纳米纤维素的表征-制备及应用研究
- 格式:doc
- 大小:30.00 KB
- 文档页数:5
摘要随着环境的日益恶化以及化石能源的匮乏,为了减缓二氧化碳引起的温室效应及分离能源气体中的杂气(二氧化碳),二氧化碳的捕集与分离已经成为当今研究热点。
纳米纤维素具有比表面积大、机械强度高、可再生等优异性能,结合纳米材料和生物质材料的优势,利用纳米纤维素表面丰富的羟基基团制备绿色再生的高性能二氧化碳吸附剂具有重要研究意义。
本文采用化学和机械方法,以微晶纤维素和纸浆为原料,制备纳米纤维素晶体和纤丝,并对其形态及理化性质进行分析;将纳米纤维素悬浮液经悬浮滴定、叔丁醇置换和冷冻干燥等工艺制备纳米纤维素气凝胶,对比分析纳米纤维素晶体和纤丝制备气凝胶的特性变化规律;通过水浴加热处理将氨基硅烷改性剂接枝到纤维素链上,制得氨基功能化纳米纤维素气凝胶,测试其对二氧化碳吸附性能及对甲烷/二氧化碳混合气体的选择吸附能力,得出主要结论如下:(1)微晶纤维素经硫酸水解制备纳米纤维素晶体(CNC),呈短棒状,直径范围20-40nm,长度范围多在200-400nm,在强酸的作用下,部分表面的极性基团可能被取代,产生纤维素酯;纸浆经化学预处理结合机械研磨制备纳米纤维素纤丝(CNF),呈现长纤丝状,易团聚不易区分,直径范围50-70nm,长度范围多在1-2μm。
CNC和CNF的基本化学结构仍为纤维素Iβ型,结晶度都相较原料有不同程度的升高。
(2)以不同比例混合的CNC和CNF悬浮液为原料,经凝胶干燥得到纳米纤维素气凝胶。
通过分析表明:气凝胶内部呈现不规则的三维网络结构,N2吸脱附曲线均为Ⅳ型,且具有H1型滞留环;随着混合体系中CNF的增多,气凝胶形态由近似“球形”趋于近似“米粒状”,平均直径也随之升高。
当混合比为CNC:CNF=1:3时,气凝胶表现出比其他混合组份更优的性能,内部孔结构更加均匀,孔隙更加丰富,比表面积和压缩强度均最大。
(3)红外谱图上新吸收峰(NH2、NH、Si-O、Si-C等)的出现,以及X-射线光电子能谱上N、Si峰的出现可以证明:在纤维素链上成功接枝了氨基硅烷(AEAPMDS)。
纤维素纳米晶体的制备及其应用纤维素纳米晶体是一种高度结晶度的纤维素微晶,它在形态和化学性质上都与传统的纤维素不同。
纤维素纳米晶体以其特殊的性质,成为广泛应用于材料科学、化学和生物学等领域中的新型材料。
本文将介绍纤维素纳米晶体的制备及应用。
一、纤维素纳米晶体的制备纤维素纳米晶体的制备主要分为两个步骤:纤维素的水解和纳米晶体的制备。
其中,纤维素的水解包括预处理和水解两个步骤。
在预处理步骤中,纤维素通常与有机溶剂或表面活性剂进行混合,以改善纤维素的可溶性。
此外,还可以通过酸处理、氧化和酶解等方式改变纤维素的结构。
而纤维素的水解则是将纤维素微晶化为纳米晶体的过程。
通常采用的是酸水解法或酵素水解法。
酸水解法中,通常采用硫酸和盐酸作为水解剂,将纤维素水解为纳米晶体。
酵素水解法则是通过利用纤维素水解酶将纤维素水解为纳米晶体。
二、纤维素纳米晶体的应用纤维素纳米晶体是一种新型材料,具有广泛的应用前景。
纤维素纳米晶体的应用主要分为三个方面。
1. 材料科学领域纤维素纳米晶体具有高度结晶度和机械温度稳定性等优异性质,可以应用于新型复合材料、薄膜材料和晶体材料等领域。
具体来说,纤维素纳米晶体可以用于制备生物基材料、高强度的超纤维料、模板和纳米复合体等材料。
此外,纳米晶体还能应用于制备光学或电子器件等。
2. 化学领域纤维素纳米晶体有着良好的化学稳定性,并且具有很高的表面活性。
利用这些优势,纤维素纳米晶体可以应用于稳定乳液和乳化剂的制造,还可以用于制备高度效率的电解质、金属纳米粒子催化剂等化学领域中的新型材料。
3. 生物学领域纤维素纳米晶体具有天然来源和良好的生物相容性,因此在生物学领域中具有很高的应用潜力。
纤维素纳米晶体可以用于制备生物传感器、药物传递系统、细胞培养基和药物载体等生物学材料。
此外,纤维素纳米晶体还能与DNA和RNA等生物分子有良好的互作用,并且由于粒子的相互作用,所以可以形成高度结晶的纳米物质,具备良好的生物学性质和稳定性。
浅谈纳米纤维素制备及壳聚糖/NCC复合膜的性能研究本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!随着经济的不断发展,资源短缺逐渐显露,人们开始关注环境问题,环保、绿色成为人们关注的焦点。
无论是在生活的哪个方面,环保变得越来越重要。
在包装方面也是如此。
研究人员探索研制更为环保、绿色的包装材料,以满足社会和环境的需要。
所以,人们将目光转移到了天然可再生的高分子材料上,掀起了天然可再生的高分子材料研究与应用的狂潮。
在众多天然且可再生的高分子材料当中脱颖而出的当属纤维素和壳聚糖。
纳米纤维素是一种直径为1~100nm,长度为几十到几百纳米的刚性纤维素。
现代研究已表明,纳米纤维素具有许多优良性能,如比表面积较大、结晶度高、亲水性好、模量高、强度高、结构超精细和透明性好等,这些优异的性能使其在食品、医药、造纸、纺织及新材料制备等方面具有很好的应用前景。
纳米纤维素是天然生物材料,也是环境友好型的可再生资源,用纳米复合包装材料代替人工合成的包装材料具有广阔的应用前景。
加之壳聚糖具有可降解性和食品包装安全性,将它和纳米纤维素复合,可以极大地提高两种材料在包装方面的综合性能。
壳聚糖已在包装领域有所应用,而纳米纤维素在包装领域应用的研究还处于起步阶段。
本研究将以废弃瓦楞纸板作为来源进行纳米纤维素的制备及与壳聚糖共成膜的性能进行研究,以期扩大可利用的资源及废弃物的高效回收利用。
1试验部分材料瓦楞纸板来自废弃包装纸箱,为B型瓦楞;杨木浆板,厚2mm;浓硫酸(化学纯,含量≥%~%),北京化工厂;去离子水,生化专用。
壳聚糖(脱乙酰度%~%,~,黏度50~800mPa·s),国药集团化学试剂有限公司;冰醋酸(分析纯),北京化工厂;丙三醇(分析纯),北京化工厂。
制备方法纳米纤维素的制备将瓦楞纸板及杨木浆板与质量分数为60%硫酸按质量比为1∶25,放入三口瓶中在40℃下水解4h。
纤维素纳米晶的制备及其应用研究纤维素是天然有机高分子化合物,是高分子素材领域的重要组成部分。
随着科技的不断发展,研究人员将目光投向了纤维素的纳米结构,研究纤维素纳米晶的制备及其应用,成为当今高分子材料领域的热点研究方向。
一、纤维素纳米晶的制备纤维素纳米晶的制备方法主要有两种:水热法和机械法。
1、水热法水热法即将纤维素纤维流化后,通过调控水解反应、重结晶、酸碱中和等条件,使得纤维素在水中形成纳米晶。
水热法具有制备效率高、工艺简单等优点。
2、机械法机械法将纤维素在高速剪切和挤压条件下,使其成为大量纳米晶颗粒分散在水中。
机械法能够制备出结晶度较高、纯度较高的纤维素纳米晶材料。
二、纤维素纳米晶的应用纤维素纳米晶具有许多优异的性质,如高生物相容性、良好的加工性、优异的力学性能等,因此在许多领域得到了广泛的应用和研究。
1、生物医学领域纤维素纳米晶在生物医学领域中得到了广泛的应用。
纤维素纳米晶材料可以用于生物医学材料的制备,如修复骨骼缺损、制备生物胶原和蛋白质等。
同时,纤维素纳米晶还可以用于制备球形药物载体,适用于静脉注射、肠道给药等制剂。
2、复合材料领域纤维素纳米晶可以和其他高分子材料结合,制备多种不同的复合材料。
这些复合材料广泛应用于电子、食品、建筑材料等众多领域。
3、油墨领域纤维素纳米晶具有优异的填充性能,且颗粒的大小和形状具有可调性,可以应用于油墨的制备。
纤维素纳米晶适用于印刷、染料和涂料等领域。
4、纳米复合材料领域将纤维素纳米晶与纳米粒子结合制备纳米复合材料,具有增强的复合性能。
这些纳米复合材料可以应用于电子、食品、建筑材料等领域。
纤维素纳米晶与纳米金属颗粒结合,可以制备出具有优异电子传导性能的复合材料。
结语随着科学技术的不断发展,纤维素纳米晶的制备和应用逐渐变得成熟。
从上述几方面来看,纤维素纳米晶的应用前景广阔,未来将会有更多的基于纤维素纳米晶的高科技材料面世,因此对纤维素纳米晶的研究和应用也将不断深入。
纳米纤维素的制备、降解及抗菌性的研究的开题报告1. 研究背景和意义纳米纤维素是一种由纤维素纤维制备而成的纳米材料,由于其优异的机械性能、生物相容性和低毒性等优点,被广泛应用于生物医学领域、食品工业及纸浆制造等领域。
同时,纳米纤维素也具有良好的降解性能和抗菌性能,能够有效地减少环境污染和食品细菌污染。
因此,深入研究纳米纤维素的制备、降解和抗菌性能具有重要的实际应用价值和科学意义。
2. 研究目的和内容本研究主要目的是探究纳米纤维素的制备方法和工艺,分析其降解性能和抗菌性能,并研究其在生物医学、食品工业和纸浆制造等领域的应用前景。
具体内容包括:(1)纳米纤维素的制备方法及其工艺参数的优化。
(2)纳米纤维素的降解特性研究,探究其在不同环境下的降解情况。
(3)纳米纤维素的抗菌性能研究,分析其对不同细菌的抑制效果。
(4)对纳米纤维素在生物医学、食品工业和纸浆制造等领域的潜在应用进行论述和分析。
3. 研究方法和技术路线(1)制备纳米纤维素。
采用化学水解和酸水解法制备纳米纤维素,并通过扫描电镜、透射电镜、X射线衍射仪等技术分析纳米纤维素的形貌和结构。
(2)降解性能研究。
将纳米纤维素置于不同环境中,如酸性环境、碱性环境、微生物环境等进行降解性能的研究,并通过红外光谱、热重分析等技术分析其降解产物。
(3)抗菌性能研究。
采用滴定法或胶板法对纳米纤维素的抗菌性能进行研究,并通过荧光显微镜、扫描电镜等技术观察和分析纳米纤维素对不同细菌的抑制效果。
(4)应用前景分析。
通过文献综述和市场调研等方法,分析纳米纤维素在生物医学、食品工业和纸浆制造等领域的应用前景。
4. 预期结果(1)成功制备纳米纤维素,获得其稳定的形貌和结构。
(2)研究纳米纤维素在不同环境下的降解特性,探究其降解产物和降解动力学。
(3)研究纳米纤维素的抗菌性能,分析其对不同细菌的抑制效果。
(4)分析纳米纤维素在生物医学、食品工业和纸浆制造等领域的应用前景,为其进一步的应用和开发提供理论和实践基础。
纳米纤维素材料的特征与应用综述摘要纤维素是最丰富的天然高分子,因其具有可再生可降解的特性被受到广泛关注,由于尺寸效应,纳米纤维素具有多种特殊的物理化学性质。
本文旨在对纳米纤维素的分类和应用等方面进行综述。
关键词:纳米纤维素;静电纺丝;酸水解;纳米复合材料目前,由于使用常规的石油基聚合物产品已经产生了生态威胁,如全球气候变暖和塑料污染等,因此,可再生和可生物降解材料正受到科学界和工业界的广泛关注。
纤维素主要由植物的光合作用合成,是最丰富的天然聚合物,并已经被用于为这些问题提出合理的解决方案。
纳米纤维素是指有一维尺寸小于或等于100 nm的不同类型的纤维素纳米材料,具有高比表面积、高强度、轻质、价格低廉、良好的生物相容性和超精细结构等优点。
纳米纤维素的种类有很多,按照晶型可以分成四种:纤维素Ⅰ,Ⅱ,Ⅲ和Ⅳ型[1]。
纤维素Ⅰ又叫原生纤维素,它在自然界中形成具有Ⅰα和Ⅰβ两个同质异晶体。
纤维素Ⅱ又称再生纤维素,它是再塑晶体或者经过氢氧化钠碱化后出现的晶体,具有最稳定的晶体结构。
按照提取方法可将纳米纤维素分为微纤化纤维素(MFC)和纳米纤维素晶体(CNC),微纤化纤维素是以机械方式制备得到的纳米纤维素,而纳米纤维素晶体是通过酸水解或酶解的方法得到的。
纳米纤维素超分子以其形貌划分,主要包括纳米纤维素晶体和纳米纤维素复合物。
强酸水解细菌、植物、动物纤维素和微晶纤维素可制备纳米纤维素晶体(晶须),这种晶体长度为10 nm – 1 μm,而横截面尺寸有 5 nm - 20 nm,长度与横截面尺寸的比为1-100,比表面积约为150 m2/g;将纤维素与复合的另一材料混合,加入适宜的纤维素化学溶剂,通过溶剂浇铸后真空或者常压下挥发掉溶剂、冷冻干燥、热压法或者挤压法可获得在一维尺寸上为1-100 nm 的纤维素的复合物。
纳米纤维素的制备方法包括机械法、化学法、酶催化法和静电纺丝法[2]。
通过以上方法制备的最为典型的纳米纤维素有纤维素纳米纤维(CNF S)、纤维素纳米晶体(CNC S)和细菌纤维素(BNC)。
纳米纤维素合成方法及其在复合材料领域的应用论文关于《纳米纤维素合成方法及其在复合材料领域的应用论文》,是我们特意为大家整理的,希望对大家有所帮助。
摘要:纳米纤维素包含纳米纤维素晶体、纳米纤维素纤维和细菌纳米纤维素 3 种类型。
由于其具有高强度、大比表面积、高透明性等优良性能,成为目前纳米材料领域研究的热点。
本文综述了近年来国内外纳米纤维素的主要制备方法,并对纳米纤维素在复合材料领域中的应用研究进行了总结。
关键词:纳米纤维素;制备;纳米复合材料;应用。
Abstract: There are three types of nano cellulose: nano crystalline cellulose,nano cellulose fiber and bacterial nano cellulose. Due to itshigh strength,high specific surface area,high transparency and other excellent properties,nano cellulose becomes one of the hotspots in ma-terial research field. This paper reviewed the recent progress in its preparation methods,and its application in the field of composite materi-als.Key words: nano cellulose; preparation; nano compositematerials; application.纤维素(Cellulose)是一种天然高分子化合物,已经成为人类社会不可或缺的重要资源。
纤维素主要来源于植物(如棉、麻、木、竹等),与合成高分子材料相比,具有可再生、可降解、成本低廉、储量丰富等优点。
纳米纤维素的表征\制备及应用研究 1、前言 纤维素主要由植物的光合作用合成,是自然界取之不尽,用之不竭的可再生天然高分子,除了传统的工业应用外,任何交叉结合纳米科学、化学、物理学、材料学、生物学及仿生学等学科进一步有效地利用纤维素资源,开拓纤维素在纳米精细化工、纳米医药、纳米食晶、纳米复合材料和新能源中的应用,成为国内外科学家竞相开展的研究课题。
在纳米尺寸范围操纵纤维素分子及其超分子聚集体,设计并组装出稳定的多重花样,由此创制出具有优异功能的新纳米精细化工品、新纳米材料,成为纤维素科学的前沿领域[1]。
1.1 纳米纤维素的特性 纳米纤维素是令人惊叹的生物高聚物,具有其它增强相无可比拟的特点:其一,源于光合作用,可安全返回到自然界的碳循环中去;其二,既是天然高分子,又具有非常高的强度,杨式模量和张应力比纤维素有指数级的增加,与无机纤维相近。纳米管是迄今能生产的强度最高的纤维,纳米纤维素的强度约为碳纳米管强度的25%,有取代陶瓷和金属的潜质;其三,比表面积巨大,导致其表面能和活性的增大,产生了小尺寸、表面或界面、量子尺寸、宏观量子隧道等效应[2]。
1.2 纳米纤维素分类 纳米纤维素超分子以其形貌可以分为以下3类:纳米纤维素晶体(晶须)、纳米纤维素复合物和纳米纤维素纤维。
1.2.1 纳米纤维素晶体 利用强酸水解生物质纤维素,水解掉生物质纤维素分子链中的无定形区,保留结晶区的完整结构,可以制得纳米微晶纤维素。这种晶体长度为10nm~1μm,而横截面尺寸只有5~20nm,长径比约为1~100,并具有较高的强度。若再进一步对纳米微晶纤维素进行强酸水解处理或高强度超声处理,将会得到形态尺寸更加精细的纤维素纳米晶须[3],纳米晶须具有比纳米微晶纤维素更高的比表面积和结晶度,使其在对聚合物增强方面可发挥出更大的作用。
1.2.2 纳米纤维素复合物 纳米尺寸的纤维素用于复合物性能增强,归因于纳米纤维索高的杨氏模量和微纤丝的均匀分布。纳米纤维素复合物的强度高,热膨胀系数低,透光率高,环境友好,完全降解,源于可持续性资源,废弃后不伤害环境,同时能够容易处置或堆肥[4]。 普通有机聚合物膜片的杨式模量一般在5GPa以下,而纯纳米纤维素胶制成的干膜,其杨氏模量可超越15GPa。经热压处理后,纳米纤维素膜的杨氏模量可与金属铝相当,如此高的杨式模量是由于纳米级超细纤维丝的高结晶度和纤维之间的强大拉力所造成的。因此纳米纤维素复合物的强度高,热膨胀系数低,同时透光率高。
1.2.3 纳米纤维素纤维 纳米纤维素纤维是纤维素溶液中电纺纱制备直径为80—750nm的微细纤维素纤维。将纤维素连接溶解于乙二胺/硫氰酸盐、N-甲基吗啉-N-氧化物/N-甲基吡咯烷酮/水等纤维素溶剂中,调整溶剂系统、纤维素的分子量、纺纱条件和纺纱后处理可以获得微细的、干的、稳定的纳米纤维素纤维。既可以用作纺织的原材料,也可以用作超滤膜等膜分离。
2、纳米纤维素的制备 从制备来源来说,纳米纤维素可以分为植物纤维素、动物纤维素以及细菌纤维素,现在兴起的还有一种是纳米纤维素复合材料。
2.1 用细菌制备纳米纤维素 1886年,Brown首次报道了由木醋杆菌合成了一种胞外呈凝胶状的物质,但由于无合适的实验手段以及产量较低,因此未受到重视。直到20世纪中叶,人们才开始细菌纤维素的进一步研究。Hestrin[5]等人以木醋杆菌为模式菌,证实了在葡萄糖和氧气存在时醋酸菌合成了纤维素。1957年Colvin在含有木醋杆菌的非细胞抽提物、葡萄糖及ATP的样品中检测到了纤维素的合成。19世纪40年代细菌纤维素产品开始生产和利用,但直到1967年才确定凝胶状膜的化学本质是真正的、纯粹的细菌纤维素。
2.2 用植物制备纳米纤维素 相对于细菌纤维素来说,植物纤维素必须经过化学处理或者机械粉碎才能得到纳米尺度的纤维素。
2.2.1 物理处理 1980年,用高速搅拌机处理木浆,Thrbak等研究出了一种微纤维化的纤维素,得到了纳米级的网状结构的纤维素,其纤维直径在10—100nm之间,可以用于制备透明的高强度纳米复合物。将竹子纤维及其单纤维用石盘高速研磨,并结合热碱的预处理,Takahashi等以竹子为原料制得了微纤化的纤维素。
2.2.2 化学制备 最早的纳米纤维素胶体悬浮液是由Nickerson和Habde在1947年用盐酸和硫酸水解木材与棉絮制造出的,RaIlbv等在1952年用酸解的方法制备了纳米纤维素晶体。沿用这一方法,Favier等从1995年开始研究纤维素晶须增强的纳米复合物。Grav等从1997年起通过硫酸酸解棉花、木浆等原料获得了不同特性的纳米纤维素,并研究了其自组装特性和纤维素液晶的合成条件。Bondeson等在2006年优化了水解挪威云杉制备微晶纤维素的条件,获得快速高得率的制备纳米纤维素胶体的方法。
还有一种方法是酶解,即利用纤维素酶选择性地酶解掉无定形的纤维素而剩下部分纤维素晶体。Brumer等研究通过转糖基酶以化学和酶同时改性的方式活化纳米纤维素晶体表面,从而不至于在纤维素晶体表面修饰的同时破坏基元原纤和晶体内部结构。
2.2.3 其它方法 其它还有人工合成纳米纤维素和静电纺丝制备纳米纤维素纤维等方法,人工合成方法最容易调控纳米纤维素的结构、晶型和粒径分布等,而静电纺丝以人工的方法可以做出细的纤维。但这两种方法还不完善,还在研究当中[6]。
3、应用 3.1 生物应用 纳米纤维素在生物方面的用途极为广泛,包括生物传感器的制造、生物载体、生物医学材料、无机材料的生物模板和无机材料复合制备生物活性的组织学支架、磁性药物载体,甚至工业净化等等。几乎所有纳米纤维素所应用的领域都涉及到了其生物特性。
由于纳米纤维素很好的生物适应性以及其纳米尺度的特殊结构,在用于生物载体方面体现出了巨大的潜力等。由于是纳米级别,有生物活性的纤维素颗粒能清理皮肤的毛孔,打开气孔,穿过皮下的脂质层和上皮层。生物载体的该功效可以被应用到高级生物材料或者用于高级护理及皮肤治疗的化妆药物。
在细菌纤维素的应用中,很少使用到细菌纤维素球体,但是在酶固定领域经常应用细菌纤维素球体。因此,细菌纤维素小珠是一个在工业应用中有实际应用潜力的固定酶支撑物。
纳米纤维素可以作为酶的固定化及生物活性分子的载体,应用吸附则可以大大的拓宽其使用范围。Tabuch介绍了一种新的对生物分子(DNA和蛋白质等)敏感的探测体系,利用CD光盘和生物纳米纤维集成在实验室芯片上。这种新方法通过利用纳米尺度的纤维和孔,限制特定的细菌纤维素纤维片段组成了一个控制CD 烧制的微通道。与现行的通用方法相比,检测DNA的最大敏感度是传统方法的6倍[7]。 3.2 医学材料 由于纳米纤维素良好的生物相容性以及其独特的纳米结构及性质,一些研究者试图将其应用在生物组织或功能支架材料、药物载体以及纳米荧光指示剂医药领。细菌纤维素还可以用于引导组织再生、齿根模塑加工和脑组织周围的硬膜材料。Millon等用纳米纤维素与聚乙烯醇制备的纳米复合材料的力学性能与像心脏瓣膜这样的心脏血管组织相似,这无疑为纳米纤维素在医药领域的应用提供了条件[8]。另外,生物药领域已经开始探索纤维亲水的性质来制备水凝胶。水凝胶是一种在医药和制药应用中像药物载体、组织支架、调节器、传感器、瓣膜等合适的材料[9]。
3.3 增强剂 过去的几十年,已经有越来越多的人将纳米纤维素作为聚合物基底的增强剂。由于纳米纤维素的纳米尺度网状结构,使它拥有优越的机械性能,不仅在组织工程学支架方面得到重视,在作为增强光学透明性材料或者热塑性塑料的增强中也得到了很好的应用,并且纳米纤维素不会较大地影响到原来材料的其它特性。同时它的可生物分解性质让它越来越受到重视。为了增加增强剂的来源,很多人已经研究了一些植物用于制备纳米纤维素的适用性,包括糖用甜菜、马铃薯和仙人掌的刺等。
Zuluaga用机械方法和生物浸解从香蕉花轴中提取出了管束作为纤维素的来源。使用了不同的化学碱处理,联合高速搅拌器的机械处理过程,然后用ATM、TEM、FTIR和X射线衍射进行了形态和机械性能的表征。结果显示,从香蕉花轴中得到的纤维素微纤是一种很有前景的绿色复合材料增强剂和一种有趣的可替换的工业应用品,可以用于食物包装或者食物和化妆品的添加剂。
对于很多生物基高分子和天然纤维在形成复合材料时显示出较差的界面黏合性质问题,Pomme尝试了将细菌纤维素沉淀在天然纤维周围的方法来改性天然纤维的表面,提高对再生聚合物的粘附性,如将天然纤维在发酵过程中作为细菌的基底。
此外,Svagan还用纤维素纳米纤维来增强细胞壁仿生泡沫材料。纳米复合泡沫材料通过冻干技术制备并且在细胞壁尺度上展现了复合结构。纳米纤维素网络展现了明显的力学性能,和均匀的淀粉相比表现出模量明显增加并且屈服增强。还有一些纳米纤维素增强透明塑料被用于合成韧性基底,可以用于玻璃表面涂层,防止破碎伤人。
4、结语 从纳米纤维素的应用可以预测未来其在生物和医学方面的发展将是占主流的。在生物应用中,纳米纤维素有可能在载体及生物传感器方面有较大的发展。而在医学领域,纳米纤维素与无机物进复合制造人工组织无疑会是一个热点。另外,纳米纤维素所具有的独特的性能和其易于其它材料混合很有可能会导致一些