固体发酵种类及固体发酵反应器
- 格式:ppt
- 大小:6.12 MB
- 文档页数:80
生物工程设备思考题名词:对数残留定律:在灭菌过程中,活菌数逐渐减少,其减少量随着活菌数的减少而递减,即微生物的死亡速率与任一瞬时残留的活菌数成正比。
纳滤:(NF)是介于反渗透与超滤之间的一种压力驱动型膜分离技术,是一个能从溶液中分离出相对分子质量为300-10000的物质的膜分离过程。
错流过滤:在泵的推动下料液平行于膜平面流动,与死端过滤不同的是料液流经膜面时产生的剪切力把膜面上滞留的颗粒带走,从而使污染层保持在一个较薄的水平双水相萃取:双水相系统形成的两相均是水溶液,它特别适用于生物大分子和细胞粒子,不同的高分子溶液相互混合可产生两相或多相系统,如葡聚糖和聚乙二醇,按一定的比列与水混合,溶液混浊,静置平衡后,分成互不相溶的两相,上相富含PEG,下相含葡聚糖。
超临界萃取:利用超临界流体,即其温度和压力略超过或靠近临界温度和临界压力,介于气体和液体之间的流体为萃取剂,从固体或液体中萃取出来某种高沸点或热敏性成分,以达到分离和提纯的目的。
动物细胞培养生物反应器:是一类模拟培养物在生物体内的生长环境,具有较低的剪切效应,较好的传递效果和力学性质的设备。
中空纤维细胞培养法:细胞能在中空纤维上不断地从流动的培养液中获得营养物质,细胞代谢产物和培养物又可随培养液的流动而流走。
微囊化培养技术:是用固定化技术将细胞包裹在微囊里,在培养液中悬浮培养。
酶反应器:以酶为催化剂进行生物反应所需的设备。
1.粉碎的粒径范围如何划分?原粒径成品粒径粗碎 40-1500mm 5-50mm中细碎 5-50mm 0.5-5mm微粉碎 5-10mm <100um超微粉碎 0.5-5mm <25um2.机械粉碎的5种形式(5种粉碎力)挤压粉碎、冲击粉碎、磨碎、劈碎和剪碎。
3.影响灭菌的因素是什么?微生物的热阻和相对热阻;培养基成分与其物理状态、其氢离子浓度;其微生物数量;微生物细胞含水量;微生物细胞菌龄;微生物的耐热性;空气排出情况;搅拌;泡沫。
固体发酵法简介固体发酵法是一种利用微生物在固体基质中生长代谢产生有用产物的生物技术方法。
通过在适宜的温度、湿度和通气条件下,将有机物质与微生物接种于固体基质中,经过一定时间的发酵,可获得所需的发酵产物。
这种方法广泛应用于食品加工、农业废弃物处理和生物能源生产等领域。
发酵原理固体发酵的原理是将含有碳源和生长因子的固体基质与微生物接种物混合,通过微生物的代谢作用,利用基质中的有机物质进行生长、产生酶和代谢产物。
微生物在发酵过程中,通过分泌的酶降解基质中的碳水化合物、蛋白质和脂肪等,转化为能量、有机酸、酶和其他有用产物。
这种方法与液体发酵相比,具有较高的微生物密度和产物浓度。
固体发酵的主要过程包括微生物的生长、代谢产物的生成和基质的转化。
微生物的生长需要适宜的温度、湿度和通气条件。
基质中的有机物质被微生物降解和转化,产生的代谢产物可以直接从基质中收集和提取。
发酵基质固体发酵法中常用的发酵基质包括谷物、豆类、木屑和废弃农作物等。
这些基质具有较高的碳源含量和适宜的结构特性,可以提供微生物生长所需的营养和支持。
不同的基质适合不同类型的微生物和发酵产物的生产。
谷物基质谷物基质如玉米、小麦和大豆等,含有较高的碳水化合物、蛋白质和维生素等营养物质。
这些谷物基质在发酵过程中可以被微生物降解,产生乳酸、酒精和酶等有用产物。
谷物基质的结构较为均匀,易于控制发酵过程中的温度和湿度。
豆类基质豆类基质如豆饼、大豆渣等,含有丰富的蛋白质、纤维素和抗氧化物质。
这些基质在发酵过程中可以被微生物降解,产生氨基酸、酶和其他发酵产物。
豆类基质的结构较为复杂,需要在发酵过程中加入适量的水分和调节pH值。
木屑基质木屑基质如锯末、稻壳等,含有丰富的纤维素和木质素。
这些基质在发酵过程中可以被微生物降解,产生纤维素酶、木质素降解酶和其他有机酸。
木屑基质的结构较为松散,需要较高的通气条件和适量的水分来保证微生物的生长活性。
废弃农作物基质废弃农作物基质如秸秆、麸皮等,含有丰富的纤维素和半纤维素。
固体发酵半固体发酵固体发酵和半固体发酵是不同类型的微生物发酵工艺。
这两种发酵工艺在微生物培养、食品加工和生物质转化等领域都有广泛的应用。
本文将介绍固体发酵和半固体发酵的定义、优缺点、应用及发展趋势。
一、固体发酵固体发酵是指在固态基质中进行的微生物发酵过程。
基质可以是各种废弃物、植物原料和食品添加剂等,如豆腐渣、糠秕、木屑、稻壳、玉米芯等。
这些基质有时被称为“营养基底”或“基质源”。
固体发酵是自然界中常见的一种微生物生长方式,如土壤中的细菌和发酵过的食物。
它在厌氧条件下进行,微生物通过分解有机物质产生能量和新生物质。
固体发酵通常需要更长的反应时间和更高的温度,因此需要更多的手动控制。
固体发酵的优点:1. 便于操作:固定的基质可以使固体发酵更易于操作,减少剪切应力和机械性损伤对微生物的影响。
2. 生产的微生物和产品可以集中在基质中,便于提取和干燥。
3. 可以减少废物和环境污染。
4. 可以用废料和农业副产品为基质,降低成本。
固体发酵的缺点:1. 基质中水分含量的变化可能会影响微生物酵素活性和生长速度。
同时,基质不易搅拌,不便于控制反应环境。
因此,固体发酵需要更多的手动操作和更长的生长时间。
2. 固体发酵不能适用于所有菌株。
例如,对于革兰氏阳性菌,其膜结构可使得其在固态基质上无法自由运动,这就限制了它们在这种条件下的繁殖。
3. 固体发酵中的基质和生长因素的差异,可导致在不同部位形成不均一的菌落结构,限制了生产的增长效率。
固体发酵的应用:1. 食品工业:如豆腐、泡菜、酸奶等。
2. 医药工业:如抗生素、酶和生物活性物质的生产。
3. 饲料工业:如菌草和菌球生产。
4. 建筑材料:如真菌建材等二、半固态发酵:半固体发酵是指在含水性基质中进行的微生物发酵过程。
基质通常是含有高浓度碳水化合物和少量微量元素的产物,如水稻秸秆、玉米秸秆、麸皮、木屑等。
微生物通过分解有机物质和吸收水分和养分来生长和分裂。
半固体发酵常常被用在微生物培养和食品加工领域,其生产流程一般为“种苗培养—发酵—固液分离—后处理”。
以农业废弃物和农产品加工废水及废渣等各种有机物为原料,在厌氧条件下利用微生物的话动,生产沼气并使有机物得到处理的过程称为沼气发酵工艺。
由于发酵原料和发酵条件的不同,所采用的发酵工艺也多种多样,目前应用或研究较多的工艺类型有塞流式反应器、完全混合厌氧消化工艺、上流式厌氧污泥床反应器、升流式固体反应器等。
1.塞流式反应器(Plug Flow Reactor,简称PFR)塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。
高浓度悬浮固体发酵原料从一端进入,从另一端排出,它是一种结构简单、应用广泛的工艺类型。
该反应器没有搅拌装置,原料在反应器内呈自然沉淀状态,一般分为四层,从上到下依次为浮渣层、上清掖、活性层和沉渣层,其中厌氧微生物活动较为旺盛的场所只局限于活性层内,因而效率较低,多于常温条件下运转。
我国农村应用最多的水压式沼气池和印度的哥巴式沼气池均属PFR。
近年来经过研究和改进,一些新的农村家用沼气池得到应用,如曲流布料池,集气罩式池、塞流式池,北京-Ⅰ型池等。
这些沼气池的性能有所提高,产气率都达到0.5 m3/(m3·d)以上。
2.完全混合厌氧消化工艺(continual stir Tank Reactor,简称CSTR)完全混合厌氧消化工艺即工艺是世界上使用最多、适用范围最广的一种反应器。
CSTR反应器内设有搅拌装置,使发酵原料与微生物处于完全混合状态,使活性区遍布整个反应器,其效率比常规反应器有明显提高。
该反应器常采用恒温连续投料或半连续投料运转。
CSTR反应器应用于含有大量悬浮固体的有机废物和废水,如酒精费醪、禽畜粪便等。
在CSTR反应器内,进入的原料由于搅拌作用很快与反应器内发酵液混合,其排出的料液又与发酵液的浓度相等,并且在出料时发酵微生物也一起排出,所以出料浓度一般较高,停留时间要求较长,一般需15天或更长一些时间。
CSTR反应器一般负荷,中温为3-4 kg COD/(m3·d),高温为5-6 kg COD/(m3·d)。
第一章微生物的现代发酵技术1.1固态发酵按照培养基物理性状的不同,分为固体发酵和液体发酵1)固态发酵是以气相为连续相的生物反应过程2)液态发酵是以液相为连续相的生物反应过程固体发酵:微生物在固态培养基上生长和代谢的一种发酵方式。
是指没有或几乎没有自由水存在,在有一定湿度的水不溶性固态基质中,用一种或多种微生物进行的一个生物反应过程。
固态发酵(曲法培养):分为浅盘固体培养和深层固体培养此法最大的特点是:酶活力高1.1.1固态发酵的特点1)热量传递困难2)存在明显的营养梯度3)并无大量有机废水产生4)氧气、二氧化碳扩散比较容易1.1.2固体培养的优点1)原料多是谷物和农业废物,来源广泛,成本低廉2)防止污染:霉菌在水分较低的基质表面可以增殖3)通气:使用循环的冷却增湿无菌空气调控温度1.1.3固液发酵的比较1.1.4传统固态发酵与现代固态发酵根据固态发酵过程中是否能实现限定微生物纯种培养,分为传统固态发酵与1.1.5固态发酵分类1.1.5.1按微生物的情况和形成的产品条件自然富集固态发酵强化微生物混合固态发酵限定微生物混合固态发酵单菌固态纯种发酵1.1.5.2按固态发酵固相的性质分类固体底物基质固态发酵惰性载体吸附固态发酵1.1.6适合固态发酵的微生物固态发酵的最佳微生物即为丝状微生物,即为真菌或放线菌1)能够利用多糖的混合物2)有完整的酶系3)能够深入到料层中,也能够穿入基质细胞内4)不容易孢子化5)生长迅速,染菌较少6)可以在含水量比较低的基质中生长7)能够耐受高浓度的营养盐8)耐受基质预处理中产生的苯类等有毒物质1.1.7固态发酵的界面作用意义1)提供给微生物生长繁殖的场所2)营养物质通过界面作用吸附在界面表面,供给微生物的生长利用。
1.2固态发酵反应器固态发酵的放映基质以固态形式存在,反应体系内的传递极其复杂。
包括气固、气液、液固等形式,气相是最主要的流动介质。
以基质的运动情况分类静态固态发酵反应器动态固态发酵反应器1.2.1静态固态发酵反应器包括浅盘式和塔柱式反应器;优点:结构简单,操作方便,放大问题小;缺点:由于发酵基质的相对静止,热量、氧气和其他营养物质的传递困难,从而导致基质内部温度、湿度、酸碱度和菌体生长状态的严重不均匀。
固态发酵设备研究进展摘要:至2O世纪以来,随着能源危机与环境问题的日益严重,固态发酵技术以其特有的优点引起人们极大的兴趣。
与其他培养方式相比,同态发酵具有如下优点:①培养基简单且来源广泛.多为便宜的天然基质或工业生产的下脚料;②投资少.能耗低.技术较简单;③产物的产率较高;④基质含水量低,可大大减少生物反应器的体积,不需要废水处理,环境污染较少,后处理加工方便。
关键词:固态发酵发酵罐固态发酵(Solid State Fermentation , SSF) 是指在培养基呈固态,虽然含水丰富,但没有或几乎没有自由流动水的状态下进行的一种或多种微生物发酵过程,底物(基质) 是不溶于水的聚合物,它不仅可以提供微生物所需碳源、氮源、无机盐、水及其它营养物,还是微生物生长的场所。
固态发酵是人类利用微生物生产产品历史最悠久的技术之一。
但现代发酵技术的首要条件是纯种培养,不允许自然界的其它微生物进入,造成杂菌污染,加上现代工业对大规模集约化生产的要求,使固态发酵的生产应用处于停滞状态,几乎被排斥到现代工业之外。
当液态发酵与固态发酵具有相同的经济性能时,液态发酵的许多特征使其成为较优选的方法。
重要的是,液态发酵的传热、传质均匀性使其有较大程度的可行性。
固态发酵含有不溶于水的固体、少量的水分及空气,微生物生成的热导致水分蒸发,使发酵体系具有汽液固不均匀三相,存在严重的浓度梯度及传热、传质困难,这样很难控制pH、水活度、最佳反应温度等,使产量大大下降。
然而近几年,由于能源危机与环境问题的日益严重,固态发酵技术再次引起人们的兴趣,固态发酵领域的研究出现了翻天覆地的变化。
90 年代以来,大约有上千篇论文在国外不同的期刊上发表 ,也不时出现一些关于固态发酵某些特征的综述。
现代固态发酵工程在基质特性、染菌控制、水活度的控制、pH 的调控、传质与传热等领域的研究取得了较大的进展。
但到目前为止,很难找到关于现代固态发酵工程领域系统论述的文献,追溯这段历史,有助于人们了解当代固态发酵发展动态。