计算1.1 基本情况1.1.1 主要计算依据规范(1)《水工混凝土结构设计规范》(SL 191-2008);(2)《水工建筑物荷载设计规范》(DL 5077-1997);(3)其他相关规程规范。
本横拉闸门为检修闸门,闸门按照平面框架进行计算。
具体参数如下: 一、基本资料和结构布置 1.闸门基本参数孔口尺寸:12.6m ×5.2m (宽×高); 设计水头:4.0m 门叶结构材料:Q235B许用应力:[]160MPa σ=,[]95MPa τ=。
2.总水压力闸门在关闭位置的总水压力如图所示,其计算公式为22=0.5 0.510 4.712.82 1416s zsP H B KNγ=⨯⨯⨯=总3.结构布置检修闸门为平板门。
闸门采用面板+水平次梁+主纵梁+主横梁体系。
梁格布置尺寸见图。
水平次梁承受上下两个梁格板传来的梯形荷载。
主纵梁一方面承受其两侧梁格传来的三角形荷载,同时又承受由水平次梁传来的集中荷载。
二. 门叶结构计算 (一)面板面板厚度计算,按照公式如下[]y k qaδασ=区格()a mm ()b mm b a y k 2()p N mmα2()N mm σ ()mm δ 面板2 784 1946 2.48 0.49as s9 0.002 1.5 160 1.60 面板3879 1946 1.70 0.479 0.00888 1.5 160 3.70 面板4 879 1946 1.70 0.479 0.01883 1.5 160 5.38 面板5 784 1946 2.48 0.499 0.0283 1.5 160 6.01 面板661219463.180.50.036441.41605.52面板1中,不承受水压力,所以不考虑。
综合考虑面板厚度,暂取6mm δ= (二)水平次梁 横拉闸门水头不高,并且次梁截面型式和布置型式一样,故取第五根水平次梁进行计算(每根梁上荷载可按其相邻间距和之半法)。
梁号梁轴线处的水压强度2()p KN m梁间距(m )()2a a m +下上 )(下上m 2kN a a pq += 2 3.9 0.39 0.6925 2.7 0.9953 13.850.99513.78 0.9954 23.80.947522.55 0.90532.80.835 27.3880.77由于水平次梁采用相同截面,因此以线荷载最大的5号次梁来进行计算。
一、初步设计兴化闸为无坝引水进水闸,该枢纽主要由引水渠、防沙设施和进水闸组成,本次设计主要任务是确定兴化闸的型式、尺寸及枢纽布置方案;并进行水力计算、防渗排水设计、闸室布置与稳定计算、闸室底板结构设计等,绘出枢纽平面布置图及上下游立视图。
二、设计基本资料1. 概述兴化闸建在兴化镇以北的兴化渠上,闸址地理位置见图。
该闸的主要作用有:防洪:当兴化河水位较高时,关闸挡水,以防止兴化河水入侵兴化渠下游两岸农田,保护下游的农田和村镇。
灌溉:灌溉期引兴化河水北调,以灌溉兴化渠两岸的农田。
引水冲淤:在枯水季节,引兴化河水北上至下游的大成港,以冲淤保港。
闸址位置示意图(单位:m)2.规划数据兴化渠为人工渠道,其剖面尺寸如图所示。
渠底高程为0.5m,底宽50.0m,两岸边坡均为1:2。
该闸的主要设计组合有以下几方面:11.80.550.0兴化渠剖面示意图(单位:m)2.1孔口设计水位、流量根据规划要求,在灌溉期由兴化闸自流引兴化河水灌溉,引水流量为300m3/s,此时闸上游水位为7.83m,闸下游水位为7.78m;在冬季枯水季节由兴化闸自流引水送至下游大成港冲淤保港,引水流量为100m3/s,此时相应的闸上游水位为7.44m,下游为7.38m。
2.2闸室稳定计算水位组合(1)设计情况:上游水位10.3m,浪高0.8m,下游水位7.0m。
(2)校核情况:上游水位10.7m,浪高0.5m,下游水位7.0m。
2.3消能防冲设计水位组合(1)消能防冲的不利水位组合:引水流量为300m3/s,相应的上游水位10.7m,下游水位为7.78m。
(2)下游水位流量关系下游水位流量关系见表3.地质资料3.1闸基土质分布情况根据钻探报告,闸基土质分布情况见表3.2 闸基土工试验资料根据土工试验资料,闸基持力层为坚硬粉质粘土,其内摩擦角ϕ=190,凝聚力C=60.0Kpa ;天然孔隙比e=0.69,天然容重γ=20.3KN/m 3,比重G=2.74,变形模量0E =4104⨯KPa ;建闸所用回填土为砂壤土,其内摩擦角ϕ=260,凝聚力C=0,天然容重γ=18KN/m 3;混凝土的弹性模量E h =710.32⨯KPa 。
一、基本资料1. 水位水闸计洪水位2.96m (P=1%) 堤防设计洪水位2.88m (P=2%) 历史最高洪水位 2.60m 内河最高控制水位 1.30m 内河设计运行水位-0.30m2 工程等级及标准联围为 2 级堤围,其主要建筑物为 2 级建筑物,次要建筑物为 3 级,临时性建筑物为 4 级。
3 风浪计算要素计算风速根据《河道堤防、水闸及泵站水文水利计算》中“相应年最高潮位日的最大风速计算成果表”查得为V=36m/s(P=2%) 。
吹程在1:500 实测地形图上求得D=300m 闸前平均水深H m =6.0m4 地质资料根据××××××××××××院提供的《** 水闸工程勘察报告》。
5 地震设防烈度根据《×××省地震烈度区划图》,* 属7 度地震基本烈度地区,故×××水闸重建工程地震烈度为7 度。
6 规定的安全系数对于 2 级水闸,规范规定的安全系数见下表 1.6-1二、基本尺寸的拟定及复核2. 1 抗渗计算2.1.1 渗径复核如下图拟定的水闸底板尺寸:如下图拟定的水闸底板尺寸:L=0.5+0.7*2+6+0.5+0.5+1.3+0.5+0.76*2+16.4+0.5+1.3+0.7*2+0.5+0.7*2+6+0.5+0.5=40.72m根据《水闸设计规范》SL265-2001 第 4.3.2 条表 4.3.2, ×××水闸闸基为换砂基础,渗径系数取C=7 则:设计洪水位下要求渗径长度:L=C△H=7×[2.96-(-0.30)]=22.82m∴L 实〉L∴满足渗透稳定要求2.2 闸室引堤顶高程计算闸侧堤顶高程按 《堤防工程设计规范》 ( GB50286 —98) 中的有关规定进行计算。
水闸闸室的布置与构造闸室是水闸的主体部分,由底板、闸墩、闸门、工作桥及交通桥等部分组成,有许多水闸还设有胸墙。
1底板按底板与闸墩连接方式的不同,底板可分为整体式及分离式(图7-29)两种。
按底板结构形式的不同,主要分为平底板[图7-5(a )]、低堰式[图7-5(b )]、以及折线底板等,工程中使用最多的是整体式平底板。
图 7-29 底板与闸墩的连接方式(a )整体式;(b )分离式1. 整体式平底板当平底板与闸墩连成整体时,这种底板称为整体式平底板。
它是闸室的基础部分,能把上部结构的重力及荷载传给地基,并有防冲及防渗作用。
底板长度(顺水流方向)应根据闸室地基条件和结构布置要求,以满足闸室整体稳定和地基允许承载力为原则,进行综合分析确定。
初拟底板长度L 时,除满足闸室上部结构布置的要求外,还可参考以下两种经验数据选用:①L 约为上游水深的1.5~2.5倍,坚实地基取下限值,松散地基取上限值;②L 约为上、下游最大水位差max H ∆的1.5~4.5倍,在相同的max H ∆情况下,砂土地基L 稍小些,黏土地基L 稍大些。
底板厚度必须满足强度和刚度要求。
闸室底板通常是等厚度的,也可以采用变厚度,后者在地基较坚实的情况下,有利于改善底板的受力条件,例如加大闸墩墩基部位的厚度,减小跨中部位的厚度。
对于大、中型水闸,闸室平底板厚度可以取闸孔净宽的1/6~1/8,一般为1.0~2.0m ,最薄也不宜小于0.7m 。
在底板上、下游两端一般均设有浅齿墙,深度为0.5~1.5m,以增加闸室的稳定性和延长防渗长度。
底板混凝土应满足强度、抗渗及防冲等要求,其强度等级常用C20~C25。
整体式平底板抗震性能较好,根据辽南地震调查,黑鱼沟水闸及虎茬水闸均为钢筋混凝土整体式平底板,经强烈地震后仍保持完整,并能继续正常运用。
当地基较差时,如承载能力只有30~40kN/m2时,则需考虑减轻底板及其上部结构的重力或加大底板长度。
闸室稳定计算(1)闸室基底应力计算依据“水闸规范”当结构布置及受力情况对称时按第29页(7.3.4-1)计算。
e=B/2-∑M/∑GP max =∑G/A*(1+6*e/B)P min =∑G/A*(1-6*e/B)式中:P max --闸室基底应力的最大值;P min --闸室基底应力的最小值;∑G--作用在闸室上的全部竖向荷载(t );∑M--作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向的形心轴的力矩(t ·m);A--闸室基底面的面积(m 2);B --底板沿水流方向的长度(m)。
e --偏心距设计水位273.58底板高程264.24基本资料:闸室的稳定计算钢筋砼容重为2.5t/m3,进口段底板座于强风化白垩系砂砾岩上,中等透水,承载征值300kPa,f'=1.1,C'=1.1MPa。
五级建筑物水闸稳定基本组合抗滑稳定系数不小于1.05,特殊组合不小于1.0;最大基底应力与最小基底应力之比基本组合不大于2.0,特殊组合不大于2.5。
22程264.24上游9.34备注体积计算12.5644.3*3.6*0.7+(0.4+0.8)*0.4*0.5*2*3.696.723*4*8.062.25927.06*0.4*0.80.5255*0.35*0.31.444*3*0.123.95520.4*0.4*12.36*21.97760.4*0.4*12.360.546*0.3*0.366.87.62121.8*0.27*7+0.3*0.3*0.3*8+1.98*0.12*12+0.18*0.8*83.66*5*0.1275.8160.5*18*3.6*3.6*0.65427.454441/2*9.8*9.34*9.343.1361/2*9.8*0.8*0.833.7129.8*0.8*4.3196.79380.5*9.8*9.34*4.3,承载力特滑稳定系数不小于组合不大于2.0,特47.86329.34*4.3*3.6-96.720.8*8。
水闸设计计算-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、初步设计兴化闸为无坝引水进水闸,该枢纽主要由引水渠、防沙设施和进水闸组成,本次设计主要任务是确定兴化闸的型式、尺寸及枢纽布置方案;并进行水力计算、防渗排水设计、闸室布置与稳定计算、闸室底板结构设计等,绘出枢纽平面布置图及上下游立视图。
二、设计基本资料1. 概述兴化闸建在兴化镇以北的兴化渠上,闸址地理位置见图。
该闸的主要作用有:防洪:当兴化河水位较高时,关闸挡水,以防止兴化河水入侵兴化渠下游两岸农田,保护下游的农田和村镇。
灌溉:灌溉期引兴化河水北调,以灌溉兴化渠两岸的农田。
引水冲淤:在枯水季节,引兴化河水北上至下游的大成港,以冲淤保港。
河兴化镇闸址位置示意图(单位:m)2.规划数据兴化渠为人工渠道,其剖面尺寸如图所示。
渠底高程为,底宽,两岸边坡均为1:2。
该闸的主要设计组合有以下几方面:兴化渠剖面示意图(单位:m)孔口设计水位、流量根据规划要求,在灌溉期由兴化闸自流引兴化河水灌溉,引水流量为300m3/s,此时闸上游水位为,闸下游水位为;在冬季枯水季节由兴化闸自流引水送至下游大成港冲淤保港,引水流量为100m3/s,此时相应的闸上游水位为,下游为。
闸室稳定计算水位组合(1)设计情况:上游水位,浪高,下游水位。
(2)校核情况:上游水位,浪高,下游水位。
消能防冲设计水位组合(1)消能防冲的不利水位组合:引水流量为300m3/s,相应的上游水位,下游水位为。
(2)下游水位流量关系下游水位流量关系见表3. 地质资料闸基土质分布情况根据钻探报告,闸基土质分布情况见表根据土工试验资料,闸基持力层为坚硬粉质粘土,其内摩擦角ϕ=190,凝聚力C=;天然孔隙比e=,天然容重γ=m3,比重G=,变形模量E=4104⨯KPa;建闸所用回填土为砂壤土,其内摩擦角ϕ=260,凝聚力C=0,天然容重γ=18KN/m3;混凝土的弹性模量E h=710.32⨯KPa。
[附录一: 泄洪冲砂闸及溢流堰的水力计算1.1设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程1852.40m 。
根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m ,过闸水流流态为堰流。
汛期通过闸室的设计洪水流量Q 设=1088m 3/s,校核洪水流Q 校=1368 m 3/s 。
因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:232Hg mbQ δε=δ- 为淹没系数,取为1.0;m ---为流量系数,因为是前面无坎的宽顶堰所以m=0.385; ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头; b —闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。
初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(0.2—0.3m )=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求。
因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:232Hg mbQ δε=δ- 为淹没系数,取为1.0m ---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;计算溢流堰时因为溢流堰为折线形实用堰m=0.3.ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。
b —闸门净宽计算结果如附表1-1,1-2(a )设计洪水情况下:洪水流量Q=1018 m 3/s 。
目录第一节设计基本资料 (2)1.1 概述 (2)1.2 规划数据 (2)1.3地质资料 (3)1.4闸的设计标准 (4)1.5其他资料 (4)第二节枢纽布置 (4)2.1 防沙设施 (4)2.3引水渠的布置 (4)2.4进水闸布置 (5)第三节水力计算 (5)3.1闸孔设计 (5)3.2消能防冲设计 (7)第四节防渗排水设计 (11)4.1地下轮廓设计 (11)4.2渗流计算 (12)第五节闸室布置与稳定计算....... 错误!未定义书签。
5.1 闸室结构布置 (16)5.2 闸室稳定计算............................... 错误!未定义书签。
第六节闸室结构设计. (26)6.1 闸墩设计 (26)6.2底板结构计算 (27)第七节两岸连接建筑物设计....... 错误!未定义书签。
第八节主要参考文献. (34)水工建筑物课程设计计算说明书第一节设计基本资料1.1概述本工程是西通河灌区第一集抽水站的拦河闸,其主要任务是拦蓄西通河的河水,抬高水位满足抽水灌溉的需要,洪水期能够宣泄洪水,保证两岸农田不被洪水淹没。
1.2规划数据闸址附近,河道顺直,河道横部面接近梯形,底宽18m,边坡1:1.5,河底高程195.00m,两岸地面高程199.20m。
断面尺寸如图1.1所示:图1.11.2.1孔口设计水位、流量根据规划要求,在正常蓄水时下泄流量为Q=03/m s,上游水位为H正=198.0m,此时对应的下游水位H=195.0m;在校核洪水时灌区下泄流量为Q核=79.73/m s,此时的相应上游校核水位为H核=198.90m,相应闸下游水位H下=198.65m;在设计灌溉区期下泄流量Q设=61.43/m s,此时对应的上游水位H设=198.36m,闸下游水位为H‘下=198.15m.1.2.2闸身稳定计算水位组合A.设计情况:上游水深H=3.36m,下游水深h=3.15mB.校核情况:上游水深H=3.90m,下游水深h=3.65m1.2.3消能防冲设计水位组合根据分析:消能防冲的最不利水位组合是在校核洪水位时的情况下:则其组合是:下泄流量为Q=79.703/m s,相应的上游水位是H核=198.90m, 闸下游水位H下=198.65m,则相应的上游水深H=3.90m,下游水深h=3.65m。
第一章工程选址和闸型的选择一、工程选址可考虑三个方案:①原闸址上游(第Ⅲ方案);②原闸址(第Ⅰ方案);③原闸址下游(第Ⅱ方案)。
方案比较:①方案Ⅲ:优点:闸址上移后减少×河两岸堤围的防洪长度。
缺点:增加海堤的防潮长度,减少澄海市区的淡水面积,特别是由于现有桥闸上游附近存在大量的取水口,水闸上移新建后势必影响到这些取水口及引水渠系的正常使用,需择址破堤重建。
另外,水闸上移新建后势必打乱原有城市的规划框架,导致大量拆迁费用的产生。
②方案Ⅰ:本方案拟将旧桥闸拆除,并在原址按设计标准重建。
工程施工布置可利用现有河中砂洲经加高后作为纵向围堰分二期二年施工。
③方案Ⅱ:本方案拟将工程移至原闸址下游约2.8km处新建,选择此处作为新闸址是因为澄海市城市规划中有一条城市干道延伸至此且新闸址地处市郊、河面相对开阔,河道水流较为平顺等有利条件。
但此时需在河中填筑一道纵向围堰和上、下游两道横向围堰。
经上面比较选原闸址(方案Ⅰ)为新建闸址位置。
二、桥闸选型(一)闸孔型式及闸底板高程开敞式及涵洞式两种基本闸型均可以采用,但若考虑运用和检修方便,则采用开敞式平底板较好,闸底板高程根据现有桥闸上下游河床的地形条件(闸上游30m处的河床高程▽-2.50m,闸下游60m处的河床高程▽-4.50m,考虑重建后桥闸的最大过流能力(尽可能减少设计情况下和校核情况下的过闸水头差),重建工程的闸底高程取▽-1.80m 。
(二)孔口轮廓尺寸的拟定从1:1000地形图上量得进水口宽度约360m ,河床土质为砂壤土,q=10~15(m 3/s·m)。
B 0=Q/q=4850/(10~15)=485~323m 经比较选B 0=360m以砂洲岛为界×闸分东西两闸,东闸16孔,西闸20孔(其中4孔为电站进水口不计水闸泄洪);水闸为宽顶堰,闸底标高▽-1.80m(珠基,下同),每孔净宽10m ,采用二孔一联结构,中墩厚1.2m ,缝墩厚0.9m 。
第七节 闸室的结构计算
→分解成若干部件进行计算
一、闸墩结构计算:
1.计算模型:
(1)平面闸门的闸墩→固定于底板的悬臂梁→材料力学法
(2)弧形闸门的闸墩→一边固定、三边自由的弹性矩形板→弹性力学法
2.主要荷载及荷载组合
⑴主要荷载
结构自重;
水压力:纵向(顺水流方向),横向(垂直水流方向);
地震惯性力;
交通桥上车辆刹车制动力
⑵荷载组合
(a)正常或非常挡水时期,闸门全关。→主要核算顺水流方向(纵向)的应力分布。
平面闸门:闸墩底部应力,门槽处应力
弧形闸门:闸墩牛腿及整个闸墩的应力
(b)正常或非常挡水时期,一孔检修,相邻孔过水。
→闸墩两侧有水头差,同时受到横向水压力和车辆刹车制动力。
→主要核算垂直水流方向(横向)应力分布
(c)正常挡水时期闸门全关,遭遇强震。→主要核算垂直水流方向(横向)的应力分布。
⒊平面闸门的闸墩的应力分析步骤
⑴计算边闸墩和中闸墩的形函数:墩底水平截面形心位置和惯性矩Ix、Iy,面积矩Sx、Sy。
图9-25 闸墩结构计算示意图
⑵计算墩底水平截面上的正应力与剪应力
①顺水流方向(纵向):最不利情况是闸门全关挡水、闸墩承受最大上下游水位差。产生的水压力。
边闸墩或受力不对称的中墩水平截面上有扭矩作用。闸墩边缘位于x—x轴上点的最大扭剪力可近似为:
②垂直水流方向(横向):最不利情况是一孔检修的情况,此时该孔上下游检修闸门关闭而相邻孔过水。 →
闸墩两侧有水头差,同时受到横向水压力和车辆刹车制动力等荷载。
⑶垂直截面上的应力计算(门槽处应力计算)
对任一垂直截面位置,在任一高程取高度为1m的闸墩作为脱离体,其顶面、底面上的正应力和剪应力分
布已由⑵得出,均属已知,由静力平衡条件可求出任一垂直截面上的N、M、Q,从而可以求出该垂直截面
上的平均剪应力和平均正应力。在门槽处截取脱离体(取上游段闸墩或下游段闸墩都可以),将其作为固
结于门槽位置的悬臂梁,同理可求得门槽处垂直截面上的应力。
二 . 底板结构计算(开敞式闸室整体式平底板)
常用方法:倒置梁法、反力直线分布法、弹性地基梁法。
各种算法都是以垂直水流方向截取的单宽板条作为计算对象,简化为平面问题进行计算。
倒置梁法忽视了闸墩处变位不等的重要因素,误差较大,因此不宜在大、中型水闸设计中采用;
大、中型水闸,当地基为相对紧密度Dr≤0.5的砂土时,由于变形容易得到调整,可用反力直线分布法计
算,当地基为粘性土或Dr>0.5的砂土时,可采用弹性地基梁法计算。
1.倒置梁法
⑴计算模型及基本假定
以垂直水流方向截取的单宽板条作为计算对象,把闸室底板作为固支于闸墩的连续梁进行计算。即把闸墩
作为底板连续梁的支座。
假定:ⅰ.地基反力在顺水流方向直线分布
ⅱ.地基反力在垂直水流方向均匀分布
ⅲ.相邻闸墩间无任何相对位移
倒置梁法计算十分简便,但假定地基反力在横向为均匀分布与实际情况不符,而且支座反力与闸墩铅直荷
载也不相等,故只能在小型水闸中采用。
图9-26 倒置梁法及反力直线分布法简图 图9-27 分离式底板接缝型式
用偏心受压公式计算纵向(顺水流方向)地基反力。
②取横向单宽板条,按倒置连续梁计算内力并进行配筋。
⒉反力直线分布法
⑴计算模型及基本假定
以垂直水流方向截取的单宽板条作为计算对象,把闸墩当作底板的已知荷载进行计算。
假定 (a)地基反力在顺水流方向直线分布。
(b)地基反力在垂直水流方向均匀分布。
(c)把闸墩当作底板的已知荷载,闸墩对底板无约束,底板可以自由变形。
大、中型水闸,当地基为相对紧密度Dr≤0.5的砂土时,可用反力直线分布法计算。
⑵计算步骤
①用偏心受压公式计算纵向(顺水流方向)地基反力。
②取横向单宽板条,计算不平衡剪力⊿Q。
*式中假定不平衡剪力⊿Q的方向向下,如其计算结果为负值,说明⊿Q的实际方向向上。
③对不平衡剪力进行分配。不平衡剪力⊿Q应由闸墩和底板共同承担。
,b=1m,对既定截面,Q/I是常数,τ与S(y′)成正比,设闸墩和底板对应的S(y′)
的面积分别为A1和A2,则闸墩和底板分担的不平衡剪力分别为:
⊿Q1还要由中墩和缝墩按厚度再进行分配,两者分配的⊿Q1′和⊿Q1″分别为:
④计算作用在底板上的荷载
分配给闸墩的不平衡剪力连同包括上部结构的闸墩重力可示为集中力作用在梁上,将分配给底板的不平衡
剪力转化为均布荷载,则作用在底板梁上的均布荷载为:
均布荷载q=q3+地基反力q4-水重q2′-q1-⊿Q2/2L′。
⑤计算底板内力并进行配筋。
⒊弹性地基梁法
⑴计算模型及基本假定
以垂直水流方向截取的单宽板条作为计算对象,按平面应变的弹性地基梁,利用静力平衡条件及底板与地
基的变形协调条件,计算地基反力和底板内力。
假定 (a)地基反力在顺水流方向直线分布。
(b)地基反力在垂直水流方向呈弹性(曲线)分布,为待求未知数。
(c)把闸墩当作底板的已知荷载,闸墩对底板无约束,底板可以自由变形。
当地基为粘性土或Dr>0.5的砂土时,可采用弹性地基梁法计算。
图9-28 闸底板结构计算图
⑵计算步骤
①用偏心受压公式计算纵向(顺水流方向)地基反力。
②取横向单宽板条,计算不平衡剪力⊿Q。与反力直线分布法中相同。
③对不平衡剪力进行分配。不平衡剪力⊿Q应由闸墩和底板共同承担。与反力直线分布法中相同。
④计算作用在底板(弹性基础梁)上的荷载
分配给闸墩的不平衡剪力连同包括上部结构的闸墩重力可示为集中力作用在梁上,将分配给底板的不平衡
剪力转化为均布荷载,则作用在底板梁上的均布荷载为:均布荷载q=扬压力q3 -水重q2′-底板自重q1-⊿
Q2/2L′。此时地基反力的横向分布为待求未知荷载。
注意:规范7.5.4规定,当采用弹性地基梁法时,可不计闸室底板的自重,但当作用在基底面上的均布荷
载为负值时,则仍应计及底板自重的影响,计及的百分数以使作用在基底面上的均布荷载值等于0为限度
确定。
注意:
(a)如果计算对象包括直接挡土的边墩,则侧向土压力、侧向水压力等引起的弯矩对弹性地基梁也有影响。
在有些水闸工程设计中,从安全考虑,当弯矩使梁内力减小时,考虑弯矩计算值的50%,使梁内力增加时,
考虑弯矩计算值的100%。
表7.5.5 边荷载计算百分数
地基类别 边荷载使计算闸段底板内力减小 边荷载使计算闸段底板内力增加
砂性土 50% 100%
粘性土 0 100%
⑤计算底板内力并进行配筋。
具体算法及其理论假定要适应底板及地基的具体条件:
ⅰ.对于土基上的水闸的整体式平底板:
(a)当地基可压缩层(厚度为T)很厚(即厚度远大于梁的最大水平尺寸)时(T/L′>2)
可将地基视为半无限弹性体进行计算。
(b)当地基可压缩层较薄时(T/L′<0.25)
→可按反力与地基变形成正比的文克尔假定(即基床系数法)进行计算。
(c)当地基可压缩层厚度与梁的最大尺寸同量级时(T/L′=0.25–2)
可按有限深弹性地基梁用链杆法进行计算。
ⅱ.对于岩基上水闸的整体式平底板的应力分析,可按基床系数法计算。这是因为岩基弹性模量较大,其单
位面积上的沉降变形与所受压力之间的关系比较符合文克尔的假定。
*文克尔假定下的基础梁:
假定地基单位面积上所受的压力与该单位面积上的地基沉降成正比。按此假定,基底应力值计算显然未考
虑基础范围以外的地基变形的影响,即边荷载并不引起梁的内力;同时,在文克尔假定下,当全梁受均布
荷载q时,地基反力也均匀分布,它的集度p就等于均布荷载集度q,因此基础梁并不弯曲,梁截面上并
不发生弯矩。
具体计算时可以采用查表法,先计算出柔度系数
然后查表(《水工设计手册(1)》得弯矩系数,然后计算弯矩。
*半无限深弹性地基梁:
先计算出柔度系数
然后查表(《水工设计手册(1)》得弯矩系数,然后计算弯矩。需考虑全梁受均布荷载、梁上受弯矩荷载、
梁上受集中荷载、集中边荷载、均布边荷载的情况。
*有限深弹性地基梁:
先计算出柔度系数
然后查表《水闸设计(上册)》,华东水利学院编得地基反力系数,然后计算弯矩。
在分析底板应力时,底板自重q1的取值也应根据地基的具体情况确定。新规范指出:―原规范规定,在分
析底板应力时,应根据不同的地基情况,分别考虑底板自重对其应力的影响,即在粘性土地基上,可采用
底板自重的50%~100%,在砂性土地基上可不计底板的自重。经分析认为,这种考虑方法是不够全面的,
因为水闸闸室底板绝大多数是挖埋式,底板自重远小于基坑开挖前的原压荷载,由底板自重引起的地基沉
降是基坑开挖回弹后的再压缩,属于弹性压缩的性质,不象排水固结那样需要较长的时间,弹性变形可在
很短时间内完成,因此不论是粘性土地基还是砂性土地基,都可以不考虑底板自重对其的影响,但当不计
底板自重时致使作用在底板基底面上的均布荷载为负值时,则仍应计及底板自重的影响,计及的百分数以
使作用在基底面上的均布荷载值等于零为限度。‖