表情识别技术综述分析
- 格式:doc
- 大小:543.84 KB
- 文档页数:7
人脸识别综述摘要:首先介绍了人脸识别的发展历程及基本分类;随后对人脸识别技术方法发展过程中一些经典的流行的方法进行了比较详细的阐述。
最后介绍了人脸识别的应用及发展现状,总结了人脸识别所面临的困难。
关键词:人脸识别1引言人脸是人类最重要的生物特征之一,反映了很多重要的生物信息,如身份,性别,种族,年龄,表情等等。
随着计算机技术的飞速发展,基于人脸图像的计算机视觉和模式识别问题也成为近些年研究的热点问题。
其中包括人脸检测,人脸识别,人脸表情识别等各类识别问题。
对于人脸识别问题的研究已有几十年的时间,在理论研究和实际开发方面都取得了一定的进展,并且目前已有一些电子产品配备了人脸识别系统。
但是,对于人脸性别和种族识别的研究却比较少,但研究这个问题的意义和实际价值却是不可忽视的。
在实际公共场所的安检系统中,大多数情况下都是将多种模式识别系统结合在一起,以尽量提高检测识别的准确度,性别识别系统也是其中不可缺少的一部分。
对它的研究不仅有助于提供更多个性化的人机交互方式,还可以应用于各种监控系统、电子产品的用户身份鉴别和信息采集系统。
从理论意义上来说,也丰富了原有的人脸识别方法,使得人脸识别系统不但可以识别出被识别者是谁,还能自动给出其性别和种族,从而提高人脸识别的准确率和图像检索效率。
所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份。
人脸与人体的其他生物特征(指纹、虹膜等)一样与生俱来,它们所具有的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提;同其他生物特征识别技术相比,人脸识别技术具有操作简单、结果直观、隐蔽性好的优越性。
因此,人脸识别在信息安全、刑事侦破、出入口控制等领域具有广泛的应用前景。
2人脸识别的发展历程及方法分类关于人脸识别的研究最早始于心理学家们在20世纪50年代的工作,而真正从工程应用的角度来研究它则开始于20世纪60年代。
最早的研究者是Bledsoe,他建立了一个半自动的人脸识别系统,主要是以人脸特征点的间距、比率等参数为特征。
基于人脸的活体检测技术综述摘要:人脸识别系统往往面临着各类人脸欺诈攻击,如打印照片、屏幕播放和三维面具等。
如何区分真实人脸与虚假人脸,称为人脸活体检测技术。
基于人脸的活体检测技术对人脸识别和身份认证系统的安全具有十分重要的意义。
近年来,大量基于人脸的活体检测方法相继提出,且部分已投入实际应用。
本文对基于人脸的活体检测技术进行了归纳梳理,分析了不同技术的特点,最后,进行了总结与展望。
关键词:活体检测人脸识别欺诈攻击1 引言近年来,人脸识别技术在许多领域取得了巨大发展并得到大力应用,如系统登录、门禁系统、出入安检、缉拿罪犯等。
然而人脸的照片或视频极易被他人通过一些廉价手段获取,导致一些不法分子利用合法用户的人脸来攻击相关的人脸识别与认证系统,使得人脸识别系统的安全性受到了严重的威胁。
常见的人脸欺诈攻击方式包括打印人脸照片、屏幕播放人脸和戴三维面具等。
随着人脸识别技术在社会生产生活各行各业中的广泛应用,为了保障人脸识别系统的安全性,发展人脸欺诈检测技术十分必要且迫切。
研究人员已提出了大量相关技术,部分技术已进入实际应用。
本文对基于人脸的活体检测技术进行了归纳梳理,分析了不同技术的特点,最后,进行了总结与展望。
2 基于人脸的活体检测技术2.1 真实人脸和欺诈人脸的区别真实人脸和欺诈人脸主要在图像纹理、三维结构、运动模式三个方面有比较明显的区别。
在图像纹理方面,欺诈人脸一般经过至少两次采集得到,真实人脸是通过一次采集得到。
经过多次采集之后,图像中所包含的细节信息会由于各种因素的影响而发生各种难以预测的变化,这种变化的来源大致分为三类:图像阴影、图像模糊和图像高光。
在三维结构方面,无论纸质人脸照片如何折叠,都无法模拟出真实人脸形状。
基于此,通过对比真实人脸和纸质人脸图像的三维结构便可有效地进行活体检测。
在运动模式上,运动模式主要分为人脸运动模式和前背景运动模式两种。
人脸运动模式主要是由于真实人脸的运动模式可能来自于各种情况,因此会呈现出各种不同的表现形式,运动的幅度也各种各样。
表情识别技术综述洪惠群;沈贵萍;黄风华【期刊名称】《计算机科学与探索》【年(卷),期】2022(16)8【摘要】面部表情是判断人类情感和人机交互的重要依据,传统机器学习和深度学习的发展,给面部表情识别分析带来了许多机遇与挑战。
首先分析了表情识别与情感分析的内在联系与区别,指出表情识别侧重于识别面部的表情及情感。
接着总结归纳了基于单模态数据集和传统机器学习方法的表情识别技术及其优缺点,介绍了基于单模态数据集与深度学习方法的表情识别技术,然后指出基于单模态数据的表情识别技术具有一定的局限性,如:数据集在数量和质量上较为不足,识别准确率普遍不高,多停留在实验室研究阶段等。
引出基于多模态数据集的表情识别及模态间融合方法,并介绍常用的多模态表情数据集,分析了基于多模态数据集的表情识别技术及模态之间的融合技术,包含特征级融合、决策级融合及混合融合三种方式。
最后对表情识别分析技术进行总结与展望:考虑到数据集问题,可构建更多自然环境下的高质量表情数据集,也可结合姿势、脑电波等生理信号构建多模态数据集,利用GAN 网络进行数据增强,关注微表情的提取,以及研究多模态融合算法等。
【总页数】15页(P1764-1778)【作者】洪惠群;沈贵萍;黄风华【作者单位】阳光学院人工智能学院;阳光学院空间数据挖掘与应用福建省高校工程研究中心;阳光学院福建省空间信息感知与智能处理重点实验室【正文语种】中文【中图分类】TP391【相关文献】1.基于计算机视觉的表情识别技术综述2.人脸表情识别技术综述3.微表情识别研究综述4.卷积神经网络在表情识别上的研究综述5.人脸表情识别技术研究综述因版权原因,仅展示原文概要,查看原文内容请购买。
人脸检测和识别技术的文献综述Last updated on the afternoon of January 3, 2021人脸识别技术综述摘要:在阅读关于人脸检测识别技术方面文献后,本文主要讨论了人脸识别技术的基本介绍、研究历史,人脸检测和人脸识别的主要研究方法,人脸识别技术的应用前景,并且总结了人脸识别技术的优越性和当下研究存在的困难。
关键词:人脸识别;人脸检测;几何特征方法;模板匹配方法;神经网络方法;统计方法;模板匹配;基于外观方法;随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。
人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向.虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的[1]基于生物特征的身份认证技术是一项新兴的安全技术,也是本世纪最有发展潜力的技术之一[2]。
1.人脸识别技术基本介绍人脸识别技术是基于人的脸部特征,一个完整的人脸识别过程一般包括人脸检测和人脸识别两大部分,人脸检测是指计算机在包含有人脸的图像中检测出人脸,并给出人脸所在区域的位置和大小等信息的过程[3],人脸识别就是将待识别的人脸与已知人脸进行比较,得出相似程度的相关信息。
计算机人脸识别技术也就是利用计算机分析人脸图象,进而从中出有效的识别信息,用来“辨认”身份的一门技术.人脸自动识别系统包括三个主要技术环节[4]。
首先是图像预处理,由于实际成像系统多少存在不完善的地方以及外界光照条件等因素的影响,在一定程度上增加了图像的噪声,使图像变得模糊、对比度低、区域灰度不平衡等。
为了提高图像的质量,保证提取特征的有有效性,进而提高识别系统的识别率,在提取特征之前,有必要对图像进行预处理操作;人脸的检测和定位,即从输入图像中找出人脸及人脸所在的位置,并将人脸从背景中分割出来,对库中所有的人脸图像大小和各器官的位置归一化;最后是对归一化的人脸图像应用人脸识别技术进行特征提取与识别。
《基于深度学习的人脸情绪识别的研究》篇一基于深度学习的人脸情绪识别研究一、引言随着人工智能技术的不断发展,人脸情绪识别技术逐渐成为人工智能领域的重要研究方向之一。
人脸情绪识别技术能够通过分析人脸的面部表情、眼神、姿态等特征,对人的情绪进行判断和识别。
而深度学习技术的快速发展,为人脸情绪识别提供了新的可能性。
本文旨在研究基于深度学习的人脸情绪识别技术,探讨其技术原理、实现方法和应用前景。
二、深度学习与情绪识别的基本原理深度学习是一种基于神经网络的机器学习方法,其通过模拟人脑神经网络的运作方式,实现对复杂数据的自动学习和处理。
在人脸情绪识别中,深度学习可以通过训练大量的人脸数据集,提取出有效的特征信息,如表情特征、姿态特征等,然后利用这些特征信息进行情绪识别。
而情绪识别的基本原理主要是基于人类和机器的交互性以及认知心理学的理论。
通过对人脸表情的细致观察和情感的分析,我们可以获取到面部表情所传递出的情感信息。
通过将这种情感信息与机器学习算法相结合,机器就可以实现人脸情绪的自动识别。
三、基于深度学习的人脸情绪识别实现方法基于深度学习的人脸情绪识别技术主要包括以下步骤:数据采集、预处理、特征提取、模型训练和测试等。
首先,需要收集大量的人脸数据集,包括不同情绪下的人脸图像、视频等。
然后,对这些数据进行预处理,包括去噪、归一化等操作,使得数据更适用于后续的特征提取和模型训练。
接着,利用深度学习算法提取出人脸数据中的有效特征信息,如表情特征、姿态特征等。
最后,利用这些特征信息训练出分类模型,通过不断优化模型参数和调整模型结构,使得模型的识别准确率达到最优状态。
在模型训练完成后,需要对模型进行测试和评估,以确保模型的准确性和可靠性。
四、研究方法与实验结果本文采用深度学习算法对人脸情绪识别进行了研究。
首先,我们收集了大量的人脸数据集,包括不同情绪下的人脸图像和视频等。
然后,我们利用深度学习算法对数据进行预处理和特征提取。
人脸识别概述及其相关问题研究080303214 08计本2 李志超摘要:概述了人脸识别中的主要流程和主要技术,并且对其目前存在的问题和未来的发展做了一定的分析。
关键词:模式识别,人脸识别一.概述近年来,数字图像技术的应用范围越来越广,运用数字图像处理技术的身份验证则更是由于其在公安(罪犯识别等)、安全验证系统、信用卡验证等方面的巨大应用前景而越来越成为当前模式识别和人工智能领域的一个研究热点。
由于生物特征是人的内在属性,具有很强的自身稳定性和个体差异性,因此是身份验证的最理想依据。
这其中,利用人脸特征进行身份验证又是最自然直接的手段,相比于指纹、视网膜、虹膜、基因等其它人体生物特征,它具有直接、友好、方便的特点,更易于为用户所接受,因此备受关注。
虽然人类可以轻松识别出不同人的脸部特征,但机器对人脸的自动识别涉及到模式识别、数字图像处理、生理和心理学等多方面的课题。
人脸识别系统应该能够处理脸部图像的变化,但是同一张脸,在不同的视角,不同的描述方法下,图像的差别很大,人脸的自动识别因此也是极具挑战性的工作。
二.人脸识别过程及其技术人脸识别问题是指:对输入的人脸图像或者视频,首先判断其中是否存在人脸,如果存在人脸,则进一步的给出每个人脸的位置、大小和各个主要面部器官的位置信息,并依据这些信息,进一步提取每个人脸中所蕴含的身份特征,并将其与已知人脸库中的人脸进行对比,从而识别每个人脸的身份。
人脸识别的过程可以分为以下三个部分:1)人脸检测:判断输入图像中是否存在人脸,如果有,给出每个人脸的位置,大小;2)面部特征定位:对找到的每个人脸,检测其主要器官的位置和形状等信息;3)人脸比对:根据面部特征定位的结果,与库中人脸对比,判断该人脸的身份信息。
完整的人脸识别系统至少包括两个主要环节。
首先在输入图像中找到人脸的位置,将人脸从背景中分割出来;其次,将分割后的人脸图像进行特征提取和识别。
如下图1所示:2.1人脸的检测和定位2.1.1人脸的色彩特性研究发现,虽然不同种族的肤色差异较大,但在色彩空间中的分布相对集中,因此可以充分利用皮肤的色彩特点进行脸部肤色和五官的分割.这种肤色的分布服从高斯分布N(m,C),其中:均值(Mean):m=E{x},x=(r b)T,协方差(Covariance):C=E{(x–m)(x–m)T}.由高斯分布可得到图像中任一像素的值为肤色的概率Likelihood[3],如下式所示.2.1.2彩色图转化为灰度图根据(1)可将原彩色图转化为灰度图.灰度图中的像素值表示该像素为肤色的概率.灰度图中肤色区域和非肤色区域存在着明显的差异,肤色区域要亮一些.2.1.3灰度图转化为二值图肤色区域和非肤色区域存在着明显的差异,因此可以用阈值法去除非肤色区域.由于固定阈值法不适用于色彩差异较大的各种人脸图像,因此采用自适应阈值选取法来获取最优阈值.自适应阈值选取法的原理如下:随着阈值的逐步减小,观察分割出的区域数目的增加情况.虽然这种增加速度有逐渐减缓的趋势,但当阈值取到一个很小值以至于部分非肤色区域被保留下来时,分割出的区域数目会产生一个跳变,此时的阈值即为最优阈值.用该阈值对灰度图做二值化处理,即:其中,gi(x,y)为灰度图中的像素值,T为自适应阈值选取的最优阈值.经过上述处理后,得到一幅二值图.2.1.4判断保留下的各个区域是否是人脸区域首先计算该区域的欧拉数E=C-H,其中C为区域连通数,H为洞的数目,对于人脸而言,E应大于1.然后根据欧拉数E判断区域中是否存在洞,若是,则根据下列公式计算矩、质心和倾角.再利用人脸的几何特性进一步判断:计算区域的长、宽,若长宽比过大则丢弃;将标准人脸模板和区域重合,计算十字相关性.若关联性大于一个即定值,则该区域为人脸.2.2人脸特征提取2.2.1利用小波多分辨特性对人脸做降维表达对人脸图像做一阶小波分解,再对高频图做积分投影.图像积分投影定义如下:给定N×M大小的图像I(x,y),分别定义水平函数量H(y)和垂直投影函数V(x),图像区域为Ψ(x1<x<x2,y1<y<y2=:2.2.2确定人脸带区在垂直细节图作积分投影,得到积分投影函数V(x),寻找V(x)的两个极值点,它们就是人脸的左右边界.这两个点的位置确定了一个垂直带区,命名为“人脸外接带区”.人脸左右边界部分的小波系数较大,所以具有较大的值.利用两个峰值,可以确定人脸的垂直带区.2.2.3特征基线确定在人脸外接带区范围内,对水平细节图作水平积分投影,得到H(y).在眼睛、鼻子、嘴的位置附近,小波系数的值比较大,寻找H(y)中极值点,它们分别对应眼睛、鼻子和嘴的基线.对水平细节图中基线的区域分别进行垂直积分投影、检测结果、确定基线.眼睛基线附近应得到两个突起的峰值,鼻子和嘴应在两眼的峰值中间有一个长的峰值.最后,定义人脸的外接矩形.由于头发、胡须和衣服等在多数方向上具有较高的小波系数,所以无法准确定位人脸上下基线.根据人脸的形状,一般确定人脸的长宽比大约为1.5:1,将人脸的上下基线定义为与鼻子的基线等距.2.2.4基于特征基线提取特征眼:在眼睛基线附近做边沿检测,对检测结果做水平投影,确定眼睛的范围.做垂直投影,对区域中的黑点进行区域膨胀.取黑点的均值作为瞳孔的位置.鼻子:设两眼瞳距为1,在双眼下方(0.7,1)范围内寻找颜色较深的区域即鼻孔.两鼻孔的1/2处的亮度最高点即为鼻尖.嘴:寻找满足下列条件并位于脸的下方的区域即唇色.嘴到两眼中心的距离为(1.0,1.3).用类似眼睛的方法找到左右嘴角和嘴的中心.2.3人脸对比国内人脸对比技术已取得了一定的成果.BP神经网络是应用较为广泛的一种特征提取和对比方法.例如,可将标准化后人脸图像各点的灰度值作为特征提取网络的输入,其隐层输出作为识别网络的输入.识别网络的期望输出为赋予每个人的标识号.每人多张照片参加训练,根据训练人数的多少,可适当增减输出层结点数.该方法的优点是识别速度快、识别率高、自适应性强,但训练和收敛速度慢,容易陷入局部极小.另一种有效方法是将本征脸、协同算法和自联想神经网络等单一分类器结合起来,形成了多分类器结合的方法进行人脸对比,并在已有的几种分类器结合方法的基础上,对投票法作一些改进:不同分类器给予不同的“说话权重”,增加“第二候选人”,并根据“第一候选人”与“第二候选人”的可信度差,给“第一候选人”加“附加选票”.实验结果表明,采用多分类器结合方法后的识别率比单一分类器要高,改进后的投票法较其他多分类器结合方法有较好的识别率(可高达95%).三.人脸识别主流技术及其简介主流的人脸识别技术基本上可以归结为3类:基于几何特征的方法,基于模板的方法和基于模型的方法。
基于脑电的情绪识别研究综述一、本文概述随着和神经科学的深入发展,基于脑电的情绪识别研究已经成为一个备受瞩目的交叉学科领域。
情绪,作为人类心理活动的重要组成部分,不仅影响着我们的日常决策、社交互动,还与心理健康和疾病的发生发展密切相关。
因此,通过技术手段准确识别和理解个体的情绪状态,对于提升人机交互的自然度、改善心理健康治疗以及推动情感计算等领域的发展具有深远的意义。
脑电信号,作为大脑活动的直接反映,蕴含着丰富的情绪信息。
基于脑电的情绪识别研究旨在通过分析脑电信号中蕴含的情绪特征,实现对个体情绪状态的准确分类和识别。
本文旨在综述基于脑电的情绪识别研究的发展历程、主要方法、技术应用以及面临的挑战和未来的发展趋势。
通过对相关文献的梳理和评价,本文旨在为该领域的研究者提供全面的研究视角和深入的理论支撑,推动基于脑电的情绪识别研究的进一步发展和应用。
二、脑电信号与情绪的关系脑电信号,作为大脑活动的直接反映,与情绪状态之间存在着密切的关联。
情绪的产生和变化不仅会影响个体的行为表现,还会在大脑的电生理活动中留下明显的痕迹。
通过脑电信号的分析,可以揭示情绪产生的神经机制,以及情绪在不同脑区的动态变化过程。
在情绪识别的研究中,脑电信号的分析主要关注两个方面:一是脑电信号的频率特性,二是脑电信号的空间分布。
脑电信号的频率特性与情绪状态密切相关。
例如,当人们处于愉悦或兴奋的情绪状态时,脑电信号中的高频成分(如β波)往往会增加;而当人们处于悲伤或恐惧的情绪状态时,低频成分(如α波和θ波)则可能会增加。
这种频率特性的变化,可以为情绪识别提供重要的线索。
脑电信号的空间分布也是情绪识别研究中的重要内容。
不同情绪状态下,大脑活动的空间分布模式会有所不同。
例如,当人们感到愉悦时,大脑的额叶和颞叶区域的活动可能会增强;而当人们感到悲伤时,大脑的顶叶和枕叶区域的活动可能会增加。
这种空间分布模式的变化,可以为我们提供关于情绪状态的更多信息。
识别人脸的技术阅读及答案【篇一:人脸识别主要技术特征】>一、人脸识别算法:人脸识技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。
利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。
通过这个值即可确定是否为同一人。
二、人脸捕获与跟踪功能:人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。
人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
三、人脸识别比对:人脸识别分核实式和搜索式二种比对模式。
核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。
搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。
四、人脸的建模与检索:可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。
在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。
五、真人鉴别功能:系统可以识别得出摄像头前的人是一个真正的人还是一幅照片。
以此杜绝使用者用照片作假。
此项技术需要使用者作脸部表情的配合动作。
六、图像质量检测:图像质量的好坏直接影响到识别的效果,图像质量的检测功能能对即将进行比对的照片进行图像质量评估,并给出相应的建议值来辅助识别。
【篇二:人脸检测和识别技术的文献综述】摘要:在阅读关于人脸检测识别技术方面文献后,本文主要讨论了人脸识别技术的基本介绍、研究历史,人脸检测和人脸识别的主要研究方法,人脸识别技术的应用前景,并且总结了人脸识别技术的优越性和当下研究存在的困难。
关键词:人脸识别;人脸检测;几何特征方法;模板匹配方法;神经网络方法;统计方法;模板匹配;基于外观方法;随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。
人脸识别技术论文人脸识别,特指利用人脸视觉特征信息的分析比较结果进行身份鉴别的计算机技术。
下面是店铺为大家整理的人脸识别技术论文,希望你们喜欢。
人脸识别技术论文篇一人脸识别技术综述摘要:文章首先对人脸识别技术进行了介绍,其次回顾了人脸识别研究的发展历程及识别方法的基本分类,然后对当前主流的人脸识别方法展开了详细的论述,最后提出了人脸识别技术面临的问题及研究方向。
关键词:人脸识别;特征脸;线形判别分析;局部二值模式中图分类号:TP391Survey of face recognition technologyHe Chun(Education and Information Technology Center, China West Normal University, Nanchong Sichuan 637002, China) Abstract:This paper introduces technology of face recognition firstly, and reviews the development process and the basic classification method of face recognition. After that,the paper discusses the current methods of face recognition in detail, therefore proposes the existing problems in the research of recognition faces and future’s research direction.Key words:face recognition; Eigenface; linear discrimination analysis; LBP1 人脸识别技术简介人脸识别,特指利用人脸视觉特征信息的分析比较结果进行身份鉴别的计算机技术[1]。
人脸识别技术总结人脸识别技术大总结——Face Detection Alignment20XX-04-08搞了一年人脸识别,寻思着记录点什么,于是想写这么个系列,介绍人脸识别的四大块:Facedetection,alignment,verification andidentification(recognization),本别代表从一张图中识别出人脸位置,把人脸上的特征点定位,人脸校验和人脸识别。
(后两者的区别在于,人脸校验是要给你两张脸问你是不是同一个人,人脸识别是给你一张脸和一个库问你这张脸是库里的谁。
人脸校准(alignment)是给你一张脸,你给我找出我需要的特征点的位置,比如鼻子左侧,鼻孔下侧,瞳孔位置,上嘴唇下侧等等点的位置。
如果觉得还是不明白,看下图:如果知道了点的位置做一下位置驱动的变形,脸就成正的了,如何驱动变形不是本节的重点,在此省略。
首先介绍一下下面正文要写的东西,由于干货非常多所以可能会看着看着就乱了,所以给出框架图:=================================废话说了这么多,正文开始~detection作者建立了一个叫post classifier的分类器,方法如下:1.样本准备:首先作者调用opencv的Viola-Jones分类器,将recal阀值设到XX%,这样能够尽可能地检测出所有的脸,但是同时也会有非常多的不是脸的东东被检测出来。
于是,检测出来的框框们被分成了两类:是脸和不是脸。
这些图片被resize到96*96。
2.特征提取:接下来是特征提取,怎么提取呢?作者采用了三种方法:第一种:把window划分成6*6个小windows,分别提取SIFT 特征,然后连接着XXX个sift特征向量成为图像的特征。
第二种:先求出一个固定的脸的平均shape(XXX个特征点的位置,比如眼睛左边,嘴唇右边等等),然后以这XXX个特征点为中心提取sift特征,然后连接后作为特征。
人脸疼痛表情识别综述彭进业;杨瑞靖;冯晓毅;王文星;彭先霖【摘要】自动疼痛识别技术在医疗保健,特别是在对无法用语言表达疼痛的病人的治疗和护理中具有广泛的应用前景,因此逐步受到研究者的关注.由于人的面部线索是很重要的疼痛评估依据,并且基于计算机视觉技术的人脸表情识别研究已取得很大进展,因此利用面部表情信息实现自动疼痛识别成为了一条有效的途径.本文首先简要介绍了目前常用的STOIC表情数据库、婴儿疼痛表情分类(COPE)数据库、UNBC-McMaster肩部疼痛数据库和BioVid热疼痛数据库,然后从静态图像疼痛表情识别、视频序列疼痛表情识别、特定人物疼痛识别以及多信息融合疼痛识别4个方面对近10年的疼痛表情识别主要方法进行了详细的介绍,最后对目前人脸疼痛表情识别现状进行总结和分析,并阐述了其存在的挑战和未来的发展方向.【期刊名称】《数据采集与处理》【年(卷),期】2016(031)001【总页数】13页(P43-55)【关键词】人脸识别;表情识别;疼痛表情;疼痛识别;数据库【作者】彭进业;杨瑞靖;冯晓毅;王文星;彭先霖【作者单位】西北大学信息科学与技术学院,西安,710127;西北大学信息科学与技术学院,西安,710127;西北工业大学电子与信息学院,西安,710072;中国飞行试验研究院中航工业飞行仿真航空科技重点实验室,西安,710089;西北工业大学电子与信息学院,西安,710072【正文语种】中文【中图分类】TP391.41疼痛评估是疼痛控制的重要组成部分[1],主要包括自我评估和观察者评估两种主流方法。
自我评估方法具有便利性、主观性等特点,是目前应用最为广泛的评估方法,但自我评估不能保证每次评估都准确可信,而且一些特殊人群(如痴呆症患者、新生儿、精神受损或在重症监护中的病人等)往往无法准确表达出自己的疼痛程度。
相比自我评估方法,观察者评估方法对特殊人群会更加有效,但是观察者评估方法的效果依赖于专业人员实施持续的观察和辨别,效率较低,会给医院工作人员带来巨大负担。
人脸识别技术综述[摘要]随着社会信息化,网络化得不断发展,个人身份趋于数字化,隐性化,如何准确的鉴定,确保信息安全得到越来越多的重视。
人脸识别,一种应用比较广泛的生物识别方法,在基于人脸固有的生物特征信息,利用模式识别和图行图像处理技术来对个人身份进行鉴定,在国家安全,计算机交互,家庭娱乐等其他很多领域发挥着举足轻重的作用,能提高办事效率,防止社会犯罪等,有着重大的经济和社会意义。
本文主要研究了人脸识别在图像检测识别方面的一些常用的方法。
由于图像处理的好坏直接影响着定位和识别的准确率,因此本文对图像的一些识别算法做了着重的介绍,例如基于二维Gabor小波矩阵表征人脸的识别算法,基于模型匹配人脸识别算法等。
此外,本文还提及了一般人脸识别系统的设计,并着重介绍了图像预处理环节的光线补偿,图像灰度化等技术,使图像预处理模块在图像处理过程中能取到良好的作用,提高图像识别和定位的准确率。
[主题词]:人脸识别;特征提取;图像预处理;光线补偿1.3国内外现状与趋势1.3.1 人脸识别的发展阶段[1]第一阶段(1964年----1990年)该阶段人脸识别技术还只是作为一个一般性的模式识别问题来研究,基于人脸几何结构特征(Geometric feature based)的方法是该阶段主要的技术方案。
在剪影(Profile)方面,人们大量研究了面部剪影曲线的结构特征,提取并分析。
布莱索(Bledsoe),戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等是较早从事自动人脸识别AFR研究的研究人员。
总的说来,该阶段是人脸识别研究的初级阶段,没有多少很重要的成果,也基本没有获得什么实际应用。
第二阶段(1991年-----1997年)该阶段尽管时间比较短暂,但却是人脸识别研究的高峰期,取得了很多成果,比如诞生了一些代表性的人脸识别算法,并出现了一些商业化运作的人脸识别系统(比如较著名的Visionics的FaceIt系统)。
微表情识别综述作者:***来源:《计算机时代》2020年第09期摘要:微表情的微妙和微表情数据集的通病,对人脸微表情识别任务提出了巨大挑战,同时也使得该课题具有旺盛的生命力和极高的研究价值。
文章阐述了人脸微表情识别的定义,介绍了主流的微表情数据集,并总结了微表情识别领域中基于三个正交平面局部二值模型的经典方法和基于深度学习的最新技术。
关键词:微表情识别;微表情数据集;深度学习;面部动作编码系统;三个正交平面局部二值模型中图分类号:TP391.4文献标识码:A文章编号:1006-8228(2020)09-17-03A survey of micro-expression recognitionCheng Cun(school of MathematicsandStatistics, Beijing Technology and Business Unirersity, Beijing 100048. China)Abstract: Facial micro-expression recognition is faced with an enormous challenge because facial micro-expression is subtle andmicro-expression databases are limited. but in the meantime the significance of micro-expression recognition has posed a hugeattraction to researchers. In this paper,the definition of facial micro-expression recognition is introduced, the commonly used micro-expression databases are summarized, and the classic handcrafted method based on Local Binary Pattern From Three OrthogonalPlanes and the recent techniques based on deep learning in micro-expression recognition are elaborated.Key words: micro-expression recognition; micro-expression database; deep learning; facial action coding system; Local BinaryPattern From Three Orthogonal Planes0引言人臉表情识别(Facial Expression Recognition)是计算机视觉的一个重要研究课题。
学资学习网 ------------------------------------------------------------精品文档-------------------------------------------------------- 人类表情识别技术
CENTRAL SOUTH UNIVERSITY 《脑与认知科学》调研报告
人类表情识别技术目 题
学资学习网
学生姓名 何伟峰 0918140119 学号
1401 智能科学与技术 专业班级
2015/10/27 完成时间
人类表情识别技术
目录 人类表情识别技术 一.摘要: ............................................................................................................................... 3 二 前言: ................................................................................................................................. 3 三 表情识别 ............................................................................................................................. 3 人脸检测与定位 ................................................................................................................... 3 图像预处理 ........................................................................................................................... 4 面部表情特征的提取方学资学习网
法 ................................................................................................... 4 表情分类与识别 ................................................................................................................... 5 四 应用前景 ............................................................................................................................. 5 五 面部表情识别的国内外研究情况 ..................................................................................... 5 六 目前存在的难点和问题 ..................................................................................................... 6 参考文献: ............................................................................................................................... 6
人类表情识别技术 人脸表情识别技术综述 一.摘要:一直以来,表情是人类引以
为傲的东西,这是我们和机器的一种本质上的区别。随着计算机的发展,我们更期盼人机之间的沟通交流,尤其是一种带有感情的沟通交流。计算机在情感方面的成长经历也类似于我们每个人的成长过程——以观察和辨别情感作为最终自然,亲切,生动的交互的开始。 在物联网技术发展的今天,面部识别已经不是什么太大的技术性问题,而对于人类表情识别来说,仍旧是一片空白。我们希望有一天机器可以读懂我们的语言、知悉我们的表情,更好的为我们服务,或许这才是真正的物联网时代。表情识别作为一种人机交互的方式,成为研究的热点。基于对表情识别的基本分析,文章重点介绍了面部表情识别的国内外研究情况和面部表情特征的提取方法和他的应用前景。 关键词:表情识别;特征提取;表情分类;应用前景。
二 前言:
进入21世纪,随着计算机技术和人工智能技术及其相关学科的迅猛发展,整个社会 的自动化程度不断提高,人们对类似于人和人交流方式的人机交互的需求日益强烈。计算机和机器人如果能够像人类那样具有理解和表达情感的能力,将从根本上改变人与计算机之间的关系,使计算机能够更好地为人类服务。表情识别是情感理解的基础,是计算机理解人们情感的前提,也是人们探索和理解智能的有效途径。如果实现计算机对人脸表情的理解与识别将从根本上改变人与计算机的关系,这将对未来人机交互领域产生重大的意义。
三 表情识别
人脸表情识别系统主要包括人脸检测与定位、图像预处理、人脸表情特征提取和人脸表情分类识别。 学资学习网
人脸检人脸检测与 测与定定位 位 图像预处 表情特征 表情分类与 理 提取 识别
人脸检测与定位 可以基于Haar特征的特征提取方法和基于Adaboost的分类方法进行人脸检测与定 位 人类表情识别技术
图像预处理 由于受图像采集硬件条件或采集环境条件的影响,采集到的图像会存在对比度不高、亮度不够、图片大小不定等问题,这些问题会对人脸识别产生影响,为了减少这些因素所产生的影响,对图像进行适当的预处理是必不可少的。常用的图像预处理方法包括几何归一化,亮度归一化,直方图均衡化,能量归一化和图像分割。
面部表情特征的提取方法
表情特征提取是表情识别系统中最重要的部分,有效的表情特征提取工作将使识别的性能大大提高,当前的研究工作也大部分是针对表情特征的提取。 目前为止的人脸面部表情特征提取方法大都是从人脸识别的特征提取方法别演变而来,所用到的识别特征主要有:灰度特征、运动特征和频率特征三种阎。灰度特征是从表情图像的灰度值上来处理,利用不同表情有不同灰度值来得到识别的依据。运动特征利用了不同表情情况下人脸的主要表情点的运动信息来进行识别。频域特征主要是利用了表情图像在不同的频率分解下的差别,速度快是其显著特点。在具体的表情识别方法上,分类方向主要有三个:整体识别法和局部识别法、形变提取法和运动提取法、几何特征法和容貌特征法。 整体识别法中,无论是从脸部的变形出发还是从脸部的运动出发,都是将表情人脸作为一个整体来分析,找出各种表情下的图像差别。 其中典型的方法有:基于特征脸的主成分分析(prineipalComponentAnalysis,pCA)法、独立分量分析法(Indendent ComPonent Analysis,ICA)、Fisher线性判别法(Fisher's Linear Discriminants,FLD)、局部特征分析 (LoealFeatureAnalysis,LFA)、Fishe诞动法(Fisher^ctions)、隐马尔科夫模型法(HideMarkovModel,HMM),聚类分析法和流形法。 局部识别法就是将人脸的各个部位在识别时分开,也就是说各个部位的重要性是不一样。比如说在表情识别时,最典型的部位就是眼睛、嘴、眉毛等,这些地方的不同运动表示了丰富的面部表情。相比较而言,鼻子的运动就较少,这样在识学资学习网
别时就可以尽量少的对鼻子进行分析,能加快速度和提高准确性。其中最典型的方法就是脸部运动编码分析法(FacialAetionseodesystem,FAes)和MPEe一4中的脸部运动参数法其他的还有局部主分量分析法 (LocalPCA)、Gabor小波法和神经网络法。 形变提取法是根据人脸在表达各种表情时的各个部位的变形情况来识别的,主要的方法有:主分量分析法(PeA)、o汕or小波、运动模板法 (Aetivesh叩 eModel,AsM)['6]和点分布模型(PointDistributionModel,PDM)法。 运动法是根据人脸在表达各种特定的表情时一些特定的特征部位都会作相应的运动这一原理来识别的。典型的识别方法有:光流法 (OPticalFlow)「'7]['8]和MPEG一4中的脸部运动参数法 (FaceAnimationparameterFAp)。 几何特征法是根据人的面部的各个部分的形状和位置(包括嘴、眼睛、眉毛、鼻子)来提取特征矢量,这个特征矢量来代表人脸的几何特征。根据这个特征矢量的不同就可以识别不同的表情。重要的方法是:基于运动单元(AU)的主分量分析法。 在容貌特征法中,主要是将整体人脸或者是局部人脸通过图像的滤波,以得到特征矢量。常用的滤波器是Gabor小波。当然,这三个发展方向不是严格独立,它们只是从不同侧面来提取所需要的表情特征,都只是提供了一种分析表情的思路,相互联系,相互影响。有很多种方法是介于两者甚至是三者之间。例如说面部运动编码系统法是局部法的一种,同时也是而是直接简单接下来的分析将不从这三个方向上去说明,所以,从脸部运动上考虑的等等。. 人类表情识别技术
描述各种主要的算法。流形学习算法在实现降维的过程中,较好的保留了本样本间的非线性结构,这对于静 用流形学习算法来处理表情特征但是,态表情图像和序列表情图像的分析都有独特的优势。可从训练集中得到适用意思大多数流形学习算法不像线性降维法那样,有个问题需要解决:为了得到某些待测样本的流形嵌入向量,只能以批处理的方
式进行。于待测样本的投影向量, 必须要将该样本加入其中。 表情分类与
识别表在人脸表情特征提取阶段,要准确提取出人类表情图像中最能有效表征
表情信息的特征,在表情分类识别阶段根据表情特征提取情识别的准确与否讲直接影响后续的表情分类结果。分类方法的好坏及分类结果的准确程度也将影响表
情分类结阶段提取的表情特征进行分类, 果。 应用前景四.表情检测防疲劳驾驶
百度移动部门技术工程师整合百度“表情识别 LBS 百度云”等基础技术,研发出一款提示“疲劳驾驶”的解决方案,可以对接在汽车开放平台上使用,不过目前尚在概念阶段。 通过用摄像头实时捕捉驾驶者的面部表情特征,解析表情背后的人物状态。一旦发现司机有可能疲劳驾驶(闭眼超时、眉头下垂、睁眼被动等),后台技术会做出判断,触发启动一系列干预手段:语音播报提示,播放嘹亮音乐为驾驶者提神;发送短信给驾驶者事先设定的紧急联系人,请求帮助唤醒或解救(有可能司