井中地震方法技术原理
- 格式:ppt
- 大小:8.97 MB
- 文档页数:60
地球物理测井方法与原理地球物理测井是通过对地下层次中的各种物理参数进行检测和分析,从而获取有关地下地质构造、岩性、水文地质等信息的一种方法。
它是石油勘探和开发中的重要手段之一,也是了解地下环境和地质资源的重要手段之一、地球物理测井包括测井原理、测井技术和数据解释三个部分,下面将对地球物理测井的常用方法和原理进行详细介绍。
1.地震测井地震测井是通过发送音波信号到地层中,根据声波在地层中的传播速度和反射特性,来得到地下层次的信息。
它可以判断地层的厚度、速度以及各种地质构造的存在,如断层、岩性变化等。
地震测井一般有声波传播速度测井、声波吸收系数测井和地震反射波形测井等。
2.电测井电测井是利用地下岩石的电性差异,通过测量电阻率、自然电位、电导率等参数,来判断地层的岩性、含水性质等。
电测井主要有浅层电阻率测井和深层电阻率测井两种方法。
浅层电阻率测井是通过测量地层对交流电的阻抗,来反映地层的含水性质和岩性变化。
深层电阻率测井主要用于判断含油气层的位置和含油气饱和度等信息。
3.放射性测井放射性测井是利用地下岩石的放射性元素含量差异,通过测量地层的放射性强度,来推断地层的厚度、含油气性质以及地下水流动等。
放射性测井常用的方法有伽马射线测井、中子测井和密度测井等。
伽马射线测井是通过测量地下岩石放射性元素产生的伽马射线的强度,来判断地层的岩性、厚度以及含油气性质等。
中子测井是通过测量地下岩石对中子的吸收程度,来判断地层的含水性质和含油气饱和度等。
密度测井是通过测量地下岩石的密度,来判断地层的岩性、孔隙度以及含油气性质等。
4.渗透率测井渗透率测井是通过测量地下岩石的孔隙度和渗透能力,来判断地层的渗透性质、含水性质以及含油气性质等。
渗透率测井主要有声速测井、电阻率测井和核磁共振测井等。
声速测井是通过测量地下岩石中声波的传播速度,来判断地层的孔隙度、饱和度以及含油气性质等。
电阻率测井是通过测量地下岩石的电阻率,来推断地层的孔隙度和渗透能力等。
地震勘探工程布置方案一、前言地震勘探是地球科学中的一项重要技术手段。
它利用地震波在不同地质层中传播的规律,通过地震仪器在地表和井下测定地震波的传播时间和能量,从而获取地下结构的信息。
地震勘探在地质勘探、地质灾害预测和地下资源勘探等方面发挥着重要作用。
在地震勘探工程中,合理的布置方案是确保工程质量和勘探效果的关键所在。
二、地震勘探工程的基本原理地震勘探是通过在地表或井下放置地震仪器,监测人工产生的地震波在地下不同介质中传播的过程,从而获取地下结构信息的一种方法。
地震波在地下的传播速度和方向与地下介质的性质有关,通过分析地震波的传播规律,可以推断地下结构的分布和性质,为地质勘探和资源开发提供重要信息。
地震勘探工程主要包括勘探测线的布置、地震波发射和接收设备的设置、数据的采集和处理等步骤。
合理的布置方案可以提高勘探的效率和精度,降低勘探成本,保证工程质量。
三、地震勘探工程布置方案的设计要点1. 勘探区域的选择在进行地震勘探工程的布置方案设计时,首先需要选择合适的勘探区域。
选择勘探区域需要考虑地下介质的性质、勘探的目的和需求、勘探的可行性以及勘探成本等因素。
根据不同的勘探目的,可以选择不同的勘探区域,如地质构造勘探、地下水资源勘探、地震灾害监测等。
2. 勘探测线的布置勘探测线的布置是地震勘探工程中的重要环节。
根据勘探区域的地质构造、勘探深度和勘探精度的要求,需要合理布置勘探测线。
一般情况下,勘探测线的布置应使得地震波在地下尽可能地覆盖整个勘探区域,以获取较为完整的地下结构信息。
同时,勘探测线的间距和长度也需要根据勘探的深度和需求进行调整。
3. 发射和接收设备的设置地震勘探的发射和接收设备的设置直接影响到勘探数据的采集质量。
合理设置发射和接收设备可以提高勘探数据的精度和准确性。
在设置发射和接收设备时,需要考虑地下介质的性质、勘探深度和勘探精度等因素。
同时,还需要考虑设备的稳定性和可靠性,以保证勘探数据的准确性和可靠性。
地震勘探原理和方法地震勘探是一种通过地震波的传播和反射来探测地下结构的方法。
通过地震勘探,可以获取地下地质信息,如油气资源、地下水等。
其原理是通过地震波在地下的传播和反射,来获取地下结构的信息,从而进行地质勘探。
地震勘探的原理主要包括地震波的产生和传播,以及地震波在不同媒介中的传播速度和反射、折射等现象。
地震波可以通过不同的方法产生,例如在地面上布设震源装置,如地震仪或爆炸物等,通过地面振动产生地震波。
地震波的传播是通过地下介质的传导来实现的。
地震波的传播速度取决于介质的密度、弹性模量等特性。
当地震波遇到介质边界时,会发生反射、折射和透射等现象。
反射是地震波遇到界面时一部分能量反射回来的现象;折射是地震波遇到介质边界发生方向改变的现象;透射是地震波穿过介质边界后继续传播的现象。
地震勘探的方法主要包括地震勘探测井、地震勘探剖面和地震勘探阵列等。
地震勘探测井是通过在地下钻探井口并向井内注入震源来产生地震波,然后通过井中的测震仪记录地震波。
这种方法可以获取井内和井周围的地下结构信息,用于勘探油气资源等。
地震勘探剖面是通过在地表上布设震源和接收器,在不同位置上记录地震波的传播情况。
这些记录的数据可以通过地震处理和解释来获取地下结构的信息。
这种方法可以获取地质信息和油气资源等。
地震勘探阵列是将多个地面震源和接收器布设在一定区域内,同时记录地震波的传播信息。
通过对地震波的分析和解释,可以获取地下结构的信息。
这种方法可以用于地震监测和地震研究等。
地震勘探还可以通过数据处理和解释来获取更详细的地下结构信息。
数据处理包括地震波形记录的处理、去除噪声等。
数据解释包括地震波传播路径的解释、地震反射地震震相的解释等。
总之,地震勘探是通过地震波的传播和反射来获取地下结构信息的一种方法。
通过不同的方法和技术,可以获取地质信息和油气资源等。
地震勘探具有广泛的应用领域和重要的地质意义。
地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。
本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。
1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。
纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。
当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。
2.地震波探测方法地震波探测方法包括折射波法和反射波法。
折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。
反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。
在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。
3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。
野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。
室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。
4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。
预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。
5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。
构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。
先进的井中地震技术
钱志富
【期刊名称】《吐哈油气》
【年(卷),期】1999(000)003
【摘要】单井地震技术,反向垂直地震剖面(RVSP)和井间地震是三种新的井中地震技术,。
和地面地震技术相比,这些技术能提供具有更高分辨率的油气藏图像。
1997年用的井中震源和接收器大间距系统开始用于深井条件。
现在使用的这种先进的井下震源产生的震源—接收器反射路径长达4800米,而且能在井深6000米、204℃的条件下操作,从而增强了井中地震技术的能力。
【总页数】1页(P30-30)
【作者】钱志富
【作者单位】
【正文语种】中文
【中图分类】P631.4
【相关文献】
1.火山岩地震储层预测技术在水平井地质设计中的应用--以克拉玛依油田九区古16井区石炭系火山岩评价水平井设计为例 [J], 韩甲胜;杨丽;高蓓;赵文苹;梁涛;李斌
2.微地震井中监测技术在塔河油田酸压中的应用 [J], 何晓波;马强;李永寿
3.井中地震技术的昨天、今天和明天——井中地震技术发展及应用展望 [J], 赵邦六;董世泰;曾忠
4.利用先进的井中地震技术实现薄层成像 [J], Pau.,BNP;张美玲
5.打破国外技术垄断推进非常规油气开发井中微地震裂缝监测技术获重大突破[J], 金江山;王晓泉
因版权原因,仅展示原文概要,查看原文内容请购买。
VSP技术的基本方法原理和应用垂直地震剖面法(VSP方法)是一种井中地震观测技术,即激发震源位于地表,在井中不同深度进行观测,研究井附近地质剖面的垂直变化。
这种方法是在地震测井的基础上发展起来的,它使测井与地震结合进行地质解释更加有据可循。
垂直地震剖面是相对于地面地震剖面而言的,其实质是在井中观测地震波场,将井下检波器置于井中不同深度来记录地面震源所产生的地震信号。
在地表设置震源激发地震波,在井内安置检波器接收地震波,即在垂直方向观测一维人工场,然后对所观测得到的资料经过校正、叠加、滤波等处理,得到垂直地震剖面,如图所示。
一.VSP中波的主要类型1.VSP中的主要波动从波的类型来分:(1)直达初至波(2)一次反射波:反射纵波和转换波(当震源有偏移距)(3)多次反射波从波传播到接收点的方向来分:(1)下行波:来自接收点上方的下行波(直达波和下行多次波)(2)上行波:来自接收点下方的上行波(一次反射波和上行多次波)2.VSP中干扰波类型(1)套管波:沿套管传播的波(2)电缆波:电缆振动引起检波器振动。
(3)管道波:充满泥浆的井与围岩形成一个明显的波阻抗界面,由震源产生的面波传播到此界面时,好象一个新的震源,产生了沿井轴方向传播的管波,能量强,速度低(1400-1460),稳定。
二.VSP资料采集在VSP数据采集中所用的设备主要包括井口震源、井下检波器、记录仪器、电缆、参考检波器(近场检波器)。
在采集过程中有以下要求:1.对震源要求:1)震源能激发高宽频信号,提高分辨率;2)能量强,干扰小,多在低速层以下激发,采取多次重复激发方式,以增强能量。
3)要求震源子波一致,一口井观测点上百,每个点又必须重复激发,这样一口井都要激发很多次,所以要求每次激发的子波要一致。
4)相邻道震源的标识误差应小于1ms,以保证有较高的精度。
2.偏移距:小(偏移距大小与界面成象范围有关)3.参考检波器(近场检波器):近场检波器埋于地下监视震源子波,要求它尽可能与井中检波器的性能相同,它可以为子波处理提供依据。