七年级数学单元测试题
- 格式:docx
- 大小:136.82 KB
- 文档页数:10
一、选择题1.已知4,6m n x x ==,则2-m n x 的值为( )A .9B .34C .83D .432.下列运算正确的是( ) A .2222a a -= B .()32628b b -=-C .222()a b a b -=-D .()a b a b --=--3.若计算关于x 的代数式()2(1)2x x mx -++得2x 的系数为3,则m =( ) A .4- B .2- C .2 D .44.下列计算正确的是( )A .326a a a ⋅=B .()()2122a a a +-=- C .()333ab a b =D .623a a a ÷=5.23ab a ⋅的计算结果是( ) A .3abB .6abC .32a bD .33a b6.下列运算正确的是( ) A .325a a a =B .()325x x =C .824x x x ÷=D .()326a ba b =7.下列运算中正确的是( ) A .235x y xy +=B .()3253x yx y =C .826x x x ÷=D .32622x x x ⋅=8.已知a+2b-2=0,则2a ×4b ( ) A .4B .8C .24D .329.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( ) A .41a + B .43a + C .63a + D .2+1a 10.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( )A .6163m n -B .6323m n -C .383m n -D .6169m n -11.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .()()22-a b a b a b +-=B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()2222a b a ab b -=--二、填空题13.在代数式求值时,可以利用交换律,将各项交换位置后,把一个多项式化成“()222a ab b±++其他项”的形式,然后利用完全平方公式得到“()2a b ±+其他项”,最后整体代入求值.例如对于问题“已知2a b +=,1c =,求2222a c b ab +++的值”,可按以下方式求解:2222a c b ab +++2222a ab b c =+++22()a b c =++=22215+=.请仿照以上过程,解决问题:若3m n t +=-,7n k t -=-,则22244241m n k mn mk nk +++--+=______.14.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=________.15.如果2(1)(2)x x mx m --+的乘积中不含2x 项,则m 的值为____. 16.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.17.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 18.已知a +b =5,且ab =3,则a 3+b 3=_____.19.如图为杨辉三角表,它可以帮助我们按规律写出()n a b +(其中n 为正整数)展开式的系数,请仔细观察表中规律可得:1()a b a b +=+;222()2a b a ab b +=++; ……;如果55432345()10105y a b a xa b a b a b ab b +=+++++…….那么x y + =________.20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.计算题 (1)32(2)(5)x xy -(2)()(2)x y x y -+22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 23.计算:(1)2031(2021)|13|(2)4; (2)2222()()ab a abb ab a abb .24.先化简,再求值()()()()()21231132x x x x x ----+-+,其中23x =-.25.已知a +b =7,ab =11,求代数式211()22a ab b --的值. 26.计算 (1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:∵4,6m n x x ==,2-m n x =2m n x x ÷=2()m n x x ÷,∴原式=246=83; 故选:C . 【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握公式,灵活逆向使用公式是解题的关键.2.B解析:B 【分析】A.根据合并同类项解题;B.根据积的乘方解题;C.根据完全平方公式;D.根据去括号法则,判断即可. 【详解】解:A. 2222a a a -=,原选项计算错误,不符合题意; B. ()32628b b -=-,原选项计算正确,符合题意;C. 222()2a b a ab b -=-+,原选项计算错误,不符合题意;D. ()a b a b --=-+,原选项计算错误,不符合题意; 故选:B . 【点睛】本题考查合并同类项、积的乘方、完全平方公式、去括号法则等.熟记法则能分别计算是解题关键.3.B解析:B 【分析】利用多项式乘以多项式法则将原式化简,根据2x 的系数为3即可求出m 的值; 【详解】原式=()()2322322=122x mx x mx x m x m x x ++----+-+- ,∵ 2x 的系数为3, ∴ 1-m=3, 解得m=-2, 故选:B . 【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.4.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;5.D解析:D 【分析】直接利用单项式乘单项式计算得出答案. 【详解】 解:3ab•a 2=3a 3b . 故选:D . 【点睛】本题主要考查了单项式乘单项式,正确掌握相关运算法则是解题的关键.6.A解析:A 【分析】根据幂的运算性质判断即可; 【详解】325a a a =,故A 正确;()326x x =,故B 错误;826x x x ÷=,故C 错误;()3263a b a b =,故D 错误;故答案选A . 【点睛】本题主要考查了幂的运算性质,准确分析判断是解题的关键.7.C解析:C 【分析】按照合并同类项,幂的运算法则计算判断即可. 【详解】∵2x 与3y 不是同类项, ∴无法计算, ∴选项A 错误; ∵()3263x yx y =,∴选项B 错误; ∵88262x x x x -==÷, ∴选项C 正确;∵32325222x x x x +⋅==, ∴选项D 错误; 故选C. 【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键.8.A解析:A 【分析】把a+2b-2=0变形为a+2b=2,再将2a ×4b 变形为22a b +,然后整体代入求值即可. 【详解】 解:∵a+2b-2=0, ∴a+2b=2, ∴2a ×4b =222=2=4a b + 故选:A . 【点睛】此题主要考查了同底数幂的逆运算,熟练掌握运算法则是解答此题的关键.9.C解析:C 【分析】根据题意列出关系式,化简即可得到结果; 【详解】 根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C . 【点睛】本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.10.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.11.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】 ∵1x =,1y =,∴x+y=∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.12.C解析:C 【分析】根据阴影部分的面积的不同表示方法,即可求出答案. 【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b )2 图中的阴影部分面积也可以表示为:a 2-2ab+b 2 可得:(a-b )2=a 2-2ab+b 2故选:C【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积二、填空题13.17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4再两边平方展开最后整体代入即可【详解】解:∵m+n=3-tn-k=t-7∴(m+n)+(n-k)=3-t+t-7即m+2n-k=-4解析:17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4,再两边平方展开,最后整体代入即可.【详解】解:∵m+n=3-t,n-k=t-7,∴(m+n)+(n-k)=3-t+t-7,即m+2n-k=-4,∴(m+2n-k)2=(-4)2,∴m2+4n2+k2+4mn-2mk-4nk=16,∴m2+4n2+k2+4mn-2mk-4nk+1=16+1=17,故答案为:17.【点睛】本题考查代数式求值,将原代数式进行适当的变形是得出正确答案的关键.14.【分析】由新规定的运算可得3a=53b=6m=32a-b再将32a-b转化为后再代入求值即可【详解】解:由于(35)=a(36)=b(3m)=2a-b根据新规定的运算可得3a=53b=6m=32a-解析:25 6【分析】由新规定的运算可得3a=5,3b=6,m=32a-b,再将32a-b,转化为2(3)3ab后,再代入求值即可.【详解】解:由于(3,5)=a,(3,6)=b,(3,m)=2a-b,根据新规定的运算可得,3a =5,3b =6,m=32a-b , ∴222(3)5253366a a bb m -====, 故答案为:256. 【点睛】本题考查了幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.15.【分析】按照多项式乘以多项式的法则展开化简合并同类项令项的系数为零即可【详解】解:∵==又∵的乘积中不含项∴-(2m+1)=0解得m=故答案为:【点睛】本题考查了整式的乘法熟练掌握多项式乘以多项式的解析:12-. 【分析】按照多项式乘以多项式的法则,展开化简,合并同类项,令2x 项的系数为零即可. 【详解】解:∵2(1)(2)x x mx m --+=32222x mx mx x mx m -+-+- =32(21)3x m x mx m -++-,又∵2(1)(2)x x mx m --+的乘积中不含2x 项,∴-(2m+1)=0, 解得 m=12-. 故答案为:12-. 【点睛】本题考查了整式的乘法,熟练掌握多项式乘以多项式的基本法则,并准确理解不含某项的意义是解题的关键.16.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键 解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案. 【详解】 ∵222(2)444x x x x bx ±±=+=++,∴b=4±, 故答案为:4±. 【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.17.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算. 【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭,∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222xy⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.18.80【分析】先求出再将a +b =5代入a3+b3公式中计算即可【详解】∵a +b =5且ab =3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键解析:80 【分析】先求出2216a b ab +-=,再将a +b =5,2216a b ab +-=代入a 3+b 3公式中计算即可. 【详解】∵a +b =5,且ab =3,∴2222()253219a b a b ab +=+-=-⨯=, ∴2222()353316a b ab a b ab +-=+-=-⨯=, ∴3322()()51680a b a b a ab b +=+-+=⨯= 故答案为:80. 【点睛】此题考查完全平方公式的变形计算,立方和公式,正确掌握立方和的计算公式是解题的关键.19.7【分析】根据题意写出杨辉三角表的第六行的数从而可以得到x 和y 的值即可求出结果【详解】解:根据杨辉三角表第六行的数依次是15101051∴∴即∴故答案是:7【点睛】本题考查找规律解题的关键是理解杨辉解析:7【分析】根据题意写出杨辉三角表的第六行的数,从而可以得到x 和y 的值,即可求出结果.【详解】解:根据杨辉三角表,第六行的数依次是1、5、10、10、5、1,∴5x =,∴35y +=,即2y =,∴527x y +=+=.故答案是:7.【点睛】本题考查找规律,解题的关键是理解杨辉三角表,按照规律写出第六行的数. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.(1)4240x y ;(2)222x xy y --【分析】(1)首先进行积的乘方运算,然后再进行单项式乘以单项式运算即可得到答案; (2)根据整式多项式乘以多项式运算法则计算可得.【详解】解:(1)32(2)(5)x xy -328(5)x xy =--4240x y =;(2)()(2)x y x y -+222+2x xy xy y =--22=2x xy y --【点睛】本题主要考查整式的乘法运算,解题的关键是熟练掌握整式的乘法运算顺序和法则. 22.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=,0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.(1)7;(2)32a .【分析】(1)根据绝对值、零指数幂、负整数指数幂、立方的运算分别进行计算,然后根据实数的运算法则求得计算结果;(2)先根据多项式乘以多项式的法则进行计算,再合并同类项即可.【详解】解:(1)2031(2021)|13|(2)416128=+--7=(2)2222()()a b a ab b a b a ab b322223a a b ab a b ab b =-++-++322223a a b ab a b ab b ++---3333a b a b =++-32a =.【点睛】考查了整式的混合运算以及负整数指数幂、零指数幂、立方、绝对值运算等知识,熟练运用这些法则是解题关键.24.13718【分析】先根据多形式的乘法法则、平方差公式、完全平方公式计算,再去括号合并同类项即可.【详解】解:()()()()()21231132x x x x x ----+-+ =()()22213261692x x x x x x --+---++ =222193261322x x x x x x --+-+--- =215822x x --+, 当23x =-时, 原式=2122582332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭ =2165932-++ =13718. 【点睛】 本题主要考查了整式的化简求值,涉及到的知识有:平方差公式,完全平方公式,多项式乘以多项式,合并同类项等知识.在求代数式的值时,一般先化简,再把各字母的取值代入求值.25.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+=221)1(22ab b a -+ =223(2221)ab b a ab ++- =23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.26.(1)25x 3y 2-43x 2y 3;(2)5y -x 【分析】(1)按照多项式乘单项式的计算法则进行计算求解;(2)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)(65x 2y -4xy 2)•13xy =25x 3y 2-43x 2y 3 (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )=[x 2-9y 2-(x 2-2xy +y 2)]÷(-2y )=(x 2-9y 2-x 2+2xy-y 2)÷(-2y )=(-10y 2+2xy )÷(-2y )=5y -x【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
七年级数学下册第第七章《平面直角坐标系》单元测试题(含答案)一、选择题(本大题共6小题,每小题3分,共18分)1.下列坐标中,在第三象限的是( )A .(4,5)--B .(4,5)-C .(4,5)D .(4,5)- 2.已知点(3,2)P a a +在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(6,0)-D .(6,2) 3.在平面直角坐标系中,将点(,)A x y 向左平移5个单位长度,再向上平移3个单位长度后与点(3,2)B -重合,则点A 的坐标是( )A .(2,5)B .(8,5)-C .(2,1)-D .(8,1)--4.如图,用方向和距离描述少年宫相对于小明家的位置,正确的是( )A .北偏东55°,2kmB .东北方向C .东偏北35°,2kmD .北偏东35°,2km5.若点P (m ,n )在第三象限,则点Q (﹣m ,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)…,那么点A 2022的坐标为( )A .(1011,0)B .(1011,1)C .(2022,0)D .(2022,1) 二、填空题(本大题共6小题,每小题3分,共18分)7.点A (1,﹣2)到x 轴的距离是 .8.在平面直角坐标系中,若对于平面内任一点(,)a b 有如下变换:(f a ,)(b a =-,)b ,如 (1f ,3)(1=-,3),则(5,3)f -= .9.在平面直角坐标系中,点(a 2+1,﹣1)一定在第 象限.10.线段AB 平移后得到线段CD ,已知(2,3)A 的对应点为(1,4)C -,则(3,2)B 的对应 点D 的坐标为 .11.已知点P (a ,b )在第三象限,且点P 到x 轴的距离为3,到y 轴的距为5,到点P 的坐标为 .12.在平面直角坐标系中,已知点(2,3)P -,//PA y 轴,3PA =,则点A 的坐标为 .三、(本大题共4小题,每小题6分,共24分)13.建立平面直角坐标系,使点C 的坐标为(4,0),写出点A 、B 、D 、E 、F 、G 的坐标.14.点(2,36)P a a -+到两条坐标轴的距离相等,求点P 的坐标.15.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点”.(1)在点A (﹣2,2),B (,﹣),C (﹣1,5)中,“垂距点”是 ;(2)若D (m ,m )是“垂距点”,求m 的值.16.如图,△ABC 的顶点A (﹣1,4),B (﹣4,﹣1),C (1,1).若△ABC 向右平移4个单位长度,再向下平移3个单位长度得到△A 'B 'C ',且点C的对应点坐标是C '.(1)画出△A 'B 'C ',并直接写出点C '的坐标;(2)若△ABC 内有一点P (a ,b )经过以上平移后的对应点为P ',直接写出点P '的坐标;(3)求△ABC 的面积.四、(本大题共2小题,每小题9分,共18分)17.在平面直角坐标系中,已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.求:(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣5)点,且与x轴平行的直线上.18.三角形ABC与三角形A B C'''在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)三角形ABC由三角形A B C'''经过怎样的平移得到?答:.(3)若点(,)P x y是三角形ABC内部一点,则三角形A B C'''内部的对应点P'的坐标为;(4)求三角形ABC的面积.五、(本大题2小题,第19题10分,第20题12分,共22分)19.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O →C→B→A→O的路线移动(移动一周).(1)写出点B的坐标;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当△OBP的面积是10时,直接写出点P的坐标20.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标(用含t的式子表示,写出过程);③当三角形P AB的面积为3.2时,求此时P点的坐标;④P点在运动过程中,三角形P AB面积的最大值是.参考答案一、选择题1-6.ACCDAB二、填空题7.28.(﹣5,﹣3)9.四10.(0,3)11.(﹣5,﹣3)12.(﹣2,6)或(﹣2,0)三.解答题13.解:如图所示,以B为坐标原点,BC所在直线为x轴,过点B且垂直于x轴的直线为y 轴建立平面直角坐标系,则A(﹣2,3),B(0,0),D(6,1),E(5,3),F(3,2),G(1,5).14.解:∵点P(a﹣2,3a+6)到两条坐标轴的距离相等,∴a﹣2=3a+6或a﹣2+3a+6=0得a=﹣4或a=﹣1∴(﹣6,﹣6)或(﹣3,3).15.解:(1)根据题意,对于点A而言,|﹣2|+|2|=4,所以A是“垂距点”,对于点B而言,||+|﹣|=3,所以B不是“垂距点”,对于点C而言,|﹣1|+|5|=6≠4,所以C不是“垂距点”,故答案为:A.(2)由题意可知:,①当m>0时,则4m=4,解得m=1;②当m<0时,则﹣4m=4,解得m=﹣1;∴m=±1.16.解:(1)如图所示:∴点C(5,﹣2);(2)∵△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',∴点P'(a+4,b﹣3);(3)S△ABC=5×5﹣×3×5﹣×2×3﹣×5×2=25﹣7.5﹣3﹣5=9.5.17.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1﹣(2m+4)=3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(3)令m﹣1=﹣5,解得m=﹣4.所以P点的坐标为(﹣4,﹣5).18.解:(1)A(1,3),B(2,0),C(3,1),故答案为:(1,3),(2,0),(3,1).(2)三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.故答案为:三角形A'B'C'向右平移4个单位,再向上平移2个单位得到三角形ABC.(3)P′(x﹣4,y﹣2),故答案为:(x﹣4,y﹣2),(4)S三角形ABC=2×3﹣×1×3﹣×1×1﹣×2×2=2.19.解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);(2)∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)如图,①当点P在OC上时,S△OBP=×OP1×4=10,∴OP1=5,∴点P(0,5);②当点P在BC上,S△OBP=×BP2×6=10,∴BP2=,∴CP2=4﹣=,∴点P(,6);③当点P在AB上,S△OBP=×BP3×4=10,∴BP3=5,∴AP3=6﹣5=1,∴点P(4,1);④当点P在AO上,S△OBP=×OP4×6=10,∴OP4=,∴点P(,0).综上,点P的坐标为(0,5)或(,6)或(4,1)或(,0).20解:(1)∵C(﹣3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE﹣AO=2,∴E(﹣2,0),故答案为:(﹣2,0).(2)①由题意当P(﹣2,2)时,满足条件,此时t=2.故答案为:2.②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t).③当点P在线段BC上时,三角形P AB的面积最大为×BC×OB=×3×2=3,所以三角形P AB的面积为3.2时,P点只能在线段CD上.如图,设此时PD的长为m.∵△P AB的面积=四边形ABCD的面积﹣△PBC的面积﹣△P AD的面积=(3+4)×2﹣×(2﹣m)×3﹣m×4=7﹣3+m﹣2m=4﹣m,∴4﹣m=3.2,m=1.6此时P点的坐标是(﹣3,1.6).④当点P与D重合时,△P AB的面积最大,最大值为×4×2=4,故答案为:4。
七年级下册数学第一单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定还是质数。
()2. 一个三角形的内角和一定是180度。
()3. 长方体的六个面都是相同的。
()4. 分子和分母相同的分数是最简分数。
()5. 如果a是正数,那么-a一定是负数。
()三、填空题(每题1分,共5分)1. 100的因数有______个。
2. 一个三角形的两个内角分别是30度和60度,那么第三个内角是______度。
3. 一个长方体的长是5cm,宽是3cm,高是4cm,那么它的表面积是______平方厘米。
4. 把分数3/4化成小数,其结果是______。
5. 如果a=5,那么3a-2的值是______。
四、简答题(每题2分,共10分)1. 什么是质数?请给出三个质数的例子。
2. 请解释三角形内角和定理。
3. 请简述长方体的体积公式。
4. 请解释什么是最简分数。
5. 如果一个数是负数,那么它的相反数是什么?五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的周长和面积。
2. 一个等腰三角形的底边长是8cm,腰长是5cm,求这个三角形的周长。
3. 把分数4/5、3/4、2/3按照大小顺序排列。
4. 如果a=4,那么2a+3的值是多少?5. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求这个长方体的体积。
七年级数学第一单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2、5、8,那么第四项是?A. 11B. 10C. 9D. 8答案:A3. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 正方形D. 圆形答案:A4. 下列哪个选项是正确的?A. 1千米=1000米B. 1千克=1000克C. 1米=1000毫米D. 所有选项都正确答案:D5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:B二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
(正确)2. 等差数列的相邻两项之差是常数。
(正确)3. 平行四边形的对角线互相平分。
(正确)4. 圆的周长和直径成正比。
(正确)5. 0是自然数。
(错误)三、填空题(每题1分,共5分)1. 1千米=______米。
答案:10002. 一个等差数列的公差是3,首项是1,那么第10项是______。
答案:283. 平行四边形的对边______。
答案:平行且相等4. 圆的面积公式是______。
答案:πr²5. 两个质数相乘,它们的积是______。
答案:合数四、简答题(每题2分,共10分)1. 请简要解释等差数列的概念。
答案:等差数列是一种数列,其中每一项与它前一项的差是一个常数,这个常数称为公差。
2. 请简要解释平行四边形的性质。
答案:平行四边形是一种四边形,其对边平行且相等,对角线互相平分。
3. 请简要解释圆的周长和面积的计算公式。
答案:圆的周长公式是C=2πr,面积公式是A=πr²,其中r是圆的半径。
4. 请简要解释质数和合数的区别。
答案:质数是只能被1和它本身整除的大于1的自然数,合数是除了1和它本身以外还有其他因数的自然数。
5. 请简要解释等比数列的概念。
答案:等比数列是一种数列,其中每一项与它前一项的比是一个常数,这个常数称为公比。
七年级数学下册《角》单元测试卷(带答案解析)1.用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°2.若∠α与∠β互补(∠α<∠β),则∠α与(∠β﹣∠α)的关系是()A.互补B.互余C.和为45°D.和为22.5°3.如图,两块三角板的直角顶点O重合在一起,∠BOD=35°,则∠AOC的度数为()A.35°B.45°C.55°D.65°4.如图,∠AOD=120°,OC平分∠AOD,OB平分∠AOC.下列结论:①∠AOC=∠COD;②∠COD=2∠BOC;③∠AOB与∠COD互余;④∠AOC与∠AOD互补.其中,正确的个数是()A.1 B.2 C.3 D.45.如图,直线AB与直线CD交于点O.OE、OC分别是∠AOC与∠BOE的角平分线,则∠AOD为()A.45°B.50°C.55°D.60°6.如图,点P在直线l外,点A、B在直线l上,若PA=4,PB=7,则点P到直线l的距离可能是()A.3 B.4 C.5 D.77.如图,∠AOD=∠DOB=∠COE=90°,互补的角有()A.5对B.6对C.7对D.8对8.计算:1800′=()A.10°B.18°C.20°D.30°9.在同一平面上,若∠BOA=60°,∠BOC=20°,则∠AOC的度数是()A.80°B.40°C.20°或 40°D.80°或 40°10.一个角的余角比这个角的一半大15°,则这个角的度数为()A.70°B.60°C.50°D.35°11.计算:90°﹣44°14′15″=.12.已知∠1与∠2互余,∠2与∠3互补,若∠1=33°27',则∠3=.13.如图,直线AB、CD相交于点O,∠COE是直角,OF平分∠AOD,若∠BOE=42°,则∠AOF的度数是.14.计算:48°47'+53°35'=.15.钟表上的时间是8:30时,时针与分针的夹角为度.16.若∠α的余角比它的补角的一半还少10°,那么∠α=°.17.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,这时有∠BOC=2∠BOE =2 ,∠COD=∠AOD=,∠DOE=°.18.如图,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°.则∠MON的度数为.19.(1)如图1,∠AOC:∠COD:∠BOD=4:2:1,若∠AOB=140°,求∠BOC的度数;(2)如图2,∠AOC:∠COD:∠BOD=4:2:1,OP平分∠AOB,若∠AOB=β,求∠COP的度数(用含β的的代数式表示);(3)如图3,∠AOC=80°,∠BOD=20°,OE平分∠AOD,OF平分∠BOC,求∠EOF的度数.20.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=42°,∠DOE=36°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=30°,求∠AOC的度数.21.如图,已知△ACD和△BCE是两个直角三角形,∠ACD=90°,∠BCE=90°.∠ACB=150°,求∠DCE 的度数.22.如图,点A、O、E在同一直线上,∠AOB=50°,∠EOD=28°42',OD平分∠COE.(1)∠AOB的余角是多少度?(2)求∠COB的度数.23.如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=18°,求∠AOC的度数.24.如图,直线AB、CD相交于点O,∠AOD=2∠BOD,OE平分∠BOD,OF平分∠COE.(1)求∠DOE的度数;(2)求∠AOF的度数.参考答案与解析1.解:75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角板不能画出,135°可以用三角板的45°和90°画出.故选:C.2.解:因为∠α与∠β互补(∠α<∠β),所以∠α+∠β=180°,所以∠α+(∠β﹣∠α)=,所以∠α与(∠β﹣∠α)的关系是互余.故选:B.3.解:∵两块三角板的直角顶点O重合在一起,∴∠BOD和∠AOC是同角的余角,∵∠BOD=35°,∴∠AOC=35°.故选:A.4.解:①∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD=60°,故①正确.②∵OB平分∠AOC,∴∠AOC=2∠BOC,∴∠COD=2∠BOC,故②正确;③∠AOB=∠BOC=∠AOC=30°,∴∠AOB+∠COD=90°,∴∠AOB与∠COD互余,故③正确.④∵∠AOC+∠AOD=60°+120°=180°,∴∠AOC与∠AOD互补,故④正确.故选:D.5.解:∵OE、OC分别是∠AOC与∠BOE的角平分线,∴∠AOE=∠EOC,∠EOC=∠BOC,∴∠AOE=∠EOC=∠BOC,∵∠AOE+∠EOC+∠BOC=180°,∴∠AOE=∠EOC=∠BOC=60°,∴∠AOD=60°.故选:D.6.解:因为垂线段最短,∴点P到直线l的距离小于4,故选:A.7.解:互补的角有:∠AOD与∠BOD,∠AOD与∠COE,∠COE与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE共5对,故选:A.8.解:1800′=(1800÷60)°=30°,故选:D.9.解:(1)如图所示:当OC边在∠BOA的外部时,∠AOC=∠BOA+∠BOC=60°+20°=80°;(2)如图所示:当OC边在∠BOA的内部时,∠AOC=∠BOA﹣∠BOC=60°﹣20°=40°.故选:D.10.解:设这个角为x°,则这个角的余角为(90°﹣x°),根据题意,得90﹣x=x+15,解得:x=50.所以这个角的度数为50°,故选:C.11.解:90°﹣44°14′15″=89°59′60″﹣44°14′15″=45°45′45″.故答案是:45°45′45″.12.解:∵∠1与∠2互余,∴∠2=90°﹣∠1,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣(90°﹣∠1)=90°+∠1,∵∠1=33°27',∴∠3=123°27',故答案为:123°27'.13.解:∵∠COE是直角,∴∠COE=90°,∴∠DOE=180°﹣90°=90°,∵∠BOE=42°,∴∠BOD=∠DOE﹣∠BOE=90°﹣42°=48°,∴∠AOD=180°﹣∠BOD=180°﹣48°=132°,∵OF平分∠AOD,∠AOF=∠AOD=×132°=66°.故答案为:66°.14.解:48°47'+53°35'=101°82′=102°22′,故答案为:102°22′.15.解:8:30时,钟表的时针与分针相距2.5份,8:30时,钟表的时针与分针所夹小于平角的角为30°×2.5=75°.故答案为:75.16.解:由题意得,90°﹣∠α=(180°﹣∠α)﹣10°,解得:∠α=20°,故答案为:20°.17.解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠BOC=2∠BOE=2∠COE,∠COD=∠AOD=∠AOC,∴∠DOE=∠COE+∠COD=(∠BOC+∠COA)=180°=90°.故答案为:∠COE,∠AOC,90°.18.解:∵∠AOC=∠AOB+∠BOC=90°+30°=120°.∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°.∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°.故答案为:45°.19.解:(1)由∠AOC:∠COD:∠BOD=4:2:1,设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∵∠AOB=140°,∴x+2x+4x=140,解得:x=20,∴∠BOD=20°,∠COD=40°,∠AOC=80°,∴∠BOC=20°+40°=60°;(2)设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∴x+2x+4x=β,∴x=β,∴∠AOC=β;∵OP平分∠AOB,∴∠AOP=,∴∠COP=β﹣=β;(3)∵OF平分∠BOC,∠BOD=20°,∴∠COF=(∠BOD+∠COD)=10°+COD,∵OE平分∠AOD,∠AOC=80°,∴∠AOE=(∠AOC+∠COD)=40°+COD,∴∠COE=∠AOC﹣∠AOE=80°﹣(40°+COD)=40°﹣COD,∴∠EOF=∠COE+∠COF=40°﹣COD+10°+COD=50°.20.解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOB=42°,∠DOE=36°,∴∠AOB=∠BOC==42°,∠COD=∠DOE=36°,∴∠BOD=∠BOC+∠DOC=42°+36°=78°;(2)∵∠AOD与∠BOD互补,∠BOC=,∴∠AOD+∠BOD=180°,∴∠AOC+∠COD+∠AOC+∠COD=180°,∵∠DOE=30°,∴∠COD=30°,∴,∴=180°,∴∠AOC=80°.21.解:∵∠ACD=90°,∠ACB=150°,∴∠BCD=∠ACB﹣∠ACD=150°﹣90°=60°,∴∠DCE=∠BCE﹣∠BCD=90°﹣60°=30°.∴∠DCE的度数为30°.22.解:(1)∵∠AOB=50°,∴∠AOB的余角为:90°﹣50°=40°;(2)∵OD平分∠COE,∴∠EOC=2∠EOD=2×28°42'=57°24',又∵∠AOE=∠AOB+∠COB+∠EOC,而且点A、O、E在同一直线上,∴∠AOE=180°,∴∠COB=∠AOE﹣∠AOB﹣∠EOC=180°﹣57°24'=72°36'.23.解:因为OE为∠BOD的平分线,所以∠BOD=2∠BOE,因为∠BOE=18°,所以∠BOD=36°,又因为∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,所以∠AOC=360°﹣∠AOB﹣∠COD﹣∠BOD(4分)=360°﹣90°﹣90°﹣36°=144°.24.解:(1)∵∠AOD+∠BOD=180°,∠AOD=2∠BOD,∴∠AOD=180°×=120°,∠BOD=180°×=60°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=30°,(2)∵∠COE+∠DOE=180°,∴∠COE=180°﹣∠DOE=190°﹣30°=150°,∵OF平分∠COE,∴∠COF=∠EOF=∠COE=×150°=75°,又∵∠AOC=∠BOD=60°,∴∠AOF=∠AOC+∠COF=60°+75°=135°。
七年级数学第一单元测试卷答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 37C. 39D. 272. 有理数的乘法法则中,两个负数相乘的结果是()。
A. 正数B. 负数C. 零D. 无法确定3. 一个等腰三角形的底边长是8厘米,腰长是5厘米,那么这个三角形的周长是()厘米。
A. 18B. 20C. 22D. 244. 下列哪个图形是轴对称图形?()A. 正方形B. 长方形C. 圆形D. 所有选项都是5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题1. 任何两个奇数相加的结果都是偶数。
()2. 一个数的立方根只有一个。
()3. 两条平行线之间的距离是相等的。
()4. 任何正数都有两个平方根,它们互为相反数。
()5. 一个等边三角形的三个角都是60度。
()三、填空题1. 2的平方根是______。
2. 3的立方是______。
3. 一个等腰三角形的底角相等,如果一个底角是40度,那么另一个底角是______度。
4. 两个平行线的夹角是______度。
5. 一个正方形的对角线长度是10厘米,那么它的边长是______厘米。
四、简答题1. 解释什么是质数。
2. 什么是算术平方根?3. 什么是平行线?4. 什么是无理数?5. 什么是等边三角形?五、应用题1. 一个长方形的长是10厘米,宽是5厘米,求它的面积。
2. 一个正方形的边长是6厘米,求它的对角线长度。
3. 如果一个数的平方是49,那么这个数是多少?4. 一个等腰三角形的底边长是12厘米,腰长是8厘米,求这个三角形的周长。
5. 如果一个数的立方是27,那么这个数是多少?六、分析题1. 证明:如果一个数的平方是偶数,那么这个数一定是偶数。
2. 证明:如果一个三角形是等边三角形,那么它的三个角都是60度。
七、实践操作题1. 画出一个边长为5厘米的正方形,并标出它的对角线。
2. 画出一个底边长为8厘米,腰长为5厘米的等腰三角形,并标出它的底角。
七年级数学单元测试〔有理数〕一、填空题〔每题3分,共24分〕1.把以下各数填在相应的大括号中8,43,0.275,0,31-,6-,25.0-,2-正整数集合{ } 整数集合{} 负整数集合{} 正分数集合{ } 2.8.3-的相反数是 ,213的倒数是 ; 3、计算-3+1= ;=⎪⎭⎫ ⎝⎛-÷215 ;=-42 。
4、“负3的6次幂”写作 。
25-读作 ,平方得9的数是 。
5、-2的倒数是 , 311-的倒数的相反数是 。
有理数 的倒数等于它的绝对值的相反数。
6、根据语句列式计算: ⑴-6加上-3与2的积: ;⑵-2与3的和除以-3: ;⑶-3与2的平方的差: 。
7、用科学记数法表示:109000= ;89900000≈ 〔保留2个有效数字〕。
8、按四舍五入法则取近似值:70.60的有效数字为 个,2.096≈ 〔精确到百分位〕;15.046≈ 〔精确到0.1〕。
9、在括号填上适当的数,使等式成立: ⑴⨯=÷-78787〔 〕; ⑵8-21+23-10=〔23-21〕+〔 〕; ⑶+-=⨯-69232353〔 〕。
10.已知()03122=-++y x ,则33y x +=__________; 二、选择题 〔每题3分,共24分〕1.在211-,2.1,2-,0 ,-|-3|,()2--中,负数的个数有〔 〕A .2个B .3个C . 4个D . 5个2.,162=a 则a 是〔 〕A . 4或4-B . 4-C . 4D . 8或8-3.比较4.2-, 5.0-, ()2-- ,3-的大小,以下正确的〔 〕A .3- >4.2- > ()2--> 5.0-B .()2-- > 3->4.2-> 5.0-C .()2-- > 5,0- > 4.2-> 3-D .3-> ()2-->4.2-> 5.0-4.乘积为1-的两个数叫做互为负倒数,则2-的负倒数是〔 〕A . 2-B . 21-C . 21 D .2 5.7.951保留2个有效数字是〔 〕A . 8.00B . 7.9C . 8.0D . 86.()34--等于〔 〕 A . 12- B . 12 C . 64- D . 647.0<ab ,以下各式成立的是〔 〕A . b a =B . 0<<b aC . b a <<0D . b a <<08.一个有理数的相反数和它本身的绝对值的差是以下情形中的〔 〕A . 必为非负数B . 必为正数C . 必为非正数D . 必为09、以下计算结果错误的一个是〔 〕A 、613121-=+-B 、72213-=÷- C 、632214181641⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= D 、()122133=-⨯⎪⎭⎫ ⎝⎛- 10、如果a+b <0,并且ab >0,那么〔 〕A 、a <0,b <0B 、a >0,b >0C 、a <0,b >0D 、a >0,b <0三、计算题〔要求写出过程,每题5分,共30分〕〔1〕31)51(32+-+ 〔2〕2)5()2(10-⨯-+〔3〕24)612141(⨯+-〔4〕41)6.04824()6(⨯--÷-〔5〕2)4(31513297-⨯-⎪⎭⎫ ⎝⎛-÷- 〔6〕322436)12(3211⎪⎭⎫ ⎝⎛-⨯⎥⎦⎤⎢⎣⎡÷-+--五、已知:m 是正有理数,n 是负有理数,而且m =2,n =3,求n m +〔此题5分〕六、小康家里养了8只猪,质量的千克数分别为:104,98.5,96,91.8,102.5,100.7,103,95.5,按以下要求计算:⑴观察这8个数,估计这8只猪的平均质量约为 千克;⑵计算每只猪与你估计质量〔实际质量-估计质量〕分别为:⑶计算偏差的平均数〔精确到十分位〕所以这8只猪的平均质量约为七.观察算式: 21211211=-=⨯ 323121211321211=-+-=⨯+⨯ 4341313121211431321211=-+-+-=⨯+⨯+⨯ 按规律填空(2分) =⨯+⨯+⨯+⨯541431321211_______________ (2分)=⨯+⨯+⨯+⨯+⨯651541431321211_________ …… ……(2分)=⨯++⨯+⨯+⨯+⨯100991541431321211 ______________ 假设n 为正整数,试求:)100)(99(1)4)(3(1)3)(2(1)2)(1(1)1(1++++++++++++++n n n n n n n n n n 的值,并写出求值过程。
考试时间:120分钟 满分:100分 一、选择题(每题3分,共30分) 1. 下列各数中,正数是( ) A. -2.5 B. 0.001 C. -3/4 D. -√4 2. 下列各数中,有理数是( ) A. √2 B. π C. -π/2 D. 0 3. 下列各数中,无理数是( ) A. √9 B. 2.25 C. -2/3 D. √16 4. 下列各数中,绝对值最小的是( ) A. -3 B. -2 C. 0 D. 1 5. 下列各数中,负数是( ) A. 0.1 B. -0.1 C. 0.01 D. -0.01 6. 下列各数中,正有理数是( ) A. -2/3 B. 0 C. 3/4 D. -√4 7. 下列各数中,正无理数是( ) A. √9 B. 2.25 C. -2/3 D. √2 8. 下列各数中,负有理数是( ) A. -2/3 B. 0 C. 3/4 D. -√2 9. 下列各数中,零是( ) A. 0.1 B. -0.1 C. 0.01 D. -√4 10. 下列各数中,负无理数是( ) A. √9 B. 2.25 C. -2/3 D. -√2 二、填空题(每题3分,共30分) 11. 有理数a的相反数是______。 12. 有理数a的绝对值是______。 13. 有理数a的倒数是______。 14. 有理数a的平方是______。 15. 有理数a的立方是______。 16. 有理数a的四次方是______。 17. 有理数a的五次方是______。 18. 有理数a的六次方是______。 19. 有理数a的七次方是______。 20. 有理数a的八次方是______。 三、解答题(每题10分,共30分) 21. 简化下列各数: (1) -3/5 + 2/5 (2) -2/3 - 1/3 (3) 3/4 + 1/2 (4) -3/8 - 1/4 22. 求下列各数的相反数: (1) -5 (2) 2 (3) -1/3 (4) 4/5 23. 求下列各数的绝对值: (1) -3 (2) 2 (3) -1/3 (4) 4/5 四、应用题(20分) 24. 小明骑自行车去图书馆,往返共走了10公里。已知去图书馆时用了1小时,返回时用了1小时30分钟。求小明去图书馆的平均速度。
2022——2023学年度第二学期七年级数学测试卷第六章 实数学校:___________姓名:___________班级:___________考号:___________一、单选题(每题3分,共30分)1.下列各数中,是无理数的是( )A .74-B .0C .πD .0.122.数轴上表示实数a 的点的位置如图所示,化简|1|a -的结果为( )A .1a -B .1a -C .1a +D .1a --3n 和1n +之间,则n 的值是( )A .4B .3C .2D .1 4.在实数2π-,0,1-中,最小的是( ) A.2π- B .0 C D .1- 5.在实数1-17,3.14中,属于无理数的是( ) A .1- B C .17 D .3.146.下列各数中是无理数的是( )1.34,12π,0.020020002...,6.57896. A .2个 B .3个 C .4个 D .5个 7.估算7 )A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.已知3既是5a +的平方根,也是721a b -+的立方根,则关于x 的方程()2290a xb --=的解是( ).A .12x =B .72x =C .43x =或83D .12x =或729.下列各数:π2,00.2,227,0.303003(相邻两个3之间依次多一个0),1 )10.下列说法中:①不是正数的数一定是负数;①227不仅是无理数,而且是分数;①多项式223x xy ++是二次三项式;①单项式22xyz π-的系数和次数分别是2π-和4.其中错误的说法的个数为( )A .1个B .2个C .3个D .4个二、判断题(每题2分,共10分)11.判断对错:(正确的画“√”,错误的画“×”)(1)任何数都有算术平方根 ( )(2)一个数的算术平方根一定是正数 ( )(3)所有无限小数都是无理数; ( )(4)所有无理数都是无限小数; ( )(5)不是有限小数的不是有理数. ( )三、填空题(每空4分,共52分)12.写出一个比0小的整数__________.13.若()229x +=,则x =_______.143π-=_____.15.若01x <<1x 、2x 的大小关系是________.16.16的平方根是________________.17()220y -=,则xy 的值为______.18.计算:|2022|-=________,2023(1)-=________=________.29.已知实数a 、b 满足()2350a b +++=,则a b +的立方根是_______.20.已知57≤, 46≤ _____.21.一个两位数m 的十位上的数字是a ,个位上的数字是b ,我们把十位上的数字a 与个位上的数字b 的和叫做这个两位数m 的“衍生数”,记作()f m ,即()f m a b =+.如()52527f =+=.现有2个两位数x 和y ,且满足100x y +=,则()()f x f y +=______.四、解答题(6个小题共58分)22.计算:(16分)(1). 321|(|)-+- (2). 23()(15273)-++-⨯(3). (4). ()()232--23. 已知一个正数a 的平方根分别是25a -和21a +,另一个实数b 的立方根是2,c(8分) 求:(1)a ,b ,c 的值(2)求224a b c +-的平方根.24.我们用[]a 表示不大于a 的最大整数,[]a a -的值称为数a 的相对小数部分.如[]2.132=,2.13的相对小数部分为[]2.13 2.130.13-=. (12分)(1)= ,= . 3.2-的相对小数部分= .(2)m ,求)m 的值.(3)设2x ,y 为有理数.若()x x y +的值为有理数,求()x x y +的值.25.对于任意一个四位正整数m ,若m 的各位数字都不为0,且千位数字与百位数字不相等,十位数字与个位数字不相等,那么称这个数为“不同数”.将一个“不同数”m 的任意一个数位上的数字去掉后得到四个新三位数,把这四个新三位数的和与3的商记为F(m ).例 如,“不同数”1234m =,去掉其中任意一位数后得到的四个新三位数分别为:234、134、124、123,这四个三位数之和为234134124123615+++=,6153205÷=,所以()1234205F =. (10分)(1)计算()1245F 和()2134F ;(2)若“不同数”340010n x y =++(13x ≤≤,18y ≤≤,x 、y 都是正整数),()n F 的百位数字与个位数字不相同且()n F 能被6整除,求n 的值.26.一个三位自然数的各位数字均不为0,它的十位与个位数字之和等于百位的两倍.那么这样的数叫“好数”,对于一个好数m ,将其十位与个位对调得到一个数m ',记()111m m F m '+=. 例如:324x =,因为24632+==⨯,所以x 是“好数”,()3243426111F x +== 212y =,因为12322+=≠⨯,所以y 不是“好数” (12分)(1)判断435m =和523n =是不是“好数”,如果是“好数”,求出()F m 或()F n ;(2)若一个好数“t ”的百位数字是a ,十位数字是b ,个位数字是c ,14a ≤≤,18b ≤≤且()1T F t t =++能被7整除,求出所有t 的值.参考答案:1.C【分析】根据无理数的定义:无限不循环小数,进行判断即可.【详解】解:A 、74-是有理数,不符合题意; B 、0是有理数,不符合题意;C 、π是无理数,符合题意;D 、0.12是有理数,不符合题意;故选C .【点睛】本题考查无理数,熟练掌握无理数的定义,是解题的关键.2.B【分析】根据绝对值化简的方法,即可化简求值.【详解】①从数轴上观察出a<0①10a -<①()|1|11a a a -=--=-故选:B【点睛】本题考查绝对值的化简,解题的关键是掌握绝对值化简的方法.3.C【分析】根据459得到23<<,即可得到答案. 【详解】解:①459,①23<,①2n =,故选:C .【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.4.A【分析】根据实数的大小比较法则即可得到答案.【详解】解:102π-<-<< ∴最小的数是2π-, 故选A .【点睛】本题考查了实数的大小比较,解题关键是熟练掌握实数的大小比较法则:负数都小于0;负数都小于正数;两个负数,其绝对值大的反而小.5.B【分析】根据无理数的定义判断即可.1-是整数,17,3.14是分数,都属于有理数, 故选B .【点睛】本题考查了无理数,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数.6.B【分析】根据无理数就是无限不循环小数,逐项判断即可.【详解】无理数有12π,0.020020002…,共3个 故选:B【点睛】本题主要考查无理数的定义,包括:①开方开不尽的根式,①含π的,①一些有规律的数;明确无理数指的是无限不循环小数是解题的关键.7.A【分析】估算34<,进而即可求解.【详解】解:①91316<<①34<,①43-<- ①374<,故选:A .【点睛】本题考查了无理数的估算,正确的估算出34<是解题的关键.8.D【分析】根据平方根和立方根的概念可得59a +=,72127a b -+=,求解可得4a =,1b =,然后带入原方程,利用平方根解方程即可.【详解】解:根据题意,3既是5a +的平方根,也是721a b -+的立方根,可得2539a +==,3721327a b -+==,解得4a =,1b =,则关于x 的方程()2290a x b --=即为()22904x --=, ①29(2)4x -=, ①322x -=±, 解得 12x =或72x =. 故选:D .【点睛】本题主要考查了平方根和立方根的知识,熟练掌握相关概念是解题关键.9.B【分析】根据无理数的定义求解即可.【详解】π2是无理数,03=是有理数,0.2是有理数,227是有理数,0.303003(相邻两个3之间依次多一个0)是无理数,1故无理数的个数有3个,故选:B .【点睛】此题主要考查了无理数的定义:无限不循环的小数为无理数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.303003(相邻两个3之间依次多一个0),等有这样规律的数.10.C【分析】分别根据有理数的分类,无理数的定义,多项式的定义,单项式的定义逐一判断即可.【详解】解:①不是正数的数一定是负数或0,故①不正确; ①227不仅是有理数,而且是分数,故①不正确; ①多项式223x xy ++是三次三项式,故①不正确;①单项式22xyz π-的系数和次数分别是2π-和4,故①正确, 错误的说法个数是3个,故选:C .【点睛】本题考查了多项式,单项式,无理数,正数和负数,熟练掌握这些数学概念是解题的关键.11. × × × √ ×【分析】根据算术平方根的定义分析即可.【详解】解:(1)①负数没有算术平方根,①任何数都有算术平方根 (× );(2) ①0的算术平方根是0,①一个数的算术平方根一定是正数(×);解:(3)无限小数包括无限循环小数和无限不循环小数,无限循环小数是有理数, ∴(3)错误;(4)无限不循环小数是无理数,∴(4)正确;(5)有理数包括整数、分数、有限小数和无限循环小数,∴(5)错误;故答案为:①×①×①×①√5×.【点睛】题目主要考查有理数和无理数的常见类别,理解有理数和无理数的分类是解题关键. 12.1-##2-【分析】判断无理数的取值范围,直接求解即可.【详解】因为2232-<<-,所以32-<<-,则比0小的整数有1-或2-.故答案为:填1-或2-均可.【点睛】此题考查无理数的估算,解题关键是直接算出取值范围.13.1或5-##5-或1【分析】利用平方根定义开方即可求解.【详解】解:方程()229x +=,开方得:23x +=±,解得:1x =或5x =-.故答案为:1或5-.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键. 14.π【分析】直接利用立方根的性质以及绝对值的性质和算术平方根的性质分别化简,然后计算得出答案.|3|π-363π=-++-π=.故答案为:π.【点睛】本题主要考查了立方根的性质以及绝对值的性质和算术平方根的性质,正确化简各数是解题关键.15.21x x> 【分析】由实数的比较大小的法则进行比较,即可得到答案.【详解】解:由01x <<,得x >,11x>,21x ,故答案为:21x x >. 【点睛】本题考查了实数的比较大小,解题的关键是熟练掌握实数比较大小的法则. 16. 4± 2【分析】根据平方根和算术平方根的定义即可得到结论.【详解】解:因为4±的平方是16,所以16的平方根是4±,4=,且2的平方是4,2.故答案为:4±;2.【点睛】本题考查了平方根和算术平方根的定义,熟记定义是解题的关键.17.4-【分析】根据非负数的性质分别求出x y ,,代入计算即可. 【详解】解:()220x y y ++-=, 020x y y ∴+=-=,,解得:22x y =-=,,224xy ∴=-⨯=-,故答案为:4-,【点睛】本题考查的是非负数的性质和代数式求值,掌握算术平方根的非负性、偶次方的非负性是解题的关键.18. 2022 1- 4【分析】根据负数的绝对值为正数,有理数的乘方运算,求一个数的算术平方根计算即可.【详解】解:|2022|2022-=,2023(1)1-=-,4,故答案为:①2022;①1-;①4.【点睛】题目主要考查绝对值的化简,有理数的乘方运算,求一个数的算术平方根,熟练掌握运算法则是解题关键.19.2-【分析】先根据非负数的性质求出a 、b 的值,进而求出a b +的值,再根据立方根的定义进行求解即可.【详解】解:①()2350a b +++=,()25030a b ++≥≥,, ①()23500a b ++==,,①3050a b +=+=,,①35a b =-=-,,①()358a b +=-+-=-,①a b +的立方根是2-,故答案为:2-.【点睛】本题主要考查了求一个数的立方根,非负数的性质,正确根据非负数的性质求出a 、b 的值,进而求出a b +的值是解题的关键.20.6,7,8,9【详解】解:①57≤,46≤,①2549a ≤≤,1636b ≤≤,①4185a b ≤+≤,6,7,8,9.故答案为:6,7,8,9.【点睛】本题考查了估算无理数的大小,解决本题的关键是掌握估算的方法.21.19或10【分析】x 和y 的取值分两种情况分别分析即可得解.【详解】解:设两位数x 的十位数字为c ,个位数字为d ,两位数y 的十位数字为p ,个位数字为q ,根据题意100x y +=,则x 和y 的取值有两种情况,①x y ≠时,此时9c p +=,10d q +=,()()19f x f y c d p q +=+++=∴,②50x y ==时,此时5c p ==,0d q ==,()()10f x f y c d p q +=+++=∴,故答案为:19或10.【点睛】此题考查了用字母表示数的新定义,理解题意并进行分类讨论是解题关键. 22.(1)2- (2)51 (3)154(4)40-【分析】(1)根据绝对值,有理数的乘方运算,求一个数的立方根,进行计算即可求解.(2)根据有理数的混合运算进行计算即可求解.(3)先计算算术平方根,然后计算加减即可;(4)先计算立方根和算术平方根以及平方,然后计算加减,【详解】(1)解:原式213=-- 2=-;(2)解:原式25271=+-521=-51=.(3)554=-+ 154=;(4()()232--6304=---40=-.【点睛】此题考查了立方根和算术平方根的运算,平方的运算,解题的关键是熟练掌握以上运算法则.23.(1)1a =,8b =,3c =(2)5±【分析】(1)由平方根的性质知25a -和21a +互为相反数,可列式,解之可求得a 的值;根据立方根定义可得b 的值;根据34<<可得c 的值;(2)分别将a ,b ,c 的值代入224a b c +-中,即可求得它的值及平方根.【详解】(1)解:①一个正数的平方根分别是25a -和21a +,另一个实数b 的立方根是2, 25210a a ∴-++=,8b =,解得:1a =则a 的值是1,b 的值是8;91516<<,34∴<,3,3c ∴=,综上所述,1a =,8b =,3c =;(2)解:1a =,8b =,3c =,224a b c ∴+-2329=+-25= 25的平方根5±,224a b c ∴+-的平方根5±.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.24.(1)22,0.8(2)1(3)2-【分析】(1)根据题目给的定义进行计算即可;(2)根据题目给的定义求出m 值,再代入式子求解即可;(3)根据题目给的定义求出x ,再根据y 和()x x y +都是有理数进行求解即可.【详解】(1)23<,①2=的相对小数部分2=,3.2-的相对小数部分为()3.2 3.2 3.20]48[.---=---=,故答案为:22,0.8;(2)由题意得:2=,2m =,①))221m ==;(3)由题意得: ()22213x ⎡==-=⎣ ()()33y x x y +=,若使y 和()x x y +都为有理数,则33x y y +==-此时()(33792x x y +=-=-=-.【点睛】本题考查了无理数的估算,新定义问题,无理数有理化等知识点,能够根据题目给的定义进行推理是解题的关键.25.(1)213,265(2)n 的值为3426,3435【分析】(1)根据新定义计算,即可分别求得.(2)首先可求得()4607F n x y =++,再根据()F n 能被6整除,可得x y +能被6整除,且13x ≤≤,18y ≤≤,x ,y 都是正整数,x y ≠,可得029x y ≤-++≤且x y ≠,分类讨论,即可求得.【详解】(1)()()12451241251452453213F =+++÷=,()()21342132142341343265F =+++÷=;(2)“不同数”340010n x y =++,去掉千位:40010x y ++,去掉百位:30010x y ++,去掉十位:340y +,去掉个位:340x +()()400103001034034034607F n x y x y y x x y =+++++++++÷=++,()F n 能被6整除, ①460+727766x y x y x +-++=++ x y ∴+能被6整除,且13x ≤≤,18y ≤≤,x ,y 都是正整数,x y ≠,①029x y ≤-++≤且x y ≠,①20x y -++=或26x y -++=①当20x y -++=时,1x y ==,不合题意;①当26x y -++=时,8x y +=,当x =1,y =7时,()474F n =,不合题意;当x =2,y =6时,()480F n =,n =3426;当x =3,y =5时,)486Fn =(,n =3435; 综上所述,n 的值为3426,3435.【点睛】本题考查了新定义下的运算,理解新定义,采用分类讨论的思想是解决此类题的关键.26.(1)435m =是“好数”,523n =不是“好数”, ()8F m =(2)315或453【分析】(1)先根据“好数”的定义可以得到435m =是“好数”,523n =不是“好数”,再根据()F m 的定义求出()F m 的值即可;(2)先根据题意得到2b c a +=,10010t a b c =++,10010t a c b '=++,进而求出()2F t a =,再根据已知条件式得到10491a b ++能被7整除,据此求解即可.【详解】(1)解:①3542+=⨯,①435m =是“好数”,①453m '=,①()4354538111F m +==; (2)解:①一个好数“t ”的百位数字是a ,十位数字是b ,个位数字是c ,①2b c a +=,10010t a b c =++,10010t a c b '=++,①()10010100102001111200222111111111a b c a c b a b c a a F t a ++++++++====, ①()1T F t t =++能被7整除,①210010*********a a b c a a b a b ++++=+++-+能被7整除,①10491a b ++能被7整除,当1a =时,7b =,此时5c =-,不符合题意;当2a =时,4b =,此时0c ,不符合题意;当3a =时,1b =,此时5c =,符合题意;当4a =时,5b =,此时3c =,符合题意;综上所述,符合题意的t 的值为315或453.【点睛】本题主要考查了新定义的实数运算,正确理解题意是解题的关键.。
图2图 1图3 图4第六章 《平面直角坐标系》单元复习测试题一、 选择题1.在平面直角坐标系中,点P (2,-3)到x 轴的距离为( ) A.-2B.2C.-3D.32. 如图1,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( ) A .点A B .点B C .点C D .点D3.若点A (a-2,a )在x 轴上,则点B (a-1,3)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.在平面直角坐标系中,若点()3,1P m m +-在第四象限,则m 的取值范围为( )A.-3<m <1B.m >1C.m <-3D.m >-3 5.已知△ABC 在平面直角坐标系中的位置如图2所示,将△ABC 向右平移6个单位,则平移后A 的坐标是( )A .(-2,1)B .(2,1)C .(2,-1)D .(-2,-1)6.如图3,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能...是( ) A .(4,0) B .(0,2) C . (0,-2) D .(2,0) 二、填空题7.如图4,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为 .8.已知m 为整数,且点(m-3,4m-5)在第二象限,则m 2+2007的值为______. 9.已知点(13)A m -,与点(2)B n ,关于x 轴对称,则m = ,n = . 10.第四象限内的点P(x,y),满足︱x ︱=2,29y =,则点P 的坐标为 .11.如图5所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图案中左眼的坐标是(3,4),•则右图案中右图6眼的坐标是_______.12.将杨辉三角中的每一个数都换成分数,得到一个如图6所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是 . 三、解答题13. 如图7是某市区地图的一角,请建立适当的平面直角坐标系,分别写出图中猴山、大门、孔雀园、虎山、车站所在位置.14.如图8,小王家在1街与2大道的十字路口,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示小王从家到工厂上班的一条路径,规定从A 到B 只能向上或向右走,请你用上述的方式写出由小王家到工厂的路径.(要求:至少写出两种路径)图7图815.在平面直角坐标系中,已知点A (-3,0),点B (2,0),且点C 在y 轴上,△ABC 的面积为10,试确定点C 的坐标.16. 在右图9的平面直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来, (1)(2,1),(2,5),(1,4),(1,2),(2, 2); (2)(-6,1),(3,1),(3,0),(3)(3,0),(2,-2),(-4,-2),(-6,1). 观察所得到的图形,你觉得它像什么?17.在平面直角坐标系中, △ABC 的三个顶点的位置如图10所示,点A ′的坐标是(-2,2), 现将△ABC 平移,使点A 变换为点A ′, 点B ′、C ′分别是B 、C 的对应点. (1)请画出平移后的像△A ′B ′C ′(不写画法) ,并直接写出点B ′、C ′的坐标: B ′ 、C ′ ;(2)若△ABC 内部一点P 的坐标为(a,b ),则点P 的对应点P ′的坐标是,图9此时△A ′B ′C ′的面积为 .18.在平面直角坐标系中,等腰三角形ABC 的顶点A 的坐标为(2,2).(1)若底边BC 在x 轴上,请写出1组满足条件的点B 、点C 的坐标: ;设点B 、点C 的坐标分别为(m ,0)、(n ,0),你认为m 、n 应满足怎样的条件? (2)若底边BC 的两端点分别在x 轴、y 轴上,请写出1组满足条件的点B 、点C 的坐标: ;设点B 、点C 的坐标分别为(m ,0)、(0,n ),你认为m 、n 应满足怎样的条件? 答:图10参考答案: 一、选择题1.D2.C3.B4.A5.B6.C 二、填空题7.(3,2)8.20109. 3,-3 10. (-2,3) 11. (5,4) 12. 721三、解答题13.解:本题答案不唯一,如图所示,猴山(0,2);大门(0,-2);孔雀园(3,0);虎山(3,2);车站(4,-2)。
第一章 整式的乘除单元测试卷(一)一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a5.下列结果正确的是 ( ) A. 91312-=⎪⎭⎫⎝⎛-B. 0590=⨯C. ()17530=-. D. 8123-=-6. 若()682b a ba n m=,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题1分,第5、6题2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。
七年级数学上册《第一章 有理数》单元测试卷-附答案(沪科版)一、选择题1.向东行驶2km ,记作2km +,向西行驶7km 记作( )A .7km +B .7km -C .2km +D .2km -2.有理数中,负数的个数为( )A .1B .2C .3D .43.下列四个数中,绝对值最小的数是( )A .-3B .0C .1D .24.绍兴市1月份某天最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ) A .2 ℃B .8℃C .8℃D .2℃5.2023的倒数是( )A .-2023B .3202C .12023-D .120236.下列各组数中,互为相反数的是( )A .1||3-和13-B .1||3-和3-C .1||3-和13D .1||3-和37.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a b >B .0ab >C .a b >D .0a -<8.若0a b +>,且0ab <,则以下正确的选项为( )A .a ,b 都是正数B .a ,b 异号,正数的绝对值大C .a ,b 都是负数D .a ,b 异号,负数的绝对值大9.宁波文创港三期已正式开工建设,总建筑面积约2272000m ,272000用科学记数法表示,正确的是( ) A .427.210⨯B .52.7210⨯C .42.7210⨯D .60.27210⨯10.下列说法不正确的是( )A .近似数1.8与1.80表示的意义不同B .0.0200精确到0.0001C .5.0万精确到万位D .1.0×104精确到千位二、填空题11.如果向西走30米记作30-米,那么20+米表示 . 12.数a ,b 在数轴上对应点的位置如图所示,化简a-|b-a|= .13.某地一天早晨的气温是2C ︒-,中午温度上升了9C ︒,则中午的气温是 ℃. 14.近似数68.4万精确到 位.三、计算题15.计算(1)-7-11+4-(-2) (2)(-2)×(-5)÷(-5)+9 (3)()155********⎛⎫-+-⨯-⎪⎝⎭ (4)()242512339--⨯---÷⎡⎤⎣⎦. 四、解答题16.把下列有理数填入它属于的集合的圈内:17.已知:〡a 〡=3,b 是最大的负整数,求a-b 的值。
人教版七年级下册数学单元练习卷:第九章 不等式与不等式组一、填空题(本大题共10小题,每小题3分,共30分) 1.如果1<x <2,那么(x –1)(x –2)__________0.(填写“>”、“<”或“=”)2.写出一个解集为x <–1,且未知数的系数为2的一元一次不等式:__________. 3.当x __________时,式子–2(x –1)的值小于8.4.不等式组1023x x x -<⎧⎨+>⎩的解集是__________.5.不等式2x +5>4x –1的正整数解是__________.6.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打__________折.7.某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是__________.8.已知关于x 的不等式组12634x x a -<⎧⎨+≤⎩只有两个整数解,则a 的取值范围__________.9.2x ≥的最小值是a ,6x ≤-的最大值是b ,则a +b =__________. 10.已知不等式组1x a x b ≥--⎧⎨-≥-⎩①②在同一条数轴上表示不等式①②的解集如图,则b –a的值为__________.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 11.不等式x +1>3的解集是 A .x >1B .x >–2C .x >2D .x <212.在数轴上表示不等式x –1≤0的解集,正确的是 A .B .C .D .13.x 与3的和的一半是负数,用不等式表示为A .12x +3>0 B .12x +3<0 C .12(x +3)<0D .12(x +3)>014.下列说法中,错误的是 A .x =1是不等式x <2的解B .–2是不等式2x –1<0的一个解C .不等式–3x >9的解集是x =–3D .不等式x <10的整数解有无数个 15.若–12a ≥b ,则a ≤–2b ,其根据是 A .不等式的两边加(或减)同一个数(或式子),不等号的方向不变 B .不等式的两边乘(或除以)同一个正数,不等号的方向不变 C .不等式的两边乘(或除以)同一个负数,不等号的方向改变 D .以上答案均不对16.下列不等式中,不含有1x =-这个解的是 A .213x +≤- B .213x -≥-C .213x -+≥D .213x --≤17.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为A .8B .6C .5D .418.关于x 的不等式组()3141x x x m⎧->-⎨<⎩的解集为x <3,那么m 的取值范围为A .m =3B .m >3C .m <3D .m ≥319.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?则小明至少答对的题数是 A .11道 B .12道C .13道D .14道20.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a cad bc b d=-,例如1324=1423=2⨯-⨯-,如果231xx-0>,则x 的取值范围是A .x >1B .x <–1C .x >3D .x <–3三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解不等式()2263x x -≤-,并写出它的正整数解.22.解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解.23.已知关于x 的不等式x a <7的解也是不等式2752x a a->–1的解,求a 的取值范围.24.解不等式组:()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答.(1)解不等式①,得__________,依据是:__________. (2)解不等式③,得__________.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.25.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:(1)若a –b >0,则a __________b ; (2)若a –b =0,则a __________b ; (3)若a –b <0,则a __________b .这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题:比较4+3a 2–2b +b 2与3a 2–2b +1的大小.26.分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式253xx+->0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①25030xx+>⎧⎨->⎩或②25030xx+<⎧⎨-<⎩,解不等式组①,得x>3,解不等式组②,得x<–5 2 .所以原分式不等式的解集为x>3或x<–5 2 .请你参考小亮思考问题的方法,解分式不等式342xx--<0.27.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x–1=0,②2103x+=,③x–(3x+1)=–5中,不等式组25312x xx x-+>-⎧⎨->-+⎩的关联方程是________;(2)若不等式组112132xx x⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可);(3)若方程3–x=2x,3+x=122x⎛⎫+⎪⎝⎭都是关于x的不等式组22x x mx m<-⎧⎨-≤⎩的关联方程,直接写出m的取值范围.28.为降低空气污染,启东飞鹤公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B型两种公交车共10辆,其中每台的价格,年载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次.请你设计一个方案,使得购车总费用最少.参考答案1.【答案】<2.【答案】2x <–2(答案不唯一) 3.【答案】>–3 4.【答案】31x -<< 5.【答案】1,2 6.【答案】9 7.【答案】440≤x ≤480 8.【答案】4<a ≤7 9.【答案】–4 10.【答案】1311.【答案】C 12.【答案】D 13.【答案】C 14.【答案】C 15.【答案】C 16.【答案】A 17.【答案】C 18.【答案】D 19.【答案】D 20.【答案】A21.【解析】去括号得:2x –4≤6–3x ,移项得:2x +3x ≤6+4, 整理解得:x ≤2, 正整数解为1,2.22.【解析】由不等式2x –6<6–2x 得:x <3.由不等式2x +1>32x +得:13x >. ∴不等式组的解集为133x <<.又x 为整数,∴x =1,2.∴原不等式组的整数解为1,2.23.【解析】解不等式27152x a a-->人教版七年级数学下册第九章不等式与不等式组单元测试题一、 选择题。
第二章《相交线与平行线》单元测试卷(新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.已知∠A=25°,则∠A的补角等于()A.65°B.75°C.155°D.165°2.如图,直线a与直线c相交于点O,则∠1的度数是()A.60°B.50°C.40°D.30°第2题图第3题图第4题图3.如图,∠1=15°,AO⊥CO,直线BD经过点O,则∠2的度数为()A.75°B.105°C.100°D.165°4.如图,直线c与直线a,b都相交.若a∥b,∠1=55°,则∠2=()A.60°B.55°C.50°D.45°5.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2=()A.55°B.65°C.75°D.85°第5题图第6题图第7题图第8题图6.如图,下列说法中正确的是()A.若∠2=∠4,则AB∥CDB.若∠BAD +∠ADC=180°,则AB∥CDC.若∠1=∠3,则AD∥BCD.若∠BAD +∠ABC=180°,则AB∥CD7.(传统文化)一条古称在称物时的状态如图所示,已知∠1=80°,则∠2=()A.20°B.80°C.100°D.120°8.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2=()A.90°B.65°C.60°D.50°9.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4等于()。
七年级数学上册入学一单元测试题
姓名: 班级 得分 (时间:100分钟 满分:120分 一、选择题(每小题3分,共30分) 1.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作 ( ) A.+0.02克 B.-0.02克 C.0克 D.+0.04克 2.在-4,2,-1,3这四个数中,比-2小的数是( ) A.-4 B.2 C.-1 D.3
3.计算-13-23的结果是( ) A.-13 C.-1 D.1 4.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是 ( ) A.-4 B.-2 C.0 D.4 5.下列计算不正确的是( )
A.-32+12=-2 B.(-13)2
=19 C.|-3|=3 D.-(-2)=2
6.一个正常人的心跳平均每分钟70次,一天大约跳100800次,将100800用科学记数法表示为( ) A.×106 B.×106 C.×105 D.×104 7.下列说法正确的是( ) A.近似数与的精确度相同 B.近似数×104精确到十分位 C.数精确到百分位为 D.小明的身高为161 cm中的数是准确数 8.下列计算:①0-(-5)=0+(-5)=-5;②5-3×4=5-12
=-7;③4÷3×(-13)=4÷(-1)=-4;④-12-2×(-1)2=1+2=3.其中错误的有( ) A.1个 B.2个 C.3个 D.4个 9.有理数a,b在数轴上的位置如图,下列选项正确的是( ) A.a+b>a-b B.ab>0 C.|b-1|<1 D.|a-b|>1 10.(2015·重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形……依此规律,
图○10中黑色正方形的个数是( ) A.32 B.29 C.28 D.26
点拨:图○10中黑色正方形的个数是2+(10-1)×3=29 二、填空题(每小题3分,共24分) 11.-3的相反数是__ __,-3的倒数是__ _. 12.在数轴上表示数a的点到表示数1的点的距离为3,则a-3=__ __. 13.比较下列各组数的大小: (1)0__ __-|-|; (2)- _||; (3)-(-__ __|-103|. 14.计算:-3×2+(-2)2-5=__ _. 15.平方等于它本身的数是__ _;立方等于它本身的数是__ __;一个数的平方等于它的立方,这个数是__ __. 16.若|a|=3,b=-2,且ab>0,则a+b=__ __. 17.若(a+1)2+|b-99|=0,则b-ab的值为__ __. 18.由图①中找规律,并按规律从图②中找出a,b,c的值,计算a+b+c的值是__ _. 三、解答题(共66分) 19.(16分)计算: (1)-5-(-4)+(-3)-[-(-2)]; 解: (2)2×(-5)+23-3÷12; 解: (3)(14-59-13+712)÷(-136); 解: (4)-12-2×(-3)3-(-2)2+[313÷(-23)×15]4. 解: 20.(7分)x与y互为相反数,m与n互为倒数,|a|=1,求a2-(x+y)2017+(-mn)2016的值. 解: 21.(7分)定义新运算:对任意有理数a,b,都有a?b=a2-b.例如,3?2=32-2=7,求2?1的值. 解 22.(8分)下表是小明记录的今年雨季流沙河一周内的水位变化情况(上周末水位达到警戒水位记为0,“+”表示水位比前一天上升,“-”表示水位比前一天下降): 星期 一 二 三 四 五 六 水位变化(米) + + - + + - (1)本周哪一天河流水位最高?哪一天河流的水位最低?它们分别位于警戒水位之上还是之下?与警戒水位的距离是多少米? (2)与上周末相比,本周末水位是上升了还是下降了?上升或下降多少米? 解: 23.(8分)如图是一个数值转换机的示意图,若输入x的值为3,y的值为-2,根据程序列出算式并
求出输出的结果. 解: 24.(8分)某个体儿童服装店老板以每件32元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示: 售出件数 7 6 3 5 4 5 售价/元 +3 +2 +1 0 -1 -2 问服装店老板在售完这30件连衣裙后,赚了多少钱? 解: 25.(12分)有规律排列的一列数:2,4,6,8,10,12,14,…,它的每一项可用式子2n(n是正整数)来表示.现有有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…. (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少? (3)2016是不是这列数中的数?如果是,是第几个数?如果不是,请说明理由. 解: 七年级数学上册入学二单元测试题 姓名: 班级 得分 (时间:100分钟 满分:120分) 一、选择题(每小题3分,共30分) 1.用代数式表示“a的3倍与b的和”,正确的是( ) A.3a-b B.3a+b C.a-3b D.a+3b 2.下列说法不正确的是( ) A.多项式5x2+4x-2的项是5x2,4x,-2 B.5是单项式 C.2x3,a+b3,ab2,3aπ都是单项式 D.3-4a中,一次项的系数是-4 3.-[-(m-n)]去括号得( ) A.m-n B.-m-n C.-m+n D.m+n 4.关于单项式-52xyn8,下列说法正确的是( ) A.系数是5,次数是n B.系数是-58,次数是n+3 C.系数是-528,次数是n+1 D.系数是-5,次数是n+1 5.下列各组的两项是同类项的为( ) A.3m2n2与-m2n3 xy与2yx C.53与a3 D.3x2y2与4x2z2 6.化简a-2(1-3a)的正确结果是( ) A.7a-2 B.-2-5a C.4a-2 D.2a-2 7.如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为
( ) A.4x B.12x C.8x D.16x 8.某厂一月份的产量为a吨,二月份的产量比一月份增加了2倍,三月份的产量为二月份的2倍,则该厂第一季度的总产量为( ) A.5a吨 B.10a吨 C.7a吨 D.9a吨 9.如果在数轴上表示a,b两个数的点的位置如图所示,那么化简|a-b|+|a+b|的结果等于( ) A.2a B.-2a C.0 D.2b 10.用棋子摆出如图所示的一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子( ) A.4n枚 B.(4n-4)枚 C.(4n+4)枚 D.n2枚 二、填空题(每小题3分,共24分) 11.x-(y-z)的相反数是__ _.
12.若14xm+1y3与-2xyn是同类项,则m+n=__ __. 13.已知一个三位数的个位数字为x,十位数字为y,百位数字为z,那么这个三位数用代数式表示为
__ _. 14.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为__ __. 15.若(a2-3a-1)+A=a2-a+4,则A=__ __. 16.一个只含字母x的二次三项式,它的二次项系数比一次项系数小1,一次项系数比常数项又小1,常数项为-23,则这个多项式为__ _. 17.某城市为增强人们节水的意识,规定生活用水的基本价格是2元/m3,每户每月用水限定为7 m3,超过部分按3元/m3收费.已知小华家上个月用水a m3(超过7 m3),则小华家上个月应交水费__ _元.(用含a的式子表示) 18.一组按规律排列的式子:-a2,a52,-a83,a114,…(a≠0),则第n个式子是 _ a3n-1n_ _(n是正整数). 三、解答题(共66分) 19.(16分)计算: (1)(2m2+4m-3)+(5m+2); (2)x-[y-2x-(x+y)]; 解:(1) (2) (3)2(x2-2x+5)-3(2x2-5); (4)3(x+y2)-11(y2+x)+5(x+y2)+2(x+y2). 解:(3) (4) 20.(10分)先化简,再求值: (1)(5a-3a2+1-4a3)-(-2a2-a3),其中a=-2; 解: (2)已知a-b=5,ab=1,求(2a+3b-2ab)-(a+4b+ab)-(3ab+2b-2a)的值. 解: 21.(6分)已知A=2x2-9x-11,B=3x2-6x+4,求:(1)A-
B;(2)12A+2B.
解: 22.(8分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?
n→平方→-n→×2
→-2n2→+2n-1→答案 (1)填写表内空格: 输入 3 2 -2 … 输出答案 -1 -1 -1 -1 … (2)你发现的规律是__ __; (3)用简要过程说明你发现的规律的正确性. 解:( 23.(8分)如图,一块正方形的铁皮,边长为x cm(x>4),如果一边截去宽4 cm的一块,相邻一边截去宽3 cm的一块. (1)求剩余部分(阴影)的面积; (2)若x=8,则阴影部分的面积是多少? 解:(1)剩余部分(阴影)的面积为 (2) 24.(8分)托运行李的费用计算方法是:托运行李总质量不超过30千克,每千克收费1元;超过部分每千克收费元.某旅客托运行李m千克(m为正整数).
(1)请你用代数式表示托运m千克行李的费用; (2)求当m=45时的托运费用. 解:(1) (2)