坦克装甲车辆防护技术发展研究
- 格式:pdf
- 大小:297.18 KB
- 文档页数:4
《装甲车辆目标易损性及数据库系统技术研究》一、引言装甲车辆作为现代战争中的重要装备,其在战场上发挥着至关重要的作用。
然而,其目标易损性也随之凸显。
对装甲车辆目标易损性的研究以及建立相应的数据库系统技术,对于提高装甲车辆的战场生存能力和作战效能具有重要意义。
本文将针对装甲车辆目标易损性及数据库系统技术进行深入研究,以期为相关领域的研究与应用提供理论支持。
二、装甲车辆目标易损性分析1. 装甲车辆结构特点装甲车辆的结构特点决定了其易损性的主要来源。
装甲车辆的防护系统、动力系统、控制系统等都是其重要的组成部分。
其中,防护系统是抵抗敌方攻击的主要手段,动力系统和控制系统则直接关系到车辆的机动性和作战效能。
这些系统的薄弱环节和关键部位,往往是敌方攻击的主要目标。
2. 易损性分析装甲车辆的目标易损性主要表现在以下几个方面:(1)防御能力:装甲车辆的防御能力受到武器技术的发展和战场环境的影响,传统的防御手段可能无法有效抵御新型武器的攻击。
(2)机动性能:机动性能的下降可能导致装甲车辆在战场上的生存能力降低,增加被敌方攻击和摧毁的风险。
(3)信息系统:信息化战争中,装甲车辆的信息系统是其作战效能的关键,信息系统的易损性直接影响到车辆的作战能力。
三、数据库系统技术研究为了更好地研究装甲车辆的目标易损性,建立相应的数据库系统技术至关重要。
数据库系统应包含以下内容:1. 数据采集:通过收集装甲车辆的各项性能参数、战场环境数据、敌方武器数据等信息,为数据库的建立提供基础数据支持。
2. 数据存储:将收集到的数据存储在数据库中,以便后续的查询和分析。
数据库应具备高效的数据存储和检索能力,以满足实时作战的需求。
3. 数据分析:通过数据分析技术,对存储在数据库中的数据进行处理和分析,以揭示装甲车辆的目标易损性及其影响因素。
4. 数据可视化:将分析结果以图表、曲线等形式进行可视化展示,以便更好地理解和应用分析结果。
四、技术研究与应用通过建立装甲车辆目标易损性数据库系统,可以实现对装甲车辆性能的全面评估和优化。
装甲兵器技术发展现状与趋势一、引言兵器是以非核常规手段杀伤敌有生力量、破坏敌作战设施、保护我方人员及设施的器械,是进行常规战争、反恐、应对突发事件、保卫国家安全的重要物质基础。
装甲兵器是指各种用于地面突击与反突击作战的集强大火力、快速机动力、综合防护力和信息力于一体的武器系统。
装甲兵器在传统上统称为坦克装甲车辆,以主战坦克为典型代表,包括步兵战车、装甲输送车、装甲侦察车、装甲指挥车、装甲抢救车等。
随着技术的发展和外延的拓展,装甲兵器还包括地面无人作战装备、两栖装甲作战装备、多栖装甲作战装备、轮步装甲作战装备等。
装甲兵器按照结构形式不同,一般分为重型装甲装备、轻型装甲装备、两栖装甲装备、空降装甲装备和新概念装甲装备。
重型装甲装备以主战坦克为代表,突出优点是其优秀的越野机动能力、强大的火力和重型化的乘载能力,适用于各种复杂的环境和条件下使用;轻型装甲装备以轮式装甲步兵战车为代表,突出优点是公路机动性好,自身具备战略机动能力,全寿命周期经济性好;两栖装甲装备以两栖履带装甲突击车为代表,突出优点是其海上机动性和抗风浪能力,以及对岸强大的突击和占领能力;空降装甲装备以履带式空降战车为代表,突出优点是重量轻、体积小,便于空中投送,战略机动性好;新概念装甲装备以地面无人作战装备为代表,突出优点是恶劣环境下的生存能力和长时间的值守能力,是有人装备的有效补充。
装甲兵器按结构形式分类见图1。
2014—2015兵器科学技术学科发展报告(装甲兵器技术)图1 装甲兵器按结构形式分类综 合 报 告装甲兵器按用途可划分为装甲战斗车辆、装甲指控车辆和装甲保障车辆等。
装甲战斗车辆是地面突击的“先锋战士”,担负打击和消灭敌方坦克、装甲车辆、反坦克及炮兵武器,摧毁敌方构筑的工事和障碍物,歼灭敌人有生力量等作战任务,一般包括:主战坦克、步兵战车、装甲突击车、装甲输送车等;装甲指控车辆是地面突击的“大脑中枢”,负责获取、融合、处理地面战场信息,调动和指挥作战资源,根据不断变化的战场态势,制定和下发作战计划,完成各阶段的作战任务,一般包括装甲侦察车、装甲指挥车、装甲信息车、装甲通信车等;装甲保障车辆是地面突击的“持久增剂”,用于抢修和恢复战场上损毁的车辆,补给作战车辆的弹药、油料,救护战场伤员,保障作战装备持续发挥使用性能和作战效能,一般包括:装甲抢救车、装甲抢修车、装甲补给车、装甲救护车等。
陶瓷复合装甲的研究现状及发展
尹飞;纪伟;王智慧
【期刊名称】《兵器材料科学与工程》
【年(卷),期】2024(47)1
【摘要】陶瓷复合装甲是现有复合装甲中的主体,被广泛应用于轻型坦克装甲车辆、武装直升机等的装甲防护及单兵人体防护。
本文结合传统陶瓷复合装甲技术面临的主要问题,通过分析近年来的研究热点和发展现状,对未来陶瓷复合装甲技术的发展
方向进行了展望。
【总页数】6页(P106-111)
【作者】尹飞;纪伟;王智慧
【作者单位】陆装南京局驻烟台地区代表室;中国兵器工业集团第五二研究所
【正文语种】中文
【中图分类】TJ04
【相关文献】
1.反应装甲与陶瓷复合装甲集成技术研究探讨
2.陶瓷复合装甲材料的研究和发展
3.陶瓷复合装甲材料研究和发展
4.直升机陶瓷复合装甲发展现状及新型材料应用前
景5.陶瓷复合弹对陶瓷/装甲钢复合靶的侵彻性能研究
因版权原因,仅展示原文概要,查看原文内容请购买。
坦克及装甲车辆设计的技术与方法坦克作为一种重型装甲战斗车辆,在现代战争中扮演着重要的角色。
在其发展过程中,坦克的设计始终是一个关键的问题。
对于坦克及装甲车辆的设计,存在许多技术和方法,本文将就其进行探讨。
一、坦克及装甲车辆设计的技术1.结构设计坦克及装甲车辆最基本也是最重要的是结构设计,包括主炮、机枪、装甲板、引擎等部分的布局和结构设计。
坦克的主炮和机枪是其最为重要的武器装备,所以在其设计时必须充分考虑射程、精度、弹药携带量、发射速度和火力稳定性等因素,以充分满足其作战需求。
坦克的装甲板也是至关重要的,其所使用的装甲材料必须经过严格的检测和测试,以保证其所使用的装甲板的强度、硬度和耐久性,以满足不同的作战需求。
2.控制系统设计坦克及装甲车辆所使用的控制系统也是设计的关键,这包括驾驶操作、武器控制和通讯系统等。
坦克的驾驶操作集合了方向盘、手刹和油门等组成的复杂操控系统,因此其设计必须充分满足坦克驾驶员的操作要求,以确保操作的流畅性和舒适性。
而武器控制就要考虑单机和多机对战、目标距离等因素,设计专业的集成武器控制系统,以满足不同情况下的控制需求。
3.引擎设计坦克及装甲车辆使用的引擎也是设计中的重要考虑因素。
一台坦克所使用的引擎需搭载其庞大的机身和重型的装备,因此在其设计过程中必须充分考虑功率、重量和功能稳定性等因素,以确保其性能稳定,并在作战中提供足够的动力支持。
二、坦克及装甲车辆设计的方法1.声学分析声学分析是坦克及装甲车辆设计的一种重要方法。
针对不同车型,通过声学分析可了解车辆的噪音产生情况,进而对其结构设计进行改进。
比如,在坦克的内部加装隔音设备,以减少驾驶员对外界噪音的干扰,同时还有利于提高坦克的隐蔽性;在车外安装噪音记录仪,更加准确地了解坦克的噪音产生情况和来源,以针对性地改进坦克结构和设计。
2.材料测试坦克及装甲车辆的设计还需要进行强度测试。
这个测试所使用的是钢板或铝合金等金属材料,并对其进行不同等级的强度测试,以确保材料在作战中的表现符合设计要求。
装甲车辆红外隐身技术的发展趋势简述了装甲车辆红外隐身的机理,分析了装甲车辆红外隐身的基本措施,综述了国内外装甲车辆红外隐身技术的研究现状,概括了新型红外隐身材料的发展,指出装甲车辆红外隐身技术的发展趋势是研制多功能涂料、发展复合型隐身材料、开发新型智能隐身系统、加强多种隐身技术的综合。
0 引言随着军事科学技术的迅速发展,现代红外侦察、瞄准技术已达到相当高的水平。
光电成像卫星可获得分辨率为0.1 m的可见光图像和红外图像,并可在全暗的条件下拍摄地面目标,特别适于监视坦克、装甲车辆、机动式弹道导弹的动向。
精确制导武器的大量使用,使杀伤手段向“发现即命中”方向发展。
不被发现成为生存第一要素,要提高军事目标的生存能力,就要降低被探测和发现的概率。
各国使用的精确制导武器中,红外(含热寻的)制导占了60 %,使各种军事目标和武器装备的安全受到严重威胁。
因此,以降低装备红外特征和削弱敌方红外探测效能为宗旨的红外特征抑制技术,受到了世界各国军事科学家们的高度重视,并迅速发展。
装甲车辆是机械化部队的主要装备,在未来高科技战争中具有举足轻重的作用。
随着红外探测技术,尤其是红外成像技术的飞速发展,装甲车辆红外辐射特征抑制技术研究已经成为热点之一[1-3]。
文中对装甲车辆红外隐身主要技术进行了综合评述,介绍了新型隐身材料,并探讨了装甲车辆红外隐身技术的发展趋势。
1 装甲车辆红外隐身技术的发展红外线(0.78~1 000 μm)与物体温度密切相关,具有波长长,穿透大气烟雾的能力强,能揭示常规伪装的特点,在军事上倍受关注。
大气的红外窗口为1~2.7 μm、3~5 μm、8~14 μm,大部分探测器工作波长都集中在这3个波段内,其中,红外制导用的探测器工作波段在3~5 μm,热成像系统的工作波段则扩展到8~14 μm[4]。
装甲车辆红外隐身技术就是对装甲车辆进行处理,设法减少或消除装甲车辆与背景之间的亮度差别或温度差别,使装甲车辆与背景的红外线特征相适应。
坦克的“脉动”——坦克装甲车辆动力传动装置发展新动向(下) 作者:张文超 来源:《坦克装甲车辆》 2015年第7期
张文超 动力辅助系统发展的关键技术 随着坦克装甲车辆推进系统向紧凑化、整体化发展,以及发动机功率密度的不断增加,坦克装甲车辆对动力辅助系统的要求也越来越高。国外积极开发和不断改进动力辅助系统,以适应先进推进装置的发展要求。目前,高性能温控调速型冷却风扇、高效紧凑铝板翅式散热器、高温冷却技术、先进空气滤清器等部件技术,以及系统优化匹配技术成为了动力辅助系统发展的关键技术。
系统优化匹配技术 随着动力辅助系统结构日趋复杂,其设计不仅要考虑单个部件,而且还要考虑部件之间的相互作用以及车辆结构的影响,从而实现最优设计。另外,冷却系统的独立设计是未来设计的必然趋势,它虽然名义上是发动机的附件,但与车体紧密相连,在当前动力、传动、辅助系统三位一体的推进装置中作为一个独立的系统进行设计具有突出的优点,从动力、传动部件的总体性能出发,进行系统的统筹,实现匹配的最佳化。
高温冷却技术 高温冷却技术是减小辅助系统体积和质量,使柴油机实现高效运行的有效措施。涉及的技术主要包括高温润滑技术、高低温双循环冷却系统、热管散热技术等。MTU890系列柴油机的冷却系统即采用了高温冷却技术,使散热器的尺寸大为减小,并允许发动机下游冷却液温度高达130度,提高了发动机的温度均衡能力,减少了流入冷却液的热量,改善了发动机燃烧环境。
冷却风扇及其驱动技术 目前坦克装甲车辆用冷却风扇己日趋高转速、小尺寸、多风扇的结构型式。混流式风扇兼顾轴流风扇和离心风扇的优点,结构紧凑,性能参数的综合指标较高,特别是对排风道的要求比较低,目前应用较广泛。在风扇驱动技术方面,国外已经研制了多种可调速的风扇驱动装置,其中尤以液压传动较为广泛,风扇温控调速液压传动装置已得到应用。
散热器技术 板翅式铝制散热器是散热器发展的主流,特别是散热翅片与传热管整体成型,无接触式的新型低阻散热器,热效率可提高20~30%,重量、体积降低20%。单纯追求翅片密度提高紧凑性、不适当缩小翅片间距,国外实践证明不适用于坦克装甲车辆的冷却系统。新颖的废气引射和混流风扇组成的高效、紧凑型复合式冷却空气循环系统,能有效缩小冷却系统的体积。
未来装甲车辆发展势不可挡——世界装甲车辆最新发展报告(下)作者:李迎宁等来源:《坦克装甲车辆》 2015年第13期李迎宁曹伟亚洲印度计划在2020~2025年采购2?600辆未来步兵战车(FIVC,用以取代现役BMP-2步兵战车)和1?657辆T-90S主战坦克(其中1?000辆以颁发许可证的方式在本地生产)。
日本中期防务计划需要采购68辆主战坦克、75辆装甲战车、99辆机动战车和52辆两栖装甲车。
韩国陆军计划在2013年K2“黑豹”主战坦克批量生产后部署至少206辆,但计划推迟。
菲律宾制定的军事现代化计划中,需要再采购110辆履带式步兵战车。
以色列订购了600辆“雌虎”(NAMER)装甲输送车,并对其装备的“阿奇扎里特”重型装甲输送车进行升级。
印尼采购了40辆“豹”2A4和63辆“豹”2“革命”主战坦克以及10套“豹”2主战坦克支援组件。
在莱茵金属公司的协助下,PT Pindad公司将为印尼陆军生产50辆“黄鼠狼”1A3步兵战车。
此外,印尼陆军还订购了各型“龙”(KOMODO)式装甲车。
泰国正从乌克兰引进223辆BTR-3E1装甲输送车,此外还将订购100辆T-84-120“堡垒”主战坦克替换M41坦克,同时“蝎”式(SCORPION)轻型坦克将被翻新,计划在2016~2017年订购21辆4×4型WIN多用途装甲车和200辆主战坦克。
马来西亚将向本国DRB-HICOM防务技术公司采购257辆8×8型AV8装甲车(包括12个车型)。
伊拉克采购了16辆M548A1履带式后勤保障车、8辆M113A2装甲救护车、8辆“悍马”车和1 050辆“美洲狮”(COUGAR)轻型装甲车。
此外,乌克兰向伊拉克交付了420辆BTR-4装甲输送车,美国将440辆M113A2装甲输送车进行翻新后交付伊拉克陆军。
沙特阿拉伯正在就订购655辆“悍马”车进行谈判,同时724辆8×8 LAVⅡ装甲车正在交付(可能还将增订84辆),此外还将采购新型LAV装甲车用于装备该国山地旅。
坦克主动防护系统2005年1月,美军在白沙导弹靶场成功地进行了两次“直瞄动能反坦克导弹”武器系统的发射试验,两枚动能导弹分别摧毁了两辆2 400米远的、高速运行的M80坦克。
据称,“此次试验充分显示了动能导弹对目标的致命杀伤力”,从而为反坦克导弹家族增添了一个凶悍的新“杀手”。
那么,“陆战之王”面对如此之凶悍的新“杀手”将何去何从呢?20世纪70年代后期开始,“陆战之王”坦克的装甲技术发生了质的飞跃,装甲从普通均质钢板走向多元化。
性能突出的主要有:英国“挑战者”主战坦克采用的“乔巴姆”复合装甲,美国“艾布拉姆斯”采用的贫铀装甲,以色列“梅卡瓦”的模块化反应装甲,德国“豹”2采用的模块化高性能防护装甲等。
这些新型装甲的陆续出现,使得装甲目标在不增加重量的情况下,防护性能得到显著提高。
尤其像爆炸反应装甲等新式特种装甲的广泛应用,打破了装甲与反装甲武器之间的平衡,使装甲威胁难以攻克。
为进一步提高“陆战之王”的战场生存力,世界各国把焦点集中在装甲车辆智能型综合主动防护系统的研究上。
四大门派主动防护系统技术是一种新概念防御手段,早期的主动防护系统主要有俄罗斯的“窗帘”、“特舒尔”和“鸫”主动防护系统,以色列的MAJIC-1主动式导弹干扰机、POMALS 激光告警系统和ARPAM主动防护系统,德国的“阿维斯”和IBD主动防护系统,法国的Spatem硬杀伤主动防护系统,美国的小型低成本自主式主动防护系统、全光谱主动防护近战多层防盾和近期主动防护系统。
主动防护系统是采取施放烟幕、诱骗、干扰和强行拦截等措施,来防止被瞄准或击中的系统。
它是在电子对抗技术的基础上发展起来的一种积极主动的防护系统,能有效降低反坦克导弹的反装甲效能,并能在不明显增加装甲厚度和车重的情况下,大幅度提高安装该系统平台的生存能力。
根据对抗技术不同,主动防护系统可分为以下四种。
烟幕遮障式主动防护系统烟幕遮障是坦克装甲车辆最基本的防护手段,一般坦克装甲车辆上装备的烟幕弹发射装置就是靠烟幕遮障来达到防护目的的。
国外坦克装甲车辆主动防护系统
任晓刚
【期刊名称】《火力与指挥控制》
【年(卷),期】2010()S1
【摘要】从陆军装甲主动防护系统的产生、发展和应用进行了阐述;对陆军装甲主动防护系统的国际通用分类、应用现状及发展现状进行了分类介绍;就国际几种典型的陆军装甲主动防护系统进行了详细介绍;最后就陆军装甲主动防护系统进行了发展和应用前景的分析。
【总页数】3页(P4-6)
【关键词】陆军;主动防护系统;坦克;装甲车辆
【作者】任晓刚
【作者单位】北方自动控制技术研究所
【正文语种】中文
【中图分类】TJ811
【相关文献】
1.新概念防护——坦克装甲车辆综合防护系统 [J], 仲崇慧
2.坦克装甲车辆主动防护系统发展研究 [J], 房凌晖;郑翔玉;汪伦根;周迎春
3.坦克装甲车辆主动防护系统发展趋势 [J], 阳亮;徐海洋
4.坦克装甲车辆主动防护系统新发展 [J], 李补莲
5.国外装甲车辆主动防护系统发展 [J], 张卫东
因版权原因,仅展示原文概要,查看原文内容请购买。
530264146陆军论坛2010/5/22 17:30:370524复制本帖铁血军事 > 铁血军事论坛 > 陆军论坛 > 装甲的发展装甲的发展装甲——坦克的[护身符]坦克装甲,历来是“机密中的机密”。
大名鼎鼎的“豹”2坦克和M1坦克,列装至今已有整整四分之一世纪。
但是,德国和美国的军方仍然对其装甲技术守口如瓶,人们对这两种坦克的装甲材料、组成、工艺和装甲厚度等仍然所知寥寥,但是,对于坦克装甲的发展脉络和抗弹的基本原理,人们已经有了大体上的了解。
从1915年坦克诞生至今,坦克装甲的发展也经历了90个春秋。
从世界上第一辆坦克的10毫米厚的锅炉钢装甲,到今天装甲等效厚度已经相当于1000毫米轧制均质钢装甲,整整提高了100倍!科技进步在坦克装甲方面有令人惊异的体现。
让我们共同来揭开坦克装甲神秘面纱的一角吧!从锅炉钢装甲谈起1915年8月,世界上的第一辆坦克——“小游民”在英国诞生。
当时,在一种履带式拖拉机的基础上,加长了车体及履带,上部的角钢架上铆上6~10毫米厚的锅炉钢板,便制成了“小游民”坦克。
稍后制成的I型坦克(“母亲”号)也只有6~12毫米厚的锅炉钢装甲。
到了1918年法国的“雷诺”FT-l7轻型坦克出现时,它的最大装甲厚度已经增大到22毫米。
从坦克诞生直到20世纪二三十年代,是坦克发展的轻型坦克时代。
坦克的装甲厚度多在10~25毫米之间,装甲材料几乎是清一色的民用低碳钢钢板。
从甲—弹争斗的角度看,坦克的“天敌”——反坦克武器在这一时期仅有初步的发展,无论数量还是威力,都不足以对坦克构成严重的威胁这样一来,各国军方发展适于机动作战而又价廉的轻型坦克,采用现成的民用材料钢装甲,便是顺理成章的事了。
到了30年代末期,反坦克武器有了长足发展,出现了口径20毫米乃至37毫米的反坦克炮。
在1936~1939年的西班牙内战中,破甲弹用于实战。
这一切使得硬度和强度均不足的低碳钢钢装甲,已不足以抵挡反坦克武器的攻击。
装甲防护陶瓷材料的研究与应用*张文毓(中国船舶重工集团公司第七二五研究所河南洛阳471023)摘要近10年来,陶瓷材料在防护装甲上的应用逐渐增多,已经成为装甲防护材料的主要选择㊂材料体系从最初的氧化铝㊁碳化硅㊁碳化硼陶瓷向多元化㊁复合化发展,具有高硬度和高韧性的新型材料不断涌现,以应对更高级别的威胁㊂笔者对装甲防护陶瓷材料进行了概述,并对其研究现状㊁应用进展和发展趋势进行了综述㊂关键词装甲防护陶瓷抗弹性能应用中图分类号:T Q174.75+8文献标识码:B文章编号:1002-2872(2020)08-0016-05为适应现代高科技战争㊂作为提高舰船生存能力的一项重要的被动防护技术 装甲防护日益受到重视㊂二战前后,舰船装甲防护主要以均质金属装甲为主,但随着武器装备的发展,特别是聚能破甲反舰导弹的发展,目前已可穿透厚1000mm以上的均质钢装甲,对舰攻击时一般都能穿透舰体,并形成直径10m左右的爆炸破口㊂因此,传统的钢装甲已经不能满足现代战争的要求,必须研制出密度小㊁防护能力高的新型轻质防弹装甲㊂自20世纪70年代以来,随着材料技术的发展,由单一依靠均质钢装甲逐步向设计复合装甲结构发展方向已成为舰船装甲防护技术的主流㊂目前轻型防护装甲的设计是提高其防护能力和尽量减轻自重,以提高其机动能力㊂陶瓷材料因其密度小,且具有比装甲钢更高的硬度㊁抗压强度㊁耐热性㊁动态应力性能,而被广泛应用于轻型复合装甲的设计中㊂故轻型复合装甲为多层结构,以陶瓷板为主体,配合其他复合材料㊂突破传统重型复合装甲结构设计,以高硬度陶瓷面板取代装甲钢面板,充分发挥陶瓷的高硬度和高抗压强度,可提高陶瓷复合装甲的抗弹性能[1]㊂1概述为了应对当代高科技战争,世界各国对防弹装甲技术越来越重视,对装甲材料的性能提出了越来越高的要求㊂装甲的防护性能主要是通过抗侵彻能力㊁抗冲击能力㊁抗崩落能力和自重等方面来予以评价,因此装甲材料应尽可能地满足高硬度㊁高强度㊁高韧性以及低密度,即 三高一低 的要求㊂装甲防护材料主要用于装甲车辆㊁坦克㊁航母㊁舰艇㊁直升机等装备,它们能承受反装甲武器的攻击,可提高武器装备和作战人员的生存能力和作战能力㊂纵观古今中外,用做装甲的材料大体有4类,即:金属㊁陶瓷㊁凯芙拉(K e v l a r)和玻璃钢㊂金属材料具有高硬度和韧性,但是硬度较陶瓷材料低,特别是密度大,不能满足单兵和装备高灵活性的要求,成为逐步被其他材料所替换的主要原因㊂凯芙拉和陶瓷材料与金属材料相比具有密度低㊁耐高温等诸多优点,满足了坦克及其它军用装甲车辆轻量化㊁高防护性及高机动性的需求,在武器装备上的应用日益广泛[2]㊂目前,国外已经在舰船上应用了大量的陶瓷装甲㊂美国在舰船的天线㊁炮台上都已使用了陶瓷复合装甲,并预计其在研的A A A V级两栖攻击舰艇也将会使用陶瓷复合装甲;此外,资料显示,国外的水陆两栖战车㊁海军登陆艇等都不同程度地利用陶瓷基复合装甲的优秀抗弹性能提高其抵御来自岸防武器威胁的能力㊂据悉,美国在研制作战机动灵活的小型巡逻艇㊁微型潜艇等新式轻型舰船,在其结构设计中,陶瓷装甲作为防御系统的主体得到了充分的肯定㊂2研究现状陶瓷材料拥有许多极具吸引力的性能,包括高比刚度㊁高比强度和在许多环境下的化学惰性㊂同时,因其相对于金属的低密度㊁高硬度和高抗压强度,使其在*作者简介:张文毓(1968-),本科,高级工程师;主要从事情报研究工作㊂装甲系统上的应用十分具有吸引力,己成为一种广泛应用于防弹衣㊁车辆和飞机等装备的防护装甲㊂在20世纪60年代,B 4C 最先用于设计防弹背心,之后装配到飞机飞行员的座椅上㊂之后,又将陶瓷面板与复合材料背板共同构成防弹陶瓷复合装甲,且于20世纪70年代后被美国等西方军事强国应用于运兵车㊁坦克及军机等㊂陶瓷装甲主要应用于装甲车辆,在实际应用中常以复合装甲的形式出现,如英国 挑战者 坦克㊁E E -T 1奥索里约主战坦克等㊂陶瓷作为装甲防护材料的主要优势是强度和硬度高㊁耐磨㊁密度小等,而易破碎㊁抗多发打击性能弱的劣势则在一定程度上限制了其应用㊂目前,防弹陶瓷主要朝着提高抗多发打击性能㊁减轻质量及降低成本这3个方面进行㊂国内外现阶段主要使用的特种防弹陶瓷有B 4C ㊁A l 2O 3㊁S i C ㊁T i B 2㊁A l N ㊁S i 3N 4㊁S i -a l o n 等[3]㊂用于装甲防护的单相陶瓷主要包括氧化铝㊁碳化硼和碳化硅㊂表1为3种陶瓷的特征性能㊂尽管单相陶瓷具备一定的防弹能力,但共性问题是断裂韧性低㊁脆性大,因此,防弹陶瓷的强韧化一直是研究的热点方向㊂强韧方法主要包括多元陶瓷体系复合㊁功能梯度陶瓷㊁层状结构设计等㊂M e d v e d o v s k i 对S i C -A l 2O 3㊁S i C-S i 3N 4-A l 2O 3㊁S i C-S i -A l 2O 3和S i C -S i 3N 4-S i -A l 2O 3这些碳化硅基的复合材料进行了研究㊂复合装甲包括2层含义:一是装甲用复合材料制成,二是装甲采用了复合结构㊂任何复合装甲的研究都是为了优化复合材料和复合结构㊂当前,陶瓷复合装甲早已不限于2种复合材料和较为单一的复合结构㊂在实验领域,已经出现了陶瓷㊁金属㊁纤维㊁硅硫等复数复合,且结构方面也出现了复数层数㊂通过对陶瓷复合装甲的种类和现今应用情况的分析,不难发现,陶瓷+复合金属采用功能梯度复合形式的复合材料是较为理想的应用形式㊂主要研究的方向在于具体组分设计㊁微观修饰㊁制备工艺的改进以及对成本的控制[4]㊂表1 典型防弹陶瓷的性能陶瓷密度(g ㊃c m -3)弹性模量(G P a)努氏硬度断裂韧性(M P a㊃m 1/2)价格(元㊃k g -1)A l 2O 33.60~3.9034018002.8~4.570~80B 4C 2.5040029002.8~4.3700~800S i C3.12~3.28408~45125004.0~6.4350~4002.1 氧化铝(A l 2O 3)陶瓷氧化铝陶瓷具有高硬度㊁高耐磨㊁低摩擦系数等优点,通常以单晶体和多晶体的形式,用于要求耐热和耐磨的各种应用中㊂在一些特殊应用中采用晶须增韧和相变增韧陶瓷,例如,耐火材料㊁火花塞绝缘体㊁装甲和轴承等㊂不过,陶瓷也拥有太脆韧性不够等缺点㊂氧化铝陶瓷基本上不存在塑性变形,低韧性会导致其很容易受到热和机械冲击载荷而发生破坏㊂氧化铝陶瓷应用于装甲设计有很多优点,价格便宜而且成形工艺多种多样㊂2.2 碳化硼(B 4C )陶瓷碳化硼(B 4C )陶瓷是一种密度低㊁高耐磨㊁高强度极硬的陶瓷㊂碳化硼陶瓷广泛应用于坦克车的装甲㊁防弹衣㊁喷砂嘴㊁特殊密封环以及其他很多工业用品中㊂碳化硼陶瓷是一种重要的工程陶瓷材料,具有低密度(2.52g /c m 3)㊁高熔点(2450ħ)㊁高硬度㊁高弹性模量㊁化学稳定性好以及高中子俘获率等特点,因此B 4C 及其复合材料被广泛地应用于工程领域,尤其是用作新型装甲陶瓷㊂早在20世纪60年代,美国就推出了以B 4C 为芯部的防弹复合装甲,黑鹰武装直升机的机身腹部和乘员座椅也采用由B 4C 和K e v l a r 纤维组成的复合装甲㊂但是,碳化硼是强共价键化合物(共价键比例达到93%以上),塑性差,晶界移动阻力大,并且在碳化硼粉体颗粒表面常常有一层B 2O 3薄膜,阻碍了烧结过程中的物质扩散,因此B 4C 是一种极难烧结的陶瓷材料,这极大地限制了B 4C 陶瓷的应用[5]㊂2.3 碳化硅陶瓷S i C 陶瓷由于具有高温强度大㊁抗氧化性强㊁耐磨损性好㊁热稳定性佳㊁热膨胀系数小㊁热导率大㊁硬度高以及抗热震和耐化学腐蚀等优良特性,因此是当前最有前途的结构陶瓷之一,并且已在许多高技术领域(如空间技术㊁核物理等)及基础产业(如石油化工㊁机械㊁车辆㊁造船等)得到应用,如用作精密轴承㊁密封件㊁气轮机转子㊁喷嘴㊁热交换器部件及原子核反应堆材料等㊂将S i C陶瓷用作装甲材料是近年来国内外研究的热点㊂作为装甲材料,对陶瓷的抗弯强度和硬度则有更高的要求[6]㊂2.4硼化钛(T i B2)陶瓷硼化钛陶瓷(T i B2)是一种具有高强度㊁高硬度和高耐磨性的非氧化物陶瓷㊂目前,主要应用于防弹衣㊁装甲和切割材料等㊂热压㊁热等静压(H I P)㊁无压烧结和微波烧结等工艺都可以用于生产完全致密的硼化钛陶瓷㊂2.5纤维增韧陶瓷复合材料战争中人员和装备的快速安全移动对轻质结构防护材料提出了持续需求,纤维复合陶瓷材料则是提供能量吸收和质量减轻的最佳组合方式㊂用于增韧陶瓷的纤维主要包括玻璃纤维和碳纤维㊂如轻型车辆吉普的面板通常都是基于S-2玻璃纤维(65%的S i O2, 25%的A l2O3和10%的M g O),这会比传统的低碱铝硼硅酸盐E玻璃纤维(名义组成是54%的S i O2,14%的A l2O3,22%的C a O+M g O和10%的B2O3)有更高的断裂应变和弹性模量㊂由陶瓷/凯芙拉材料组成的复合装甲自从问世以来,由于其特有的物理性能和良好的防弹㊁防辐射能力,在武器装备㊁航空航天等领域的应用逐渐广泛㊂美国㊁俄罗斯㊁日本㊁欧共体等己经把该复合装甲成功地应用在多种武器装备上,显著地提高了综合防护能力㊂但鉴于技术保密,有关该材料的加工方法㊁加工技术很少有文章发表㊂2.6透明陶瓷随着材料制备技术的发展,更高性能的新材料不断被开发和研究㊂现代化战争对装甲系统的要求越来越高,不仅要求能够实现全方位的防护,还要求不能妨碍士兵们的行动能力,变 被动 为 主动 ,发展能预先识别目标,并利用诱饵触发和物理摧毁方式破坏来袭武器的 主动装甲 ,成为作战中的一大优势㊂以氮氧化铝(A l O N)和镁铝尖晶石(M g A l2O4)为代表的透明陶瓷已应用于装甲防护领域,既能保护人体又能随时观察敌情㊂透明陶瓷因高强度和硬度,已成为可替代防弹玻璃的具有发展潜力的防护材料,如面罩㊁导弹探测窗口㊁地面作战车辆保护窗㊁飞机的挡风玻璃和降落窗等,主要有单晶氧化铝(蓝宝石)㊁氮氧化铝和镁铝尖晶石㊂当前,陶瓷装甲材料研究的重点是提高其韧性并降低生产成本㊂美国采用微波烧结技术提高生产效率,大幅降低了生产成本,并实现了碳化硅和硼化钛陶瓷材料的规模化生产㊂为提高抗弹性能,美国计划发展全致密碳化硅㊁氧化铝㊁硼化钛和碳化硼等单质陶瓷材料㊁陶瓷基复合材料及透明陶瓷材料[7]㊂陶瓷材料凭借其优异特性,已经成为了当前国内外装甲防护领域的研究热点与发展重点㊂由于军事工程应用的需要,如何提高陶瓷材料的力学性能,深入探究装甲防护陶瓷材料的动态力学特性以及陶瓷复合装甲的抗弹机理,成为了当前装甲防护的重点研究课题㊂3应用进展目前,世界各国对于装甲防护技术研究可以分为材料改进与结构设计2个方向㊂在军用装甲上应用较为广泛的防护材料主要有金属材料㊁陶瓷材料㊁复合材料等,功能结构设计上有蜂窝结构㊁金属封装结构等特殊结构㊂对装甲材料要求的防弹性能包括抗侵彻㊁抗冲击和抗崩落能力㊂陶瓷材料作为一种先进的高技术材料,具有高强度㊁高硬度㊁耐腐蚀㊁高耐磨性和质量轻的特点,它不仅可用在坦克的防护上,而且也可用在飞机㊁舰船㊁车辆㊁关键部位的防弹遮蔽层和单兵作战的防护上,其应用范围越来越广泛㊂实践表明,世界上许多先进坦克采用高性能的陶瓷防护装甲后,防护能力都得到了明显提高㊂为了提高防弹能力,一般采用陶瓷复合装甲㊂舰船用陶瓷复合装甲除了要求有良好的防弹性能外,还需要质量轻,所以对装甲的要求是密度尽可能小㊂因此,在装甲的设计中必须充分考虑复合装甲中各个组成部分的密度,通过优化结构,在最小面密度下实现最大防护效果[8]㊂3.1防弹陶瓷陶瓷是一种脆性材料,在受到冲击时容易破碎,通常不单独做成防护装甲,而是与金属和其它纤维材料一起做成复合装甲;复合装甲中使用的陶瓷通常被改成陶瓷块,使得当某块陶瓷被弹体击碎时,其它陶瓷块还仍然有效㊂陶瓷材料主要应用于以对付中㊁大口径长杆穿甲弹为首要目标的装甲系统,这些弹药主要采用烧蚀破坏机理,另外也应用于防弹背心,陶瓷与复合背面材料结合使用提供要求的防护能力㊂工程应用中,陶瓷复合装甲广泛用在坦克㊁装甲车等装备的防护装甲上㊂但陶瓷材料塑性差㊁断裂强度低㊁易产生脆性断裂,且不能二次防弹,此外,其成形尺寸较小㊁生产效率低,且因其具有极高的硬度和脆性,二次成形加工十分困难,特别是成形孔的加工尤其困难,因而制备成本高,使用局限性较大㊂目前,用于防弹的三大陶瓷材料是氧化铝(A l2O3)㊁碳化硅(S i C)和碳化硼(B4C)㊂氧化铝因其成本低而在防弹上得到更广泛的应用,但其防弹等级最低㊁密度也最大;碳化硼防弹性能最好㊁密度最小,但其价格最为昂贵,20世纪60年代就最先用来作为设计防弹背心的材料;碳化硅陶瓷材料在成本㊁防弹性能和密度指标方面均介于二者之间㊂因而最有可能成为氧化铝防弹陶瓷的升级换代产品[9]㊂3.2陶瓷复合装甲的应用现状陶瓷面板+金属背板复合装甲作为结构最简单㊁成本相对低廉的复合装甲,被研究最多,多被制造为轻型复合装甲㊂面板通常采用A l2O3㊁S i C㊁B4C陶瓷等,背板一般采用芳纶㊁高强度聚乙烯等,粘接一般用橡胶㊁环氧树脂等㊂是制作单兵装甲㊁防弹衣㊁小型关键部位防护装甲的首选㊂碳化硅基陶瓷复合装甲受限于其高昂的价格,多被应用于特种作战领域,例如特种兵防弹衣㊁军用特种车辆装甲㊁武装直升机装甲㊂它也被看做是最有应用前途的陶瓷复合装甲之一,只要能够降低其制造成本并解决其韧性稍差的问题,将会被大量应用于主战坦克㊁轻型装甲车辆等领域㊂目前最普遍的陶瓷复合装甲是氧化铝基陶瓷复合装甲,它有着较好韧性㊁抗热冲击性,价格低廉,生产技术简易㊂被广泛应用于民㊁警单兵防护和民㊁警用押运车及对装甲强度要求较低的领域㊂目前圣戈班陶瓷公司可提供满足复合装甲系统性能要求的陶瓷材料㊂基于40多年来在复合装甲系统的经验,该公司可提供最终产品㊁半成品㊁机加毛坯㊁压制近净形毛坯㊁大体积压制净形部件和复杂机加部件产品㊂生产的陶瓷材料包括:轻型高硬度㊁高压缩强度H e x o l o y 烧结碳化硅(S S i C),具有最佳强度和抗氧化性C R Y S T A R 反应烧结碳化硅(S i S i C),高模量高声速S i l i t S K D反应烧结碳化硅(S i S i C),低密度高硬度N o r b i d e 热压碳化硼(B4C),最高硬度最高刚度的T196/T198氧化铝(A l2O3),高硬度氧化物复合陶瓷T Z3(A l u m i n aZ i r c o n i a)和用于红外窗口的极硬长寿命抗刮伤S a p h i k o n 蓝宝石材料等[10]㊂3.3陶瓷一金属功能梯度复合材料在装甲防护中的应用现在一般应用的陶瓷一金属复合材料,尽管具有很多优点,但当内部应力增大时,会导致材料的破坏;若采用陶瓷一金属功能梯度复合材料,将会改变这种状况㊂这是因为,陶瓷一金属功能梯度复合材料是一种采用多元化技术制造的新型非均匀复合材料,在这种材料中,一面是陶瓷,一面是金属,中间是从陶瓷到金属逐渐变化的板材,可以兼具陶瓷材料和金属材料的双重特点,即可以具有陶瓷的硬度和耐腐蚀㊁耐高温的特性,同时还具有金属的强度和韧性㊂并且在这种材料中,由于各组分材料的体积含量在空间位置上是连续变化的,而其物理性能没有突变,因而可较好地避免诸如在纤维增强复合材料中经常出现的层间应力问题,并降低应力集中现象[11]㊂为克服目前陶瓷复合装甲材料的结构缺陷,美国材料科学家于1999年提出 陶瓷/金属功能梯度装甲材料(F G A C) 的新概念,即利用陶瓷/金属功能梯度材料层间界面上非突变声阻特性及梯度层间冶金结合所具有的良好横向剪切强度,不仅能有效缓解材料的动态损伤,提升材料反侵彻效能,同时又可以促进陶瓷复合装甲材料轻质化发展,所以陶瓷/金属功能梯度装甲材料得到了材料界(尤其是兵器材料科学界)的高度重视与深入研究,成为今后陶瓷复合装甲材料的发展趋势之一[12]㊂目前国外科研人员研究的防弹用陶瓷-金属功能梯度复合材料主要有T i-T i B2体系以及A l2O3/A l㊁S i C/A l㊁B4C/A l㊁S i3N4/A l等复合体系㊂国外研究人员分别从功能梯度材料的制备㊁材料的动态力学性能㊁应力波在功能梯度材料内的传播以及裂纹的扩展等方面展开研究㊂近年来我国许多高校和研究所也相继开展了对功能梯度复合装甲的研究,国内的主要研究单位有北京理工大学㊁西北工业大学㊁沈阳金属所等㊂目前研究的防弹用功能梯度复合材料体系主要有A l2O3/A l㊁S i C/ A l㊁B4C/A l㊁S i3N4/A l等复合体系㊂国内研究人员分别从功能梯度材料的制备㊁材料的动态力学性能与组份分布规律的关系㊁材料的抗弹性能等方面展开研究,并取得了一定的进展[13]㊂4发展趋势目前,装甲陶瓷材料研究的重点是解决其韧性差及成本高的问题㊂美国在降低陶瓷成本方面取得了较大进展,如采用微波烧结技术极大地提高了生产效率,大幅降低了材料成本,并实现了S i C和T i B2陶瓷材料的规模化生产㊂提高装甲陶瓷材料性能方面主要途径有:1)用连续碳纤维增韧补强的S i3N4比纯S i3N4的断裂韧性提高4倍,S i C纤维/S i C可比纯S i C的应变量增大9倍㊂对于S i C w/A l2O3复合材料,当晶须的体积分数为20%以下时,其断裂韧性与晶须含量呈较好的线性关系㊂金属与陶瓷复合可明显提高装甲材料的韧性,如用S i C或B4C颗粒增强铝㊂美国D OW化工公司采用快速全面压实工艺制造了B4C/A l复合装甲,其抗弹极限可达热压B4C的80%~90%,而韧性比单一的B4C好得多㊂另外,塑料陶瓷是一个新的研究领域,它系由陶瓷颗粒为主体(约占总质量的85%),以高聚物做胶粘剂混合而成,它只须采用一般聚合物成形加工技术㊂在等质量基础上比较,这种塑料陶瓷比纯陶瓷具有更好的抗弹性能,且可承受多发弹丸侵彻㊂2)梯度功能材料(F GM)是通过精心设计和采用特殊的工艺,使陶瓷与金属的复合物组分㊁结构能连续地变化,由陶瓷侧过渡到金属侧形成了一种物性参数也连续变化的复合材料㊂F GM的制备可采用化学气相沉积法(C D V)㊁物理蒸镀法(P V D)㊁薄膜叠层法㊁等离子喷涂法㊁自蔓延高温合成法(S H S)及颗粒梯度排列法等,其中以薄膜叠层法效果较好㊂已制成的F GM有S i C-C㊁T i C-T i㊁S i C-A l㊁B e4B-B e㊁T i C-N i等,当以B e4B-B e制作装甲板时,从外表面到中心部位只含B e4B,然后以弥散方式加入B e,到背面为B e4B-10v o l%B e㊂这比陶瓷面板和金属背板组合的复合装甲抗弹性能要好得多㊂3)陶瓷材料的脆裂与其结构敏感性密切相关,其断裂往往始于表面或近表面处的缺陷㊂因此,必须尽可能消除其表面缺陷㊂诸如采用机械化学抛光㊁表面微氧化㊁气相沉积和激光表面处理等,都可改善表面状态,提高陶瓷的韧性㊂20世纪80年代以来,人们采用离子注入法对A l2O3㊁S i C㊁S i3N4㊁Z r O2陶瓷材料的性能进行了研究㊂在A l2O3表面注入N i㊁C r㊁T i㊁Z r㊁Y 等离子可提高其表面硬度约50%,离子注入法也可使S i C和S i3N4的弯曲强度提高20%~30%[14]㊂5结语不同的装甲材料对反装甲武器的攻击有着不同的反应,单一均质材料构成的装甲通常只能防护特定的反装甲武器㊂为了能够应对越来越复杂的实际需求,同时防护多种反装甲武器,复合装甲的研究已成为必然趋势㊂陶瓷复合装甲作为其中的佼佼者,将朝着更高强度㊁更高韧性㊁更低廉的价格㊁更简易的制备工艺等方向发展㊂随着陶瓷复合装甲研究的进展,能让我国陶瓷复合装甲技术水平得到飞跃性的提高,对我国国防领域技术会产生积极影响㊂参考文献[1]胡丽萍,王智慧,侯圣英,等.大倾角陶瓷复合装甲抗弹性能研究[J].兵工自动化,2010,29(2):12-13.[2]郭丽.高性能轻质装甲材料加工技术的研究:[硕士学位论文][D].南京理工大学,2006.[3]吴燕平,燕青芝.防弹装甲中的陶瓷材料[J].兵器材料科学与工程,20174(4):135-140.[4]陈刚.陶瓷复合装甲材料的应用研究[J].中国战略新兴产业,2019(4):35.[5]孙川,万春磊,潘伟,等.反应烧结B4C/A l2O3复合陶瓷的装甲防护性能研究[C].无机材料学报,2018,33(5):545-549.[6]曹连忠,刘国玺,燕东明,等.高防护系数S i C陶瓷制备技术研究[J].兵器材料科学与工程,2008,31(5):43-46.[7]房凌晖,郑翔玉,马丽,等.坦克装甲车辆装甲防护发展研究[C].四川兵工学报,2014,35(2):23-26.[8]谢述锋.舰船用轻型陶瓷基复合装甲的抗弹性能研究[J].舰船科学技术,2007,29(3):110-113.[9]高原,姚凯.军用车辆装甲防护材料与技术发展的研究[J].机电产品开发与创新,2015,28(2):10-13.[10]梓文.用于复合装甲防护系统的陶瓷[J].兵器材料科学与工程,2016,39(1):88.[11]焦丽娟,李军.陶瓷一金属功能梯度复合材料在装甲防护中的应用[C].四川兵工学报,2006(3):22-23.[12]李维锴,韩保红,赵忠民.装甲防护陶瓷材料的研究进展[J].特种铸造及有色合金,2018,38(3):259-262.[13]王信涛.陶瓷增强金属功能梯度装甲抗侵彻性能数值模拟:[硕士学位论文][D].哈尔滨工程大学,2013.[14]刘薇,杨军.装甲防护材料的研究现状及发展趋势[J].热加工工艺,2011,40(2):108-111.。
坦克装甲车辆设计与制造标准体系研究白景卉中国兵器工业第五五研究所摘 要:在建立坦克装甲车辆数字化设计与制造集成平台体系结构的基础上,参照国内外相关技术标准,构建了标准体系框架,并设计、开发了坦克装甲车辆设计与制造标准管理系统软件。
坦克装甲车辆数字化设计与制造标准体系的研究,对推进坦克装甲车辆数字化设计与制造集成技术的深入研究与应用具有重要意义。
关键词:坦克装甲车辆;设计与制造;标准化;标准体系随着坦克装甲车辆研制过程中要求的不断增加,其研制手段也不断的改善。
但严重的信息孤岛问题,影响和制约了坦克装甲车辆设计、管理、试验、制造综合效能的发挥。
为了解决这些问题,急需突破影响集成的关键技术和共性技术,建立跨行业、跨学科、跨地区的信息资源共享的协同研制生产平台,有效整合设计与制造资源,解决制约坦克装甲车辆行业从传统的设计制造方式向数字化设计制造方式转变的瓶颈,提高坦克装甲车辆整体研制能力。
标准规范体系作为坦克装甲车辆设计与制造集成技术研究的关键技术之一,为了规范和指导坦克装甲车辆数字化设计与制造集成平台的设计和实施,提供相关标准制定方法和指南。
通过对所搜集的国内外工业自动化系统与集成相关标准与规范进行整理、分析与研究,建立坦克装甲车辆设计与制造集成标准体系,提出适合坦克装甲车辆设计与制造所需要的标准建议,具有重要的意义。
1 坦克装甲车辆数字化设计与制造集成体系结构坦克装甲车辆在研制、论证、设计及生产制造整个过程中,涉及的技术范围广,研制单位分散,采用的新技术、新结构、新材料多,设计质量要求高,周期短、成本控制严格等,原有的研制体系已经不能满足现在研制的需求。
结合坦克装甲车辆研制的特点,建立合理的体系结构是集成应用平台实现和推广的基础。
坦克装甲车辆的设计与制造集成平台,主要是以整车全过程数字化协同设计为主要特征,以数字化设计制造一体化为主线,以数字化标准规范和支撑数字库建设为基础,以具体的型号项目为应用对象。