东南大学mems简介
- 格式:ppt
- 大小:8.11 MB
- 文档页数:70
国内院校微电子专业简介中国科学院微电子所中国科学院微电子所成立于1986年,由原中国科学院109集成电路制造厂和半导体所微电子学部合并而成,2003年9月正式更名为中国科学院微电子研究所,是一所专业从事微电子领域研究与开发的国立研究机构,是中国科学院微电子技术总体和中国科学院EDA中心的依托单位。
下设4个研究室和两个制造部。
设有博士和硕士学位授予点和博士后流动站.主要研究方向:1. 硅器件及集成技术;⒉微细加工与新型纳米器件集成;3. 微波电路与化合物半导体器件;4.集成电路设计与系统应用(包括专用集成电路与系统、通讯与多媒体系统芯片、集成电路设计与应用开发)。
本专业一级学科为电子科学与技术。
作为一门交叉与综合性学科,跨专业学习具有极大的发展前景与潜力,因此微电子所欢迎并鼓励通讯与通信工程类、计算机类、自动化类、软件类、光电技术、物理与应用物理学、材料学等相关专业的同学报考。
博士学位授予权的专业微电子学与固体电子学(080903)□硅器件及集成技术①英语②半导体物理③半导体器件□微细加工与新型纳米器件集成①英语②半导体物理或固体物理③半导体器件或电子线路□微波电路与化合物半导体器件①英语②半导体物理③半导体器件或电子线路□集成电路设计与系统应用(专用集成电路与系统、通讯与多媒体系统芯片、集成电路设计与应用开发)①英语②模拟集成电路③数字集成电路或信号与系统或通信原理或电子线路中国科学院半导体研究所中国科学院半导体研究所成立于1960年,建有材料和器件大楼、基础理论和理化楼、电子楼、超净楼、离子楼及专业图书馆等。
本所现有研究员69人,包括9位中国科学院院士和中国工程院院士。
本所是国务院首批批准的博士和硕士学位授予权的单位和博士后流动站建站单位,现有4个博士学位授权点,5个硕士学位授权点,3个博士后流动站,博士生导师55名,硕士生导师53名。
本所是从事半导体物理、材料、器件、电路及其应用研究的综合性研究所。
表面微细加工技术简介一、表面微细加工技术●表面技术的一个重要组成部分●微电子工业重要的工艺技术基础●工艺精度决定了集成电路的特征尺寸●微米量级、亚微米量级、纳米量级●微型传感器、微执行器(微马达、微开关、微泵等)、微型机器人、微型飞机、微生物化学芯片等表面微细加工技术:●光刻加工电子束加工离子束加工激光束微细加工●超声波加工微细电火花加工电解加工电铸加工1.1 光刻加工●光刻加工●复印图像+化学腐蚀●广泛应用平面器件和集成电路●光刻三要素:光刻胶、掩膜版和光刻机●光刻胶又叫光致抗蚀剂,它是由光敏化合物、基体树脂和有机溶剂等混合而成的胶状液体●光刻胶受到特定波长光线的作用后,导致其化学结构发生变化,使光刻胶在某种特定溶液中的溶解特性改变光刻加工步骤: 1、涂胶、前烘2、曝光3、显影、坚膜(形成窗口)4、腐蚀或刻蚀5、沉积(形成电路)6、去胶曝光:对光刻胶膜进行选择性光化学反应,曝光部分改变在显影液的溶解性光刻胶的种类:●正胶:辐照后溶解性增加分辨率高,在超大规模集成电路工艺中,一般采用正胶●负胶:辐照后溶解性降低分辨率差,适于加工线宽≥3 m的线条曝光时影响分辨率的主要因素:1、掩膜版和光刻胶膜的接触情况2、曝光线平行度3、光的衍射、反射和散射4、光刻胶膜的质量和厚度5、曝光时间6、掩膜版的分辨率和质量曝光方式:●接触式:掩膜与胶膜贴紧曝光●分辨率高,胶膜和掩膜易磨损●低分辨率器件生产>5 μm●接近式:掩膜与胶膜有40μm间隙●避免污损,衍射造成分辨率差●投影式复印法:通过透镜系统使掩膜版图形缩小●精度依赖于光学系统,近紫外光波长(0.35-0.4 μm )●加工极限0.4μm突破光刻极限: 采用短波长光源曝光●深紫外曝光技术(0.2~0.35μm )●合理选择激光的激发物,KrF(248nm), ArF(193nm)●X射线曝光技术(零点几纳米)●线宽0.1 μm●位置对准困难,需防护严格●准分子激光光刻技术●线宽0.2 μm●精确控制剂量方面有待进一步提高腐蚀/刻蚀:●湿法刻蚀:利用酸碱溶液作为腐蚀剂化学反应●优点:选择性好、重复性好、设备简单、成本低●缺点:钻蚀严重、对图形的控制性较差●干法刻蚀:●等离子体腐蚀:利用强电场下气体辉光放电产生的活性基与被腐蚀胶膜发生化学反应,产生挥发性气体而去除选择性好、对衬底损伤较小,但各向异性较差●离子腐蚀:利用具有一定动能的惰性气体的离子轰击集体表面,离子束腐蚀和溅射腐蚀(物理过程)●反应离子刻蚀(RIE:Reactive Ion Etching):离子轰击的物理效应和活性离子的化学效应结合具有前两者优点,同时各向异性和选择性应用最广泛的主流刻蚀技术新一代光刻技术:●接触-接近式→反射投影式→步进投影式→步进扫描式●436nm ~365nm(汞弧灯)→248nm (KrF准分子激光源)●利用光刻印刷细微图形已接近极限,50nm及以下,光学光刻将被其它新技术取代:●X射线光刻技术(XRL)●极紫外光刻技术(EUVL)●电子束投影光刻技术●离子束投影光刻技术●激光辅助直接刻印法(LADI)X射线光刻技术(XRL)●解决100nm以下光刻节点最现实的技术●光源波长0.7-1.3nm●缺点:掩膜衬底的机械性能(已获得较大突破)极紫外光刻技术(EUVL)——软X射线光刻●极紫外光源波长:10-14nm●物质吸收严重,反射光学系统●Mo、Si组成多层膜对13nm有较高的反射系数●若能得到应用,有可能解决≤50nm的光刻技术激光辅助直接刻印法(LADI)●2002年6月,美国普林斯顿大学研制的一种在硅片上制造出更精细结构的新技术●带有待压印线路图的石英压印模●将模子直接压印在硅片上,施加五千万分之一秒的大功率激光脉冲,使硅熔化后,按照模子的图案凝固,●可印出10nm的线路图,四百万分之一秒●《Science》杂志评论:该工艺可维持芯片小型化进程,摩尔定律在接下来的20年里可能仍然有效1.2 电子束加工工作原理:真空条件下,利用电流加热阴极发射电子束,经控制栅极初步聚焦后,由加速阳极加速,通过透镜聚焦系统进一步聚焦,使能量密度集中在直径1~10μm斑点内。
当今的微机电系统(Micro Electro Mechanical System,简称MEMS)产业重点不断从单个的微机电系统器件向微机电系统产品转移,而且其中的机械、热、电、静电及电磁间耦合作用与机理日趋复杂,一些传统的工程设计方法(如经验设计法等)无法满足微系统的设计要求。
对微机电系统产品开发而言,这种反复尝试的设计方法、长设计周期以及微系统原型机的高昂费用导致了一种效率极为低下的、不切实际的情况。
目前,针对微机电系统的现代设计理论与方法已日益受到微机电系统CAD厂商以及高等院校的相关研究机构的重视,但对微机电系统大规模生产阶段的自动装配系统的研究较少。
微装配作为MEMS产业化过程中的一项重要技术理应受到重视。
在研究的过程中,我们查阅了大量国内外各方面的资料,发现迄今为止还没有一本书来系统讲解微装配的过程,于是我们项目组萌生了编写一本介绍微装配的书籍,希望对MEMS感兴趣的人在获取这方面知识的时候能够比我们来的容易些。
在现代产品设计过程中,装配技术作为检验设计质量的一个重要环节显得越来越重要。
而这个过程通常是用各种CAD设计软件来实现的,于是又出现了仿真的问题。
具体到MEMS,微装配与仿真更是一个有机的整体。
在设计MEMS时,要检验MEMS的可装配性,于是就要把MEMS系统进行建模仿真。
因此,有必要将两者联合起来进行论述。
“国家大学生创新性实验计划”作为教育部、财政部高等学校本科教学质量与教学改革工程的重要组成部分,是培养高素质创新型人才的重要举措之一。
该计划的实施,旨在培养大学生从事科学研究和探索未知的兴趣,从而激发大学生的创新思维和创新意识,锻炼大学生思考问题、解决问题的能力,培养其从事科学研究和创造发明的素质。
2007年,教育部批准了首批60所高校实施该计划项目,西安电子科技大学作为实施该计划项目的高校之一,已经有40个项目被正式列入“国家大学生创新性实验计划”,“MEMS自动装配系统的虚拟化研究”项目有幸成为其中之一。
东南大学集成电路与MEMS协同设计方面取得重要进展佚名
【期刊名称】《半导体信息》
【年(卷),期】2018(000)002
【摘要】日前,东南大学射频与光电集成电路研究所(射光所)王志功教授团队的王科平副研究员在集成电路与微机电系统(MEMS)协同设计方面取得重要进展。
成果以''''Design of a 1.8mW PLL-free 2.4GHz receiver utilizing temperaturecompensated FBAR resonator(基于温度补偿薄膜体声波谐振器的1.8毫瓦无锁相环2.4GHz接收机芯片)''''为题发表于集成电路领域顶级期刊IEEE Journal
【总页数】2页(P17-18)
【正文语种】中文
【中图分类】TN402
【相关文献】
1.我国在碳纳米材料表面电位设计方面取得进展 [J],
2.东南大学集成电路与MEMS协同设计方面取得重要进展 [J], 无;
3.上海硅酸盐所在钠离子电池材料设计方面取得进展 [J],
4.我国在基于人工维庋全光器件设计方面取得进展 [J], 科苑
5.北京大学在碳纳米管集成电路领域取得重要进展 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
一、北京大学北京大学微电子学系是国家大力支持的重点学科点。
北京大学微电子学系,又称微电子学研究所(院),有着源远流长的学术传统。
1956年,由著名物理学家黄昆院士在北大物理系领导创建了我国第一个半导体专业机构,之后在我国著名微电子专家王阳元院士的带领下,北京大学微电子学系发展成为我国培养高水平微电子人才的一个重要基地,是国家的重点学科点。
二、清华大学清华大学微电子所是全国微电子学领域首个重点学科点。
清华大学微电子学研究所成立于1980年9月,第一任所长由全国著名半导体物理学家、中科院院士李志坚担任。
该所是国家重点支持的北方微电子研究开发基地的主要组成单位,是高素质微纳电子科技人才的培养基地,1988年被定为全国微电子学领域第一个重点学科点。
三、中科院中科院和微电子领域关系最密切的研究所有3个:微电子所、半导体所和微系统所,这3个所的师资、资金实力在国内同行中处于领先水平。
四、电子科技大学电子科技大学位于具有“天府之国”美誉的成都,是“211”和“985”名校之一,在2006年中国高校国际学术会议排名中名列第四,被誉为“我国电子类院校的排头兵”。
其微电子与固体电子学院拥有一支以中科院院士陈星弼领衔的包括16名博士生导师、27名教授在内的雄厚师资力量,与国内外相关公司、高校和研究机构有着广泛的合作关系。
五、东南大学东南大学的微电子研究比较特殊,既有以射频闻名的射光所,又有在MEMS方向颇具实力的微电子所。
射光所下属于在无线电系,而微电子所则下属于电子工程系。
两个研究所各有所长,优势互补。
六、西安电子科技大学西安电子科技大学微电子学院是国家集成电路人才培养基地。
西安电子科技大学微电子学院是在原微电子研究所及技术物理学院微电子系的基础上组建而成,是科技部资助的5个国家集成电路人才培养基地之一。
七、天津大学天津大学电子科学与技术系以传感器为主的科研特色。
天津大学微电子专业隶属于电子信息工程学院,下设两个机构:天津大学专用集成电路(IC)设计中心和半导体传感器研究室。
忽悠人的,没啥东西,建议不用下载了。
原文内容如下:MEMS公司企业和研究机构列表研究机构:东南大学MEMS教育部重点实验室2, 北京大学微电子学研究院和微米/纳米加工技术国家级重点实验室3, 北京国浩微磁电子智能传感器技术研究所, 北京海淀区, 电子科技集团第13所-国家'863'MEMS专项基地,,河北石家庄新华区合作路, 加速度传感器,陀螺仪,碰撞传感器,倾角传感器,振动传感器,流量传感器,光开关,光衰减器,光反射镜,RF开关,微波移相器,微波带通滤波器5, 中国电子科技集团公司第49所,哈尔滨南岗区一曼街,力/温/湿/气/磁/光6个方面,100多种传感器.20余年MEMS研究,服务国防及重点工程公司企业1. 华润半导体(香港)有限公司,香港,RF MEMS SWITCH,(为美国TERAVICTA代工),硅microphone)2. Memsic-美新半导体(无锡)有限公司,无锡,麦克风3. 楼氏声学公司(Knowles Acoustics),苏州,各类传感器4, 山东歌尔电子有限公司- 歌尔声学股份有限公司,潍坊总部,MEMS部在北京,硅microphone5, 北京青鸟元芯微系统科技有限公司,压力传感器,加速度传感器,湿度传感器6, 博世传感器公司(Bosch Sensortec),医疗(加速度计--药物释放/生物分析,步数计),消费(笔记本坠落感测,振动感测,3D游戏杆),安全工程7, ST-意法半导体8, ADI29, 摩托罗拉10, HP-惠普,喷墨打印机头`11. 英飞凌,TPMS用MEMS传感器,已经与IC完美集成!很厉害!12. 苏州敏芯微电子技术有限公司,硅基MEMS麦克风(07年11月发布,08年批量还有其它的,例如上海巨哥电子科技有限公司,深圳市卡默莱电子科技有限公司,烟台睿创微纳技术有限公司Raytron,上海三鑫科技发展有限公司(Laseno微型激光投影仪)目前,国内MEMS产品门类依然相对较少,主要还是以惯性器件和压力传感器为主,而且多是中低端产品,创新性强的新器件、新系统鲜有出现高校和研究所:北京大学、1000m2 MEMS 洁净室中科院上海微系统与信息技术研究所,1600m2MEMS 洁净室河北半导体研究所(13所)1000m2MEMS 洁净室厦门大学萨本栋微纳米技术研究中心600m2洁净室中国工程物理研究院微系统中心1000 m2洁净室中国科学院微电子研究所中国科学院苏州纳米技术与纳米仿生研究所北京国浩微磁电子智能传感器技术研究所其它的诸如:山东淄博国家高新区MEMS研究院、陕西省微型机械电子系统研究中心、西安212/213所、618所,航天717/704所等等,大连理工王立鼎院士的分析是:研发的分布地区和单位:中国内地MEMS的研发单位主要集中在华北、华东和东北三个地区,还有西南地区的重庆和西北地区的西安等。
北京大学微电子学系国家大力支持的重点学科点北京大学微电子学系,又称微电子学研究所(院),有着源远流长的学术传统。
1956年,由著名物理学家黄昆院士在北大物理系领导创建了我国第一个半导体专业机构,之后在我国著名微电子专家王阳元院士的带领下,北京大学微电子学系发展成为我国培养高水平微电子人才的一个重要基地,是国家的重点学科点。
【硬件环境】三大重点实验室国内领先北大微电子学系有着国内一流的科研硬件设施,有微米/纳米加工技术国家级重点实验室、北方微电子研究开发基地新工艺新器件新结构电路国家计委专项实验室、北京市软硬件协同设计高科技实验室三大重点实验室,还有MPW(多项目晶圆)中心平台。
【师资科研】科研小组特色明显北大微电子所下设SOI、SOC、ASIC、MPW中心、MEMS、新器件、可测性、宽禁带、纳太器件等多个研究小组。
所长王阳元院士是中国微电子产业的奠基人之一,目前出任中芯国际的董事长。
SOI研究组的研究领域有SOI技术、纳米量级新结构器件及制备工艺技术,以及射频电路技术。
黄如教授是北京市优秀教师,目前为IEEE EDS(Electron Device Society)和ADCOM (Administrative Committee)的成员,主要科研方向是SOI,但同时也指导学生进行射频方面的研究。
廖怀林教授专门从事RF电路方面的研究,功底深厚。
该研究组掌握了国内科研界最先进的加工技术(流片基本上采用0.13微米工艺),研究生博士生已有多篇文章发表在国际高水平刊物上。
SOC研究组在敦山教授领导下,拥有北京大学-安捷伦科技SOC测试教育中心和北京大学-安捷伦科技SOC测试工程中心两大平台。
于老师虽然是研究微处理器,但在系统方面也有很深的造诣。
重视工艺是北大微电子所的传统,所里不少老师是学物理出身的,对于器件工艺十分重视,再加上最先进的微米/纳米加工条件,因此该所的微电子器件加工工艺一直保持着国内领先水平。