2015世纪金榜理科数学(广东版)单元评估检测(四)
- 格式:doc
- 大小:1.15 MB
- 文档页数:20
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专项强化训练(四)(45分钟80分)一、选择题(每小题5分,共25分)1.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:(1)α∥β⇒l⊥m;(2)α⊥β⇒l∥m;(3)l∥m⇒α⊥β;(4)l⊥m⇒α∥β.其中正确的命题是( )A.(1)(2)B.(2)(4)C.(1)(3)D.(3)(4)2.如图是一个多面体的三视图,则其全面积为( )A.错误!未找到引用源。
B.错误!未找到引用源。
+6C.错误!未找到引用源。
+4D.错误!未找到引用源。
+63.(2014·太原模拟)在三棱锥A -BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,则该三棱锥外接球的表面积为( )A.2πB.6πC.4错误!未找到引用源。
πD.24π4.(2014·丽江模拟)如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=错误!未找到引用源。
,则下列结论中错误的是( )A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.△AEF的面积与△BEF的面积相等5.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD 折起,使平面ABD⊥平面BCD,构成几何体ABCD,则在几何体ABCD中,下列命题中正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BCDC.平面ABC⊥平面BCDD.平面ADC⊥平面ABC二、填空题(每小题5分,共15分)6.已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是.7.(2014·北海模拟)如图所示,AB是☉O的直径,PA⊥☉O,C为圆周上一点,若AB=5cm,AC=2cm,则B点到平面PAC的距离为.8.(2014·丽水模拟)设正三棱锥S-ABC的底面边长为3,侧棱长为2,则侧棱SA 与底面ABC所成角的大小是.三、解答题(9~10题各13分,11题14分)9.(2014·衡水模拟)如图,底面为平行四边形的四棱柱ABCD-A′B′C′D′中,DD′⊥平面ABCD,∠DAB=错误!未找到引用源。
数学(理科)班级:__________________ 姓名:__________________第一部分 知识复习专题专题综合检测(四)专题四 不 等 式 (时间:120分钟,满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“a >b >0”是“ab <a 2+b 22”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:由a >b >0ab <a 2+b 22,而ab <a 2+b 22a ,b ∈R 且a ≠b ,但不能推出a >b >0.2.下列函数中,y 的最小值为4的是( ) A .y =x +4x B .y =sin x +4sin x (0<x <π)C .y =e x +4e xD .y =log 2x +4log 2x解析:A 成立需x >0;B 取不到等号;D 成立需x >1. 答案:C3.不等式4x 2-12x +9≤0的解集为( ) A .B .RC.⎩⎨⎧⎭⎬⎫x|x ≠ 32D.⎩⎨⎧⎭⎬⎫32 答案:D4.不等式x -1x ≥2的解集为( )A .[-1,0)B .[-1,+∞)C . (-∞,-1]D .(-∞,-1]∪(0,+∞)解析:x -1x≥2x -1x -2≥0 -x -1x≥0⎩⎪⎨⎪⎧x (x +1)≤0,x ≠0 -1≤x <0.5.若不等式mx2+x+n>0的解集是{x|-13<x<12},则m,n分别是()A.6,-1 B.-6,-1C.6,1 D.-6,1答案:D6.下列函数中,最小值是2的是()A.y=2x+2-xB.y=x2+2+1x2+2C.y=sin x +1sin x,x∈⎝⎛⎭⎪⎫0,π2D.y=x2+2x答案:A7.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表所示.)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x 亩,y 亩,总利润为z 万元,则目标函数为z =(0.55×4x -1.2x)+(0.3×6y -0.9y)=x +0.9y.线性约束条件为⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤50,4x +3y ≤180,x ≥0,y ≥0,作出不等式组⎩⎪⎨⎪⎧x +y ≤50,4x +3y ≤180,x ≥0,y ≥0表示的可行域(如图),易求得点A(0,50),B(30,20),C(45,0).平移直线z =x +0.9y ,可知当直线z =x +0.9y 经过点B(30,20),即x =30,y =20时,z 取得最大值,且z max =48 万元.答案:B8.(2014·湖北卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0,则2x+y 的最大值是( )A .2B .4C .7D .8解析:不等式组表示的平面区域如图的四边形OABC(包括边界),解方程组⎩⎪⎨⎪⎧x -y =2,x +y =4,得点B(3,1),令z =2x +y ,平移直线z =2x +y 经过点B 使得z 取最大值,即z max =2×3+1=7.故选C.答案:C9.已知向量a =(x ,2),b =(1,y),其中x >0,y >0.若a·b =4,则1x +2y的最小值为( ) A.32 B .2 C.94 D .2 2 答案:C10.(2013·新课标Ⅱ卷)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3).若z =2x +y 的最小值为1,则a =( )A.14B.12 C .1 D .2解析:本题可先画出可行域,然后根据图形确定出最小值点进行解答. 作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11. 已知x >2,则2x 2x -2的最小值是________.解析:2x 2x -2=2(x -2)2+8(x -2)+8x -2=2(x -2)+8x -2+8≥22(x -2)·8x -2+8=16,当且仅当2(x -2)=8x -2即x =4时等号成立.答案:1612.(2014·福建卷)已知圆C :(x -a)2+(y -b)2=1,设平面区域Ω=⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0,若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为________.解析:a 2+b 2即圆心(a ,b)到原点O 距离的平方.画出可行域,由已知,当圆心为A(6,1)时,|OA|最大,此时(a 2+b 2)max =62+11=37.答案:3713.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.答案:(0,8)14.若不等式x 2-(2a +1)x +a 2+a<0的解集为A ,不等式x 2-5x +4≥0的解集为B ,且AB ,则实数a 的取值范围是________.答案:(-∞,0]∪[4,+∞)三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知函数y =(k 2+4k -5)x 2+4(1-k)x +3的图象都在x 轴上方,求实数k 的取值范围.解析:①由k 2+4k -5=0,得k =-5或k =1, 当k =1时,y =3,满足题意; 当k =-5时,y =24x +3,不合题意. ②当k 2+4k -5≠0,即k ≠-5且k ≠1时, 函数的图象都在x 轴上方,则⎩⎪⎨⎪⎧k 2+4k -5>0,Δ=16(1-k )2-12(k 2+4k -5)<0, 解得1<k <19.综上所述,k 的取值范围是(1,19).16. (12分) 已知直线过点P(3,2)且与x 轴正半轴,y 轴正半轴分别交于A 、B 两点.(1)求△AOB 面积的最小值及此时直线l 方程(O 为原点); (2)求直线l 在两坐标轴上截距之和的最小值.解析:(1)设直线l 的方程x a +yb =1(a >0,b >0).则3a +2b =1≥26ab,ab ≥26,ab ≥24. S =12ab ≥12.仅当3a =2b =12,即a =6,b =4,S min =12.此时l :x 6+y4=1,即2x +3y -12=0.(2)∵3a +2b =1,∴a +b =⎝ ⎛⎭⎪⎫3a +2b (a +b)=5+3b a +2a b ≥5+2 6.仅当3b a =2ab 时,即a =3+ 6 ,b =2+6时,(a +b)min =5+2 6.17.(14分)设f(x)=3ax 2+2bx +c ,若a +b +c =0,f(0)>0,f(1)>0,求证:(1)a >0且-2<ba<-1;(2)方程f(x)=0在(0,1)内有两个实根.证明:(1)∵f(0)>0,f(1)>0,∴⎩⎪⎨⎪⎧c >0,3a +2b +c >0.又∵a +b +c =0,∴b =-a -c ,代入不等式组得a >c >0.要证-2<ba<-1,∵a >0,∴只需证-2a <b <-a ,即需证⎩⎪⎨⎪⎧2a +b >0,a +b <0.又∵a +b =-c <0,∴2a +b =a +(a +b)=a -c >0. ∴原不等式成立,即-2<ba<-1.(2)证法一 f ⎝ ⎛⎭⎪⎫12=3a 4+b +c =-14a <0,又因为f(0)>0,f(1)>0,所以f ⎝ ⎛⎭⎪⎫12·f(0)<0,f ⎝ ⎛⎭⎪⎫12·f(1)<0,且f(x)为连续函数,所以方程f(x)=0在区间⎝ ⎛⎭⎪⎫0,12与⎝ ⎛⎭⎪⎫12,1内分别有一个实根,故方程f(x)=0在(0,1)内有两个实根.证法二 ∵-2<ba <-1,∴对称轴x =-b 3a ∈⎝ ⎛⎭⎪⎫13,23,又∵b =-a -c.∴Δ=4b 2-12ac =4(-a -c)2-12ac =4(a 2+c 2-ac)>0. 由⎩⎪⎨⎪⎧f (0)>0,f (1)>0,Δ>0,得方程f(x)=0在(0,1)内有两个实根.18. (14分)某公司计划2015年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500 元/分钟和200 元/分钟.假定甲、乙两个电视台为该公司做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?最大收益是多少万元?分析:先列出约束条件,建立目标函数;然后求解.解析:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,收益为z 元.由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0,目标函数z =3 000x +2 000y.二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0,作二元一次不等式组所表示的平面区域,即可行域,如右图. 作直线l :3 000x +2 000y =0,即3x +2y =0.平移直线l ,从图中可知,当直线过点M 时,目标函数取得最大值.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900, 解得x =100,y =200.∴点M 的坐标为(100,200).∴z max =700 000 元,即该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,才能使公司的收益最大,最大收益是70万元.19. (14分)某厂家拟在2015年举行促销活动,经调查测算,该产品的年销售量(即该产品的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-k m +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2015年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2015年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2015年的促销费用投入多少万元时,厂家的利润最大?解析:(1)由题意可知当m =0时,x =1 万件,∴1=3-k k =2,∴x =3-2m +1.每件产品的销售价格为1.5×8+16x x元, 2015年的利润y =x·⎣⎢⎡⎦⎥⎤1.5×8+16x x -(8+16x +m)=4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)当m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1m =3 万元时, y max =21 万元.∴促销费用投入3 万元时,厂家的利润最大.20.(14分)已知函数f(x)=x 2ax +b(a ,b 为常数)且方程f(x)-x +12=0有两个实根为x 1=3,x 2=4.(1)求函数f(x)的解析式;(2)设k >1,解关于x 的不等式:f(x)<(k +1)x -k 2-x.解析:(1)将x 1=3,x 2=4分别代入方程x 2ax +b -x +12=0得⎩⎨⎧93a +b =-9,164a +b =-8, 解得⎩⎪⎨⎪⎧a =-1,b =2.所以f(x)=x22-x(x≠2).(2)不等式即为x22-x<(k+1)x-k2-x,可化为x2-(k+1)x+k2-x<0,即(x-2)(x-1)(x-k)>0.①当1<k<2时,解集为{}x|1<x<k或x>2;②当k=2时,不等式化为(x-2)2(x-1)>0,解集为{}x|x>1且x≠2;③当k>2时,解集为{}x|1<x<2或x>k.。
2015年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上,用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答.答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:样本数据x 1,x 2,…,x n 的方差s 2=1[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015广东,理1)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M ∩N=( ) A.{1,4} B.{-1,-4} C.{0} D.⌀ 答案:D解析:由题意知集合M={-4,-1},N={4,1},M 和N 没有相同的元素.故M ∩N=⌀. 2.(2015广东,理2)若复数z=i(3-2i)(i 是虚数单位),则z = ( )A.2-3iB.2+3iC.3+2iD.3-2i 答案:A解析:因为z=i(3-2i)=3i -2i 2=2+3i,所以z =2-3i .3.(2015广东,理3)下列函数中,既不是奇函数,也不是偶函数的是( ) A.y= 2 B.y=x+1 C.y=2x +12x D.y=x+e x答案:D解析:根据函数奇偶性的定义,易知函数y= 2y=2x +1x 为偶函数,y=x+1为奇函数,所以排除选项A,B,C.故选D.4.(2015广东,理4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.5B.10C.11D.1答案:B解析:从15个球中任取2个球,其中白球的个数服从超几何分布,根据超几何分布的概率公式,得所取的2个球中恰有1个白球,1个红球的概率为C 101C 51C 152=10×5=10. 5.(2015广东,理5)平行于直线2x+y+1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x+y+5=0或2x+y-5=0 B.2x+y+ =0或2x+y- =0 C.2x-y+5=0或2x-y-5=0 D.2x-y+ 5=0或2x-y- 5=0 答案:A解析:设与直线2x+y+1=0平行的直线方程为2x+y+m=0(m ≠1),因为直线2x+y+m=0与圆x 2+y 2=5相切,即点(0,0)到直线2x+y+m=0的距离为 5,所以 5= 5,|m|=5.故所求直线的方程为2x+y+5=0或2x+y-5=0.6.(2015广东,理6)若变量x ,y 满足约束条件 4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z=3x+2y 的最小值为( )A.4B.235C.6 D.315答案:B解析:作出题中约束条件表示的可行域如图中阴影部分所示,由z=3x+2y可得y=-32x+z2.z指的是直线y=-3x+z在y轴上的截距,根据图形可知当直线y=-3x+z通过点A时,可使z取得最小值,即z取得最小值.易知点A的坐标为1,45,所以z min=3×1+2×4=23.7.(2015广东,理7)已知双曲线C:x 2a2−y2b2=1的离心率e=54,且其右焦点为F2(5,0),则双曲线C的方程为()A.x 24−y23=1 B.x29−y216=1C.x 2−y2=1 D.x2−y2=1答案:C解析:因为双曲线C的右焦点为F2(5,0),所以c=5.因为离心率e=ca =54,所以a=4.又a2+b2=c2,所以b2=9.故双曲线C的方程为x 2−y2=1.8.(2015广东,理8)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3B.至多等于4C.等于5D.大于5答案:B解析:特殊值法.当n=3时,正三角形的三个顶点之间两两距离相等,故n=3符合;当n=4时,联想正四面体的四个顶点之间两两距离相等,故n=4符合.由此可以排除选项A,C,D.故选B.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.(2015广东,理9)在(x-1)4的展开式中,x的系数为.答案:6解析:该二项展开式的通项为T r+1=C4r(x)4-r(-1)r,当x的指数为1时,4-r=2,解得r=2.故T3=C42(x)2(-1)2=6x,即x的系数为6.10.(2015广东,理10)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=. 答案:10解析:根据等差数列的性质,得a3+a4+a5+a6+a7=5a5=25,解得a5=5.又a2+a8=2a5,所以a2+a8=10.11.(2015广东,理11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=.答案:1解析:由sin B=12解得B=π6或B=5π6.根据三角形内角和定理,舍去B=5π,所以B=π6,A=2π3.根据正弦定理asin A =bsin B,得3sin2π3=bsinπ6,解得b=1.12.(2015广东,理12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)答案:1 560解析:该问题是一个排列问题,故共有A402=40×39=1 560条毕业留言.13.(2015广东,理13)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=. 答案:13解析:根据二项分布的均值、方差公式,得E(X)=np=30,D(X)=np(1−p)=20,解得p=13.(二)选做题(14-15题,考生只能从中选做一题)14.(2015广东,理14)(坐标系与参数方程选做题)已知直线l的极坐标方程为2ρsin θ−π4=2,点A的极坐标为A22,7π4,则点A到直线l的距离为.答案:522解析:2ρsin θ−π=2,即2ρsin θcosπ-2ρcos θsinπ=2,将其化为直角坐标方程为y-x=1.又点A的直角坐标为22cos7π4,22sin7π4=(2,-2),所以点A(2,-2)到直线y-x=1的距离d=2=522.15.(2015广东,理15)(几何证明选讲选做题)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1,过圆心O作BC的平行线,分别交EC和AC于点D和点P,则OD=.答案:8解析:设OD交劣弧AC于点M,由OP∥BC,得OP=1,P为AC的中点,PM=3.由切割线定理得DC2=DM·(DM+4).①在△ABC中,AC为直角边,且AC=2−BC2=42−12=15,所以CP=152.在Rt△DCP中,DC2=(DM+PM)2+CP2, ②联立①②可求得DM=6,所以OD=8.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(2015广东,理16)在平面直角坐标系xOy中,已知向量m=22,−22,n=(sin x,cos x),x∈0,π.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为π3,求x的值.解:(1)∵m=2,−2,n=(sin x,cos x),且m⊥n,∴m·n=22,−2·(sin x,cos x)=2sin x-2cos x=sin x−π=0.又x∈0,π2,∴x-π4∈ −π4,π4.∴x-π=0,即x=π.∴tan x=tanπ4=1.(2)由(1)和已知得cosπ3=m·n|m|·|n|=sin x−π422+−22·sin2x+cos2x=sin x−π4=12,又x-π∈ −π,π,∴x-π4=π6,即x=5π12.17.(本小题满分12分)(2015广东,理17)某工厂36名工人的年龄数据如下表:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值x和方差s2;(3)36名工人中年龄在x-s与x+s之间有多少人?所占的百分比是多少(精确到0.01%)?解:(1)依题意知所抽取的样本编号是一个首项为2,公差为4的等差数列,故其所有样本编号依次为2,6,10,14,18,22,26,30,34,对应样本的年龄数据依次为44,40,36,43,36,37,44,43,37.(2)由(1)可得其样本的均值x=44+40+36+43+36+37+44+43+379=40,方差s2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=19[42+02+(-4)2+32+(-4)2+(-3)2+42+32+(-3)2]=100.(3)由(2)知s=10,所以x-s=3623,x+s=4313.因为年龄在x-s与x+s之间共有23人,所以其所占的百分比是2336≈63.89%.18.(本小题满分14分)(2015广东,理18)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P-AD-C的正切值;(3)求直线PA与直线FG所成角的余弦值.(1)证明:∵PD=PC,且点E为CD边的中点,∴PE⊥DC.又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,PE⊂平面PDC,∴PE⊥平面ABCD.又FG⊂平面ABCD,∴PE⊥FG.(2)解:∵四边形ABCD是矩形,∴AD⊥DC.又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,AD⊂平面ABCD,∴AD⊥平面PDC.∵PD⊂平面PDC,∴AD⊥PD.∴∠PDC即为二面角P-AD-C的平面角.在Rt△PDE中,PD=4,DE=1AB=3,PE= PD2−DE2=7,∴tan∠PDC=PEDE =73,即二面角P-AD-C的正切值为73.(3)解:如图所示,连接AC,∵AF=2FB,CG=2GB,即AF=CG=2,∴AC ∥FG ,∴∠PAC 即为直线PA 与直线FG 所成的角或其补角. 在△PAC 中,PA=2+AD 2=5, AC=2+CD 23 由余弦定理可得cos ∠PAC=PA 2+AC 2−PC 2=2 5)222×5×3 5=9 5, ∴直线PA 与直线FG 所成角的余弦值为9 525.19.(本小题满分14分)(2015广东,理19)设a>1,函数f (x )=(1+x 2)e x -a.(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y=f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤a −2e3-1.解:(1)由题意可知函数f (x )的定义域为R ,f'(x )=(1+x 2)'e x +(1+x 2)(e x )'=(1+x )2e x ≥0,故函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间. (2)∵a>1,∴f (0)=1-a<0,且f (a )=(1+a 2)e a -a>1+a 2-a>2a-a=a>0. ∴函数f (x )在区间(0,a )上存在零点.又由(1)知函数f (x )在(-∞,+∞)上单调递增, ∴函数f (x )在(-∞,+∞)上仅有一个零点. (3)由(1)及f'(x )=0,得x=-1.又f (-1)=2e -a ,即P −1,2e −a ,∴k OP =2e−a−0−1−0=a-2e .又f'(m )=(1+m )2e m ,∴(1+m )2e m =a-2.令g (m )=e m -m-1,则g'(m )=e m -1,∴由g'(m )>0,得m>0,由g'(m )<0,得m<0.∴函数g (m )在(-∞,0)上单调递减,在(0,+∞)上单调递增. ∴g (m )min =g (0)=0,即g (m )≥0在R 上恒成立, 即e m ≥m+1.∴a-2e =(1+m )2e m ≥(1+m )2(1+m )=(1+m )3, 即 a −23≥1+m. 故m ≤ a −23-1.20.(本小题满分14分)(2015广东,理20)已知过原点的动直线l 与圆C 1:x 2+y 2-6x+5=0相交于不同的两点A ,B. (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y=k (x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 解:(1)由x 2+y 2-6x+5=0,得(x-3)2+y 2=4,从而可知圆C 1的圆心坐标为(3,0). (2)设线段AB 的中点M (x ,y ),由弦的性质可知C 1M ⊥AB ,即C 1M ⊥OM. 故点M 的轨迹是以OC 1为直径的圆,该圆的圆心为C 3,0 ,半径r=1|OC 1|=1×3=3, 其方程为 x −322+y 2= 322,即x 2+y 2-3x=0.又因为点M 为线段AB 的中点,所以点M 在圆C 1内, 所以 2+y 2<2. 又x 2+y 2-3x=0,所以可得x>5. 易知x ≤3,所以5<x ≤3.所以线段AB 的中点M 的轨迹C 的方程为x 2+y 2-3x=0 53<x ≤3 . (3)存在实数k 满足题意.由(2)知点M 的轨迹是以C 32,0 为圆心,32为半径的圆弧EF(如图所示,不包括两个端点), 且E 53,2 53 ,F 53,−2 53. 又直线L :y=k (x-4)过定点D (4,0), 当直线L 与圆C 相切时,由k 32−4 −0 k +1=32,得k=±34.又k DE =-k DF =-0− −2 534−53=2 5,结合上图可知当k ∈ −3,3 ∪ −2 5,2 5时,直线L :y=k (x-4)与曲线C 只有一个交点.21.(本小题满分14分)(2015广东,理21)数列{a n }满足:a 1+2a 2+…+na n =4-n +22n−1,n ∈N *.(1)求a 3的值;(2)求数列{a n }的前n 项和T n ; (3)令b 1=a 1,b n =T n−1+ 1+1+1+⋯+1a n (n ≥2),证明:数列{b n }的前n 项和S n 满足S n <2+2ln n.解:(1)依题意知3a 3=(a 1+2a 2+3a 3)-(a 1+2a 2)=4-3+223−1− 4−2+222−1 =34,即a 3=14.(2)∵当n ≥2时,na n =(a 1+2a 2+…+na n )-[a 1+2a 2+…+(n-1)a n-1]=4-n +22n−1− 4−n +12n−2=n2n−1,∴a n = 12 n−1.又a 1=4-1+220=1也适合此式, ∴a n = 1n−1,即数列{a n }是首项为1,公比为12的等比数列.故T n =1− 12n1−12=2- 1n−1. (3)由b n =a 1+a 2+⋯+a n−1n + 1+12+⋯+1n a n ,且b 1=a 1,知b 2=a 12+ 1+12 a 2,b 3=a 1+a 23+ 1+12+13a 3,……∴S n =b 1+b 2+…+b n = 1+1+⋯+1 (a 1+a 2+…+a n )= 1+1+⋯+1T n= 1+1+⋯+1 2−12n−1 <2× 1+1+⋯+1.记f (x )=ln x+1x -1(x>1),则f'(x )=1−12=x−12>0,∴f (x )在(1,+∞)上是增函数, 又f (1)=0,即在(1,+∞)上f (x )>0.又k ≥2,且k ∈N *时,kk−1>1, ∴f k =ln k+1k k−1-1>0,即lnk >1.∴1<ln 2,1<ln 3,……,1<ln n,即有1+1+…+1<ln 2+ln 3+…+ln n=ln n. ∴2× 1+1+1+⋯+1<2+2ln n , 即S n <2+2ln n.。
温馨提示:此套题为Word版,请按住Ctr ,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
梯级演练·强技提能1.直线l的参数方程为错误!未找到引用源。
(t为参数),则直线l的斜率为.2.已知动直线l平分圆C:(x-2)2+(y-1)2=1,则直线l与圆O:错误!未找到引用源。
(θ为参数)的位置关系是.3.(2014·汕头模拟)已知圆M:x2+y2-2x-4y+1=0,则圆心M到直线错误!未找到引用源。
(t为参数)的距离为.4.椭圆错误!未找到引用源。
(θ是参数)的离心率为,焦点坐标为.5.已知曲线C的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为.6.(2014·安庆模拟)若直线错误!未找到引用源。
(t是参数)与圆错误!未找到引用源。
(θ是参数)相切,则直线的倾斜角α的大小为.7.(2014·丰台模拟)在平面直角坐标系中,已知直线C1:错误!未找到引用源。
(t是参数)被圆C2:错误!未找到引用源。
(θ是参数)截得的弦长为.8.设直线l1的参数方程为错误!未找到引用源。
(t为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系得另一条直线l2的极坐标方程为ρsinθ-3ρcos θ+4=0,若直线l1,l2之间的距离为错误!未找到引用源。
,则实数a= .9.(2014·朝阳模拟)若直线l与圆C:错误!未找到引用源。
(θ为参数)相交于A,B两点,且弦AB的中点坐标是(1,-2),则直线l的倾斜角为. 10.(2014·大兴模拟)已知直线y=kx与曲线错误!未找到引用源。
(θ为参数)有且仅有一个公共点,则k= .11.在极坐标系中,以极点为原点,极轴为x轴的正方向,将曲线错误!未找到引用源。
按伸缩变换φ:错误!未找到引用源。
变换后得到曲线C,则曲线C上的点到直线ρ·错误!未找到引用源。
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2015年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:样本数据1x ,2x ,⋅⋅⋅,n x 的方差2222121()()()n s x x x x x x n⎡⎤=-+-+⋅⋅⋅+-⎣⎦,其中x 表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .∅B .{1,4}--C .{0}D .{1,4} 2.若复数i(32i)z =-(i 是虚数单位),则z =( )A .32i -B .32i +C .2+3iD .23i - 3.下列函数中,既不是奇函数,也不是偶函数的是( )A .x y x e =+B .1y x x=+C .122x xy =+D.y 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1B .1121C .1021 D .5215.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A.20x y -=或20x y -= B.20x y +或20x y += C .250x y -+=或250x y --=D .250x y ++=或250x y +-=6.若变量x ,y 满足约束条件458,13,02,x y x y +⎧⎪⎨⎪⎩≥≤≤≤≤则32z x y =+的最小值为( )A .315B .6C .235D .47.已知双曲线C :22221x y a b -=的离心率54e =,且其右焦点为2(5,0)F ,则双曲线C 的方程为( )A .22143x y -=B .221169x y-= C .221916x y -=D .22134x y -= 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5B .等于5C .至多等于4D .至多等于3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.在41)的展开式中,x 的系数为 .10.在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += . 11.设ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若a =,1sin 2B =,π6C =,则b = .12.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言(用数字作答).13.已知随机变量X 服从二项分布(,)B n p .若()30E X =,()20D X =,则p = . (二)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程)已知直线l的极坐标方程为π2sin()4ρθ-,点A的极坐标为7π)4A ,则点A 到直线l 的距离为 .姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)15.(几何证明选讲)如图,已知AB 是圆O 的直径,4AB =,EC 是圆O 的切线,切点为C ,1BC =.过圆心O 作BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在平面直角坐标系xOy 中,已知向量m (22=,n (sin ,cos )x x =,π(0,)2x ∈. (Ⅰ)若m ⊥n ,求tan x 的值; (Ⅱ)若m 与n 的夹角为π3,求x 的值.17.(本小题满分12分)(Ⅰ)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (Ⅱ)计算(Ⅰ)中样本的均值x 和方差2s ;(Ⅲ)36名工人中年龄在x s -与x s +之间有多少人?所占的百分比是多少(精确到0.01%)?18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且2AF FB =,2CG GB =.(Ⅰ)证明:PE FG ⊥;(Ⅱ)求二面角P AD C --的正切值; (Ⅲ)求直线PA 与直线FG 所成角的余弦值.19.(本小题满分14分)设1a >,函数2()(1)x f x x e a =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:()f x 在(,)-∞+∞上仅有一个零点;(Ⅲ)若曲线()y f x =在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点),证明:1m .20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (Ⅰ)求圆1C 的圆心坐标;(Ⅱ)求线段AB 的中点M 的轨迹C 的方程;(Ⅲ)是否存在实数k ,使得直线L :(4)y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,请说明理由.21.(本小题满分14分)数列{}n a 满足:1212242n n n a a na -+++⋅⋅⋅+=-,*n ∈Ν. (Ⅰ)求3a 的值;(Ⅱ)求数列{}n a 的前n 项和n T ; (Ⅲ)令11b a =,1111(1)(2)23n n n T b a n n n-=++++⋅⋅⋅+≥,证明:数列{}n b 的前n 项和n S 满足22ln n S n <+.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)2015年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析一、选择题 1.【答案】D【解析】由题意可得{1,4}{1,4}M N M N =--==∅I ,,. 【提示】求出两个集合,然后求解交集即可. 【考点】交集及其运算 2.【答案】B【解析】由题意可得i(32i)23i z =-=-,因此23i z =+. 【提示】直接利用复数的乘法运算法则化简求解即可. 【考点】复数的基本计算以及共轭复数的基本概念 3.【答案】D【解析】A 选项,()()f x f x -===,偶函数;B 选项,()11()f x x x f x x x ⎛⎫-=-+=-+=- ⎪-⎝⎭,奇函数; C 选项,11()22()22x x x x f x f x ---=+=+=,偶函数;D 选项,1()e ()()ex x f x x x f x f x --=-+=-+=≠≠-,因此选D .【提示】直接利用函数的奇偶性判断选项即可. 【考点】函数的奇偶性的判定 4.【答案】B【解析】任取两球一共有215151415712C ⨯==⨯⨯种情况,其中一个红球一个白球一共有11105105C C =⨯g ,因此概率为1051015721⨯=⨯. 【提示】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可. 【考点】古典概型及其概率计算公式 5.【答案】A【解析】与直线210x y ++=平行的直线可以设为20x y m ++=,= ∴||5m =,解得5m =±,因此我们可以得到直线方程为:250x y ++=或250x y +-=.【提示】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【考点】解析几何中的平行,圆的切线方程 6.【答案】B【解析】依据题意,可行域如右图所示,初始函数为032l y x =- :,当0l 逐渐向右上方平移的过程中,32z x y =+不断增大,因此我们可以得到当l 过点41,5E ⎛⎫⎪⎝⎭的时候,min 235z =.【提示】作出不等式组对应的平面区域,根据z 的几何意义,利用数形结合即可得到最小值.【考点】线性规划问题 7.【答案】C数学试卷 第7页(共16页) 数学试卷 第8页(共16页)【解析】已知双曲线22221x y C a b-=:,54c e a ==,又由焦点为()25,0F,因此45435c a c b =⇒==⇒=,因此双曲线方程为221169x y -=.【提示】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程. 【考点】圆锥曲线的离心率求解问题 8.【答案】B【解析】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立; 4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n 大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若4n >,由于任三点不共线,当5n =时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立; 同理5n >,不成立. 故选:B .【提示】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断. 【考点】棱锥的结构特征 二、填空题 9.【答案】6【解析】展开通式为144(1)m m m C ---,令2m =可得14124244(1)(1)4m m m C C x ----=-=,因此系数为6.【提示】根据题意二项式41)的展开的通式为144(1)m m m C ---,分析可得,2m =时,有x 的项,将2m =代入可得答案. 【考点】二项式定理的运用 10.【答案】10【解析】根据等差中项可得:345675525a a a a a a ++++==,55a =,因此285210a a a +==.【提示】根据等差数列的性质,化简已知的等式即可求出5a 的值,然后把所求的式子也利用等差数列的性质化简后,将5a 的值代入即可求出值. 【考点】等差中项的计算 11.【答案】1【解析】由1sin 2B =,得π6B =或者5π6B =,又因为π6C =,因此π6B =,2π3A =,根据正弦定理可得sin sin a bA B =1sin 1sin 2a b B A ===g g . 【提示】由1sin 2B =,可得π6B =或者5π6B =,结合a ,π6C =及正弦定理可求b .【考点】正弦定理,两角和与差的正弦函数 12.【答案】1560【解析】某高三毕业班有40人,每人给彼此写一条留言,因此每人的条数为39,故而一共有40391560⨯=条留言.【提示】通过题意,列出排列关系式,求解即可. 【考点】排列与组合的实际应用 13.【答案】13【解析】根据随机变量X服从二项分布(,)B n p ,根据()30()(1E X n p D X n p p===-=,,可得()21()3D X p E X -==,化简后可得13p =. 【提示】直接利用二项分布的期望与方差列出方程求解即可. 【考点】离散型随机变量的期望与方差 14.【答案】2【解析】考察基本的极坐标和直角坐标的化简以及点到直线距离问题.由数学试卷 第9页(共16页) 数学试卷 第10页(共16页)2sin 4πρθ⎛⎫- ⎪⎝⎭l 的直角坐标系方程为10x y --=,由7π4A ⎛⎫ ⎪⎝⎭可得它的直角坐标为()2,2A -, 因此,点A 到直线l的距离为d ==. 【提示】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可. 【考点】简单曲线的极坐标方程 15.【答案】8 【解析】连接OC ,根据AOC △为等腰三角形可得CAO ACO ∠=∠,又因为AB 为直径, 因此可得90CAO B ∠+∠=︒,90ACO B ∠+∠=︒, ∵OP BC ∥∴90AC OP ACO COP ⊥∠+∠=︒,, 因此可得COP B ∠=∠,因此Rt Rt DOC ABC △∽△, 故而可得21OD OC AB BC ==,∴8OD =. 【提示】连接OC ,根据AOC △为等腰三角形可得CAO ACO ∠=∠,AB 为直径以及OP BC ∥得出Rt Rt DOC ABC △∽△即可求出OD 的值.【考点】相似三角形的判定 三、解答题16.【答案】(Ⅰ)tan 1x =(Ⅱ)5π12x =【解析】∵m n ⊥u r r,π(sin ,cos )sin 22224m n x x x x x ⎛⎛⎫=-=-=- ⎪ ⎝⎭⎝⎭u r r g g , ∴||1||1m n ==u r r, ,因此:(Ⅰ)若m n ⊥u r r ,可得πsin 04m n x ⎛⎫=-= ⎪⎝⎭u r r g ,∴ππππ44x k x k -=⇒=+,又∵π0,2x ⎛⎫∈ ⎪⎝⎭,π04k x ==,,因此可得πtan tan 14x ==.(Ⅱ)若m u r 和n r 的夹角为π3,可得ππ1sin ||||cos 432m n x m n ⎛⎫=-== ⎪⎝⎭u r r u r r g g, ∴ππ2π46x k -=+或π5π2π46x k -=+, 又∵π0,2x ⎛⎫∈ ⎪⎝⎭,∴πππ,444x ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,∴ππ46x -=,解得5π12x =.【提示】(Ⅰ)若m n ⊥u r r ,则0m n =u r rg ,结合三角函数的关系式即可求tan x 的值.(Ⅱ)若m u r 和n r 的夹角为π3,利用向量的数量积的坐标公式进行求解即可求x 的值.【考点】平面向量数量积的运算,数量积表示两个向量的夹角 17.【答案】(Ⅰ)444036433637444337, , , , , , , , (Ⅱ)40x =21009s =(Ⅲ)23人63.89%.【解析】(Ⅰ)根据系统抽样的方法,抽取9个样本,因此分成9组,每组4人.又因为第一组中随机抽样可抽到44,因此按照现有的排序分组.故而每组中抽取的都是第二个数,因此我们可得样本数据为第2个,第6个,第10个,第14个,第18个,第22个,第26个,第30个,第34个, 分别为:444036433637444337, , , , , , , , (Ⅱ)由平均值公式得444036433637444337409x ++++++++==,由方差公式得数学试卷 第11页(共16页) 数学试卷 第12页(共16页)22222212291100()()()(994440)(4040)(3740)s x x x x x x ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦-+-=+-+.(Ⅲ)103s ===,因此可得21364333x s x s -=+=,,因此在x s -和x s +之间的数据可以是444036433637444337, , , , , , , , ,因此数据一共有23人,占比为23100%63.89%36⨯≈.【提示】(Ⅰ)利用系统抽样的定义进行求解即可.(Ⅱ)根据均值和方差公式即可计算(Ⅰ)中样本的均值x 和方差2s . (Ⅲ)求出样本和方差即可得到结论. 【考点】极差,方差与标准差,分层抽样方法 18.【答案】(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)证明:由PD PC =可得三角形PDC 是等腰三角形, 又因为点E 是CD 边的中点,因此可得PE CD ⊥,又因为三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,而且相交于CD ,因此PE ⊥平面ABCD ,又因为FG 在平面ABCD 内,因此可得PE FG ⊥,问题得证.(Ⅱ)因为四边形ABCD 是矩形,因此可得AD CD ⊥, 又因为PE ⊥平面ABCD ,故而PE AD ⊥, 又PECD E =,因此可得AD ⊥平面PDC ,因此,AD PD AD CD ⊥⊥,所以P AD C PDE ∠--=∠.在等腰三角形PDC 中,46PD CD AB ===,,132DE CD==.因此可得PE ==tan 3PE PDE DE ∠==. (Ⅲ)如图所示,连接AC AE ,.∵22AF FB CG GB ==,, ∴BF BGAB BC=,BFG BAC △∽△,GF AC ∥, 因此,直线PA 与直线FG 所成角即为直线PA 与直线AC 所成角PAC ∠, 在矩形ABCD 中,点E 为CD中点,因此AE ==,而且AC =.又PE ⊥面ABCD ,三角形PAE 为直角三角形,故5PA ==,因此在PAC △中,54PA PC AC ===,,,因此可得222cos 2PA AC PC PAC PA AC +-∠==g .【提示】(Ⅰ)通过等腰三角形PDC 可得PE CD ⊥,利用线面垂直判定定理及性质定理即得结论.(Ⅱ)通过(Ⅰ)及面面垂直定理可得PE AD ⊥,则PDE ∠为二面角P AD C ∠--的平面角,利用勾股定理即得结论.(Ⅲ)连结连接AC AE ,,利用勾股定理及已知条件可得GF AC ∥,在PAC △中,利用余弦定理即得直线PA 与直线FG 所成角即为直线PA 与直线FG 所成角PAC ∠的余弦值.【考点】二面角的平面角及求法,异面直线及其所成的角,直线与平面垂直的性质 19.【答案】(Ⅰ)单调增区间为R (Ⅱ)见解析 (Ⅲ)见解析【解析】()()()()2222e 1e 12e 1e x x x xf x x x x x x '=++=++=+Qg ,因此:(Ⅰ)求导后可得函数的导函数()()21e 0x f x x '=+≥恒成立,因此函数在(,)-∞+∞上是增函数.数学试卷 第13页(共16页) 数学试卷 第14页(共16页)故而单调增区间为R .(Ⅱ)证明:令2()(1)e 0x f x x a =+-=可得2(1)e xx a +=,设212(1)e x y x y a =+=,,对函数21(1)e xy x =+, 求导后可得21(1)e 0x y x '=+≥恒成立,因此函数21(1)e xy x =+单调递增,因此可以得到函数图像. 函数2()(1)e x f x x a =+-有零点,即方程2(1)e xx a +=有解, 亦即函数212(1)e xy x y a =+=,,图像有交点.当0x =时,11y =,因此根据函数的图像可得:212(1)e xy x y a =+=,有且只有一个交点,即2()(1)e xf x x a =+-有且只有一个零点.(Ⅲ)证明:设点P 的坐标为00(,)x y ,故而在点P 处切线的斜率为:0200()(1)e 0xf x x '=+=,01x =-,因此21,1e P ⎛⎫-- ⎪⎝⎭.在点M 处切线的斜率为:22()(1)e em OP f m m k a '=+==-, 因为1a >,因此20ea ->.欲证1m ≤-,即证322(1)(1)e e m m a m +≤-=+,1e m m +≤,设()e 1x g x x =--,求导后可得()e 1xg x '=-,0x =,令()e 10xg x '=-=,因此函数在(,0)-∞上单调递减,在(0,)+∞上单调递增.因此可得()(0)0g x g ≥=,所以()e 10xg x x =--≥,e 1x x ≥+,e 1m m ≥+问题得证.【提示】(Ⅰ)利用()0f x '≥,求出函数单调增区间.(Ⅱ)证明只有1个零点,需要说明两个方面:函数单调以及函数有零点. (Ⅲ)利用导数的最值求解方法证明.【考点】利用导数研究函数的单调性,利用导数研究曲线上某点切线方程 20.【答案】(Ⅰ)1(3,0)C(Ⅱ)2230x y x +-=,其中5,33x ⎛⎤∈ ⎥⎝⎦(Ⅲ)存在34k ⎛⎧⎫∈± ⎨⎬ ⎩⎭⎝⎭【解析】依题意得化成标准方程后的圆为:22(3)4x y -+=,因此:(Ⅰ)根据标准方程,圆心坐标为1(3,0)C . (Ⅱ)数形结合法:①当动线l 的斜率不存在是,直线与圆不相交. ②设动线l 的斜率为m ,因此l y mx =:, 联立22650y mxx y x =⎧⎨+-+=⎩,则22(1)650m x x +-+=根据有两个交点可得:()22224362010056151A B A B m m x x m x x m ⎧∆=-+>⇒≤<⎪⎪⎪+=⎨+⎪⎪=⎪+⎩,故而点M 的坐标为2233,11m m m ⎛⎫ ⎪++⎝⎭,令223131x m m y m ⎧=⎪⎪+⎨⎪=⎪+⎩,因此由此可得2230x y x +-=,其中235,313x m ⎛⎤=∈ ⎥+⎝⎦. (Ⅲ)证明:联立2230(4)x y x y k x ⎧+-=⎨=-⎩,所以,2222(1)(83)160k x k x k +-++=因此,当直线L 与曲线相切时,可得29160k ∆=-=,解得34k =±. 设2230x y x +-=,5,33x ⎛⎤∈ ⎥⎝⎦的两个端点是C D 、,设直线L 恒过点(4,0)E数学试卷 第15页(共16页) 数学试卷 第16页(共16页)因此可得53C ⎛ ⎝⎭,5,3D ⎛ ⎝⎭,故而可得77CE DE k k ==-, 由图像可得当直线L 与曲线有且只有一个交点的时候,34k ⎛⎧⎫∈± ⎨⎬ ⎩⎭⎝⎭.【提示】(Ⅰ)通过将圆1C 的一般式方程化为标准方程即得结论(Ⅱ)设当直线l 的方程为y mx =,通过联立直线l 与圆1C 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论. (Ⅲ)通过联立直线L 与圆1C 的方程,利用根的判别式0∆=及轨迹C 的端点与点(4,0)E 决定的直线斜率,即得结论.【考点】轨迹方程,直线与圆的位置关系 21.【答案】(Ⅰ)14(Ⅱ)1122n n T -=- (Ⅲ)见解析【解析】由给出的递推公式可得: ①当1n =时,1431a =-=②当2n ≥时,121122(1)42n n n n a a n a na --+++⋅⋅⋅+-+=-, 121212(1)42n n n a a n a --+++⋅⋅⋅+-=-, 所以12n n n na -=,112n n a -⎛⎫= ⎪⎝⎭其中1n =也成立,因此可得11()2n n a n -⎛⎫=∈ ⎪⎝⎭*N(Ⅰ)因此231124a ⎛⎫== ⎪⎝⎭.(Ⅱ)∵11()2n n a n -⎛⎫=∈ ⎪⎝⎭*N ,所以数列{}n a 的公比12q =,利用等比数列的求和公式可得: 111121*********n nn n T -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎡⎤⎢⎥⎛⎫⎣⎦==-=- ⎪⎢⎥⎝⎭⎣⎦-. (Ⅲ)因为()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭11b a =,1221122a b a ⎛⎫=++ ⎪⎝⎭,1233111323a a b a +⎛⎫=+++ ⎪⎝⎭, 123111123n n n a a a a b a n n +++⋅⋅⋅+⎛⎫=++++⋅⋅⋅+ ⎪⎝⎭,因此,欲证22ln n S n <+,即证1111112122ln ln 2323n n n n ⎛⎫+++⋅⋅⋅+<+⇐++⋅⋅⋅+< ⎪⎝⎭,将ln n 化简为132l n l n l n l n l n1221n n n n n -=++⋅⋅⋅++--,即证1111l n l n l n 11n n n n n n n-⎛⎫>⇐-=--> ⎪-⎝⎭, 令()ln 1g x x x =-+,所以11()1xg x x x-'=-=,因此函数在(0,1)上单调递增,在(1,)+∞上单调递减,因此()(1)0g x g ≤=, 又因为111n-<,因此11111()0l l n1g g x nnn n⎛⎫⎛⎫⎛-<=⇒⇒-- ⎪ ⎪ ⎝⎭⎝⎭⎝, 问题得证.【提示】(Ⅰ)利用数列的递推关系即可求3a 的值.(Ⅱ)利用作差法求出数列{}n a 的通项公式,利用等比数列的前n 项和公式即可求数列{}n a 的前n 项和n T .(Ⅲ)利用构造法,结合裂项法进行求解即可证明不等式.【考点】数列与不等式的综合,数列的求和。
世纪金榜理科数学广东版单元评估检测Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元评估检测(九)第九章(60分钟100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·海口模拟)计算机执行下面的程序段后,输出的结果是( )014,2 014 014,2 0132.(2014·合肥模拟)给出下列命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程=+x中,=2,=1,=3,则=1;④如图是根据抽样检测后得出的产品样本净重(单位:克)数据绘制的频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是90.其中假命题的个数为( )3.阅读程序框图,如果输出的函数值在区间内,那么输入的实数x的取值范围是( )A.(-∞,-2]B.[-2,-1]C.[-1,2]D.[2,+∞)4.(2014·宁波模拟)200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/h的汽车数量为( )辆辆辆辆5.已知回归直线斜率的估计值为,样本点的中心为点(4,5),则回归直线的方程为( )A.=+4B.=+5C.=+D.=+6.(2014·宝鸡模拟)读程序回答问题甲乙i=1S=0WHILE i<=1 000 S=S+ii=i+1WENDPRINT SEND i=1 000S=0DOS=S+ii=i-1LOOP UNTIL i<1 PRINT SEND对甲、乙两程序和输出结果判断正确的是( )A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同7.(2014·青岛模拟)根据下面的列联表嗜酒不嗜酒总计患肝病7 775427 817未患肝病 2 09949 2 148总计9 874919 965得到如下几个判断:①在犯错误的概率不超过的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能小于1%;④认为患肝病与嗜酒有关的出错的可能为10%.其中正确命题的个数为( )8.(2014·揭阳模拟)一般来说,一个人脚掌越长,他的身高就越高,现对10名成年人的脚掌长x与身高y进行测量,得到数据(单位均为cm)如表所示,作出散点图后,发现散点在一条直线附近,经计算得到一些数据:(xi -)(yi-)=,(xi-)2=;某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长为,则估计案发嫌疑人的身高为( )二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)9.(2014·嘉兴模拟)在一次运动员的选拔中,测得7名选手身高(单位:cm)分布的茎叶图如图所示.已知记录的平均身高为164cm,但有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为.10.(2014·沈阳模拟)甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):如果甲、乙两人中只有1人入选,那么入选的最佳人选应是.11.(2014·广东十校联考)如图是一个算法的程序框图,最后输出的W= .12.在2014年元旦期间,某市物价部门对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如表所示:价格x91011销售量y1110865通过分析,发现销售量y与商品的价格x具有线性相关关系,则销售量y关于商品的价格x的线性回归方程为.三、解答题(本大题共4小题,共40分.解答时应写出必要的文字说明、证明过程或演算步骤)13.(10分)(2014·长春模拟)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:甲273830373531乙332938342836(1)画出茎叶图.(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、方差,并判断选谁参加比赛更合适14.(10分)(2014·茂名模拟)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.(1)求图中实数a的值.(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数.(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.15.(10分)某学生对其30位亲属的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.说明:如图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.(1)根据茎叶图,帮助这位同学说明其亲属30人的饮食习惯.(2)根据以上数据完成2×2列联表:(3)能否在犯错误的概率不超过的前提下认为其亲属的饮食习惯与年龄有关,并写出简要分析.16.(10分)(能力挑战题)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率.(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程=x+.(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想(参考公式:==,=-).答案解析1.【解析】选=1+2013=2014;Y=2014-1=2013.2.【解析】选B.①由系统抽样的原理知抽样的间隔为52÷4=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号、20号、33号、46号,①是假命题;②数据1,2,3,3,4,5的平均数为(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,②是真命题;③回归直线方程=+2x过点(,),把(1,3)代入回归直线方程=+2x可得=1,③是真命题;④产品净重小于100克的频率为+×2=,设样本容量为n,则=,所以n=120,净重大于或等于98克并且小于104克的产品的频率为++×2=,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×=90,④是真命题,所以假命题的个数为1.【加固训练】(2014·大连模拟)某市有400家超市,其中大型超市有40家,中型超市有120家,小型超市有240家.为了掌握各超市的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型超市数为( )【解析】选B.每个个体被抽到的概率等于=,而中型超市有120家,故抽取的中型超市数是120×=6.3.【思路点拨】确定该程序框图是求分段函数的函数值后,再由函数值域求自变量的范围.【解析】选B.该程序框图的作用是计算分段函数f(x)=的函数值.又因为输出的函数值在区间内,所以x∈[-2,-1].4.【解析】选B.设时速不低于60 km/h的汽车数量为n,则=+×10=,所以n=×200=76.【加固训练】(2013·成都模拟)在某大型企业的招聘会上,前来应聘的本科生、硕士研究生和博士研究生共2000人,如图为各类毕业生人数统计扇形图,则博士研究生的人数为.【解析】由题意可知,博士研究生占的比例为1-62%-26%=12%,故博士研究生的人数为2000×12%=240.答案:2405.【解析】选C.回归直线必过点(4,5),故其方程为-5=(x-4),即=+.【加固训练】如图所示,从人体脂肪含量与年龄散点图中,能比较清楚地表示人体脂肪含量与年龄的相关性的回归直线为( )【解析】选A.根据线性相关的意义知,当所有的数据在一条直线附近排列时,这些数据具有很强的线性相关关系.从人体脂肪含量与年龄散点图中,能比较清楚地表示人体脂肪含量与年龄的相关性的回归直线是l1.6.【解析】选B.从两个程序可知它们的程序语句不同,但其算法都是求1+2+3+…+1000,故结果相同.【易错提醒】WHILE-WEND循环条件满足时进入循环体,DO-LOOP UNTIL循环条件满足时退出循环体.7.【解析】选D.由K2=≈>>,所以①②③都正确.【加固训练】某数学教师随机抽取50名学生进行是否喜欢数学课程的情况调查,得到如下列联表:喜欢数学不喜欢数学总计男18927女81523总计262450根据表中数据求得K2的观测值约为( )【解析】选A.根据表中数据得K2的观测值k=≈.8.【解析】选D.回归方程的斜率===7,=,=,截距=-=0,即回归方程为=7x,当x=时,=.9.【解析】将所有数据都减去160,根据平均数的计算公式可得=4.解得x=7.答案:710.【解析】==9环,=[(10-9)2+(8-9)2+(9-9)2+(9-9)2+(9-9)2]=,=[(10-9)2+(10-9)2+(7-9)2+(9-9)2+(9-9)2]=>,故甲更稳定,故填甲.答案:甲11.【解析】第1次运算得:S=1,T=3;第2次运算得:S=8,T=5;第3次运算得:S=25-8=17>10,这时输出的W=17+5=22.答案:2212.【思路点拨】分别计算出,,xi yi,,或列表格计算,再代入公式计算.【解析】xi yi=392,=10,=8,=,代入公式,得==,所以,=-=40,故线性回归方程为=+40.答案:=+4013.【解析】(1)画茎叶图如图所示,中间数为数据的十位数.(2)由茎叶图把甲、乙两名选手的6次成绩按从小到大的顺序依次排列为甲:27,30,31,35,37,38;乙:28,29,33,34,36,38.所以=×(27+30+31+35+37+38)=33,=×(28+29+33+34+36+38)=33.=×[(-6)2+(-3)2+(-2)2+22+42+52]=,=×[(-5)2+(-4)2+0+12+32+52]=.因为=,>.所以乙的成绩更稳定,故乙参加比赛更合适.14.【解析】(1)由于图中所有小矩形的面积之和等于1,所以10×+++a++=1,解得a=.(2)根据频率分布直方图,成绩不低于60分的概率为1-10×+=,由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×=544(人).(3)成绩在[40,50)分数段内的人数为40×=2(人),成绩在[90,100]分数段内的人数为40×=4(人),若从这6名学生中随机抽取2人,则总的取法有=15种,如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10,则所取两名学生的数学成绩之差的绝对值不大于10的取法数为+=7,所以所求概率为P=.15.【思路点拨】(1)根据茎叶图的叶上数字的多少明确其亲属30人的饮食习惯.(2)根据茎叶图完成列联表.(3)由(2)得出的列联表计算K2得出观测值.【解析】(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主.(2)如表所示:主食蔬菜主食肉类总计50岁以下481250岁以上16218总计201030(3)k===10>.所以可以在犯错误的概率不超过的前提下认为其亲属的饮食习惯与年龄有关.【加固训练】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽查了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:(1)由以上统计数据填下面2×2列联表并问能否在犯错误的概率不超过的前提下认为月收入以5500为分界点对“楼市限购令”的态度有差异.(2)若对月收入在[15,25),[25,35)的被调查人中各随机选取1人进行追踪调查,求选中的2人中不赞成“楼市限购令”的人数至多1人的概率.参考数据:P(K2≥k)kK2=.【解析】(1)2×2列联表月收入不低于55百元的人数月收入低于55百元的人数总计赞成32932不赞成71118总计104050K2的观测值k=≈<,所以不能说在犯错误的概率不超过的前提下认为月收入以5500为分界点对“楼市限购令”的态度有差异.(2)从月收入在[15,25),[25,35)的被调查人中各随机选取1人,共有50种取法.其中恰有2人都不赞成“楼市限购令”共有2种取法,所以选中的2人中至多1人不赞成“楼市限购令”共有48种方法,所以P==.16.【解析】(1)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的.其中,抽到相邻两个月的数据的情况有5种,所以P(A)==.(2)由数据求得=11,=24.由公式求得=,再由=-=-.所以关于x的线性回归方程为=x-.(3)当x=10时,=,<2,同样,当x=6时,=,<2,所以,该小组所得线性回归方程是理想的.关闭Word文档返回原板块。
温馨提示:此套题为Word版,请按住Ctr l,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元评估检测(四)第四章(120分钟150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·北京高考)在复平面内,复数(2-i)2对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.复数z=3-错误!未找到引用源。
(i为虚数单位)的模为( )A.2B.3C.错误!未找到引用源。
D.43.已知向量a=(-1,2),则下列向量与a共线的是( )A.b=(1,-2)B.b=(2,-1)C.b=(0,1)D.b=(1,1)4.设P是△ABC所在平面内的一点,若错误!未找到引用源。
+错误!未找到引用源。
=2错误!未找到引用源。
,则( )A.错误!未找到引用源。
+错误!未找到引用源。
=0B.错误!未找到引用源。
+错误!未找到引用源。
=0C.错误!未找到引用源。
+错误!未找到引用源。
=0D.错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
=05.(2014·成都模拟)复数错误!未找到引用源。
的共轭复数为( )A.-错误!未找到引用源。
+错误!未找到引用源。
iB.错误!未找到引用源。
+错误!未找到引用源。
iC.错误!未找到引用源。
-错误!未找到引用源。
iD.-错误!未找到引用源。
-错误!未找到引用源。
i 6.(2013·大纲版全国卷)已知向量m=错误!未找到引用源。
,n=错误!未找到引用源。
,若(m+n)错误!未找到引用源。
⊥错误!未找到引用源。
,则λ= ( )A.-4B.-3C.-2D.-17.(2014·韶关模拟)若|a+b|=|a-b|=2|a|,则向量a+b与a的夹角为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
8.(2014·宁波模拟)在平面直角坐标系中,A(错误!未找到引用源。
,1),B点是以原点O为圆心的单位圆上的动点,则|错误!未找到引用源。
+错误!未找到引用源。
|的最大值是( )A.4B.3C.2D.1二、填空题(本大题共6小题,每小题5分,共30分.请把正确答案填在题中横线上)9.(2014·苏州模拟)若错误!未找到引用源。
=3+4i,错误!未找到引用源。
=-1-i,i 是虚数单位,则错误!未找到引用源。
= (用复数代数形式表示). 10.(2013·重庆高考)在OA为边,OB为对角线的矩形中,错误!未找到引用源。
=(-3,1),错误!未找到引用源。
=(-2,k),则实数k= .11.设e1,e2是平面内两个互相垂直的单位向量,若向量m满足(m-e1)·(m-e2)=0,则|m|的最大值为.12.已知角A,B,C是三角形ABC的内角,a,b,c分别是其对边长,向量m=错误!未找到引用源。
,n=(cos错误!未找到引用源。
,-2),m⊥n,且a=2,cosB=错误!未找到引用源。
,则b= .13.设非零向量a,b的夹角为θ,记f(a,b)=a cosθ-b sinθ,若e1,e2均为单位向量,且e1·e2=错误!未找到引用源。
,则向量f(e1,e2)与f(e2,-e1)的夹角为.14.(能力挑战题)已知点A(3,0),B(0,3),C(cosα,sinα),若错误!未找到引用源。
·错误!未找到引用源。
=-1,则错误!未找到引用源。
的值为.三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)(2014·中山模拟)已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).(1)若x=错误!未找到引用源。
,求向量a,c的夹角.(2)当x∈错误!未找到引用源。
时,求函数f(x)=2a·b+1的最大值.16.(12分)(2014·西安模拟)已知向量a=(sin(ωx+φ),2),b=(1,cos(ωx+φ))错误!未找到引用源。
,函数f(x)=(a+b)·(a-b),y=f(x)图象的一个对称中心与它相邻的一条对称轴之间的距离为1,且经过点M错误!未找到引用源。
.(1)求函数f(x)的解析式.(2)当-1≤x≤1时,求函数f(x)的单调区间.17.(14分)(2014·大连模拟)已知向量a=(错误!未找到引用源。
,cosωx),b=(sin ωx,1),函数f(x)=a·b,且最小正周期为4π.(1)求ω的值.(2)设α,β∈错误!未找到引用源。
,f错误!未找到引用源。
=错误!未找到引用源。
,f错误!未找到引用源。
=-错误!未找到引用源。
,求sin(α+β)的值.(3)若x∈[-π,π],求函数f(x)的值域.18.(14分)已知平面向量a=(错误!未找到引用源。
,-1),b=错误!未找到引用源。
.(1)若x=(t+2)a+(t2-t-5)b,y=-k a+4b(t,k∈R),且x⊥y,求出k关于t的关系式k=f(t).(2)求函数k=f(t)在t∈(-2,2)上的最小值.19.(14分)(1)如图,设点P,Q是线段AB的三等分点,若错误!未找到引用源。
=a,错误!未找到引用源。
=b,试用a,b表示错误!未找到引用源。
,错误!未找到引用源。
,并判断错误!未找到引用源。
+错误!未找到引用源。
与错误!未找到引用源。
+错误!未找到引用源。
的关系.(2)受(1)的启示,如果点A1,A2,A3,…,A n-1是AB的n(n≥3)等分点,你能得到什么结论?请证明你的结论.20.(14分)(能力挑战题)在平面直角坐标系内已知两点A(-1,0),B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的错误!未找到引用源。
倍后得到点Q(x,错误!未找到引用源。
y),且满足错误!未找到引用源。
·错误!未找到引用源。
=1.(1)求动点P所在曲线C的方程.(2)过点B作斜率为-错误!未找到引用源。
的直线l交曲线C于M,N两点,且错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
=0,试求△MNH的面积.答案解析1.【解析】选D.(2-i)2=4-4i+i2=3-4i,对应的复平面内点坐标为(3,-4).2.【思路点拨】利用复数的除法运算化简给出的复数,然后直接利用模的公式求模.【解析】选C.由z=3-错误!未找到引用源。
=3-错误!未找到引用源。
=3+i. 所以|z|=错误!未找到引用源。
=错误!未找到引用源。
.故选C.3.【解析】选A.由a=(x1,y1),b=(x2,y2)共线⇔x1y2-x2y1=0,验证易知A正确.4.【解析】选C.由已知,得错误!未找到引用源。
-错误!未找到引用源。
+错误!未找到引用源。
-错误!未找到引用源。
=-2错误!未找到引用源。
,即错误!未找到引用源。
+错误!未找到引用源。
=0,故选C.【一题多解】本题还有如下解法:如图,由错误!未找到引用源。
+错误!未找到引用源。
=2错误!未找到引用源。
, 知P是AC的中点,显然错误!未找到引用源。
+错误!未找到引用源。
=0,故选C.【加固训练】若错误!未找到引用源。
〃错误!未找到引用源。
+错误!未找到引用源。
=0,则△ABC必定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【解析】选B.错误!未找到引用源。
〃错误!未找到引用源。
+2AB错误!未找到引用源。
=0⇒错误!未找到引用源。
〃(错误!未找到引用源。
+错误!未找到引用源。
)=0⇒错误!未找到引用源。
〃错误!未找到引用源。
=0⇒错误!未找到引用源。
⊥错误!未找到引用源。
, 则△ABC 必定是直角三角形.5.【解析】选D.因为错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=-错误!未找到引用源。
+错误!未找到引用源。
i. 所以其共轭复数为-错误!未找到引用源。
-错误!未找到引用源。
i.【加固训练】(2013〃广元模拟)复数错误!未找到引用源。
的共轭复数是 ( ) A.-错误!未找到引用源。
i B.错误!未找到引用源。
i C.-I D.i【思路点拨】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b ∈R)的形式,然后求出共轭复数即可.【解析】选C.复数错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=i,它的共轭复数为-i.故选C.6.【解析】选B.因为(m +n )⊥(m -n ),所以(m+n )〃(m -n )=|m |2-|n |2=0,即(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.7.【解析】选B.因为|a +b |=|a -b |, 所以(a +b )2-(a -b )2=0, 所以a 〃b =0,cos<a +b ,a >=2222()||||2||2++==+a b a a a b a a b a a a错误!未找到引用源。
=错误!未找到引用源。
. 又因为0≤<a +b ,a >≤π,所以<a +b ,a >=错误!未找到引用源。
.8.【解析】选B.由题意可知向量错误!未找到引用源。
的模是不变的,所以当错误!未找到引用源。
与错误!未找到引用源。
同向时,|错误!未找到引用源。
+错误!未找到引用源。
|最大,结合图形可知,|错误!未找到引用源。
+错误!未找到引用源。
|max=|错误!未找到引用源。
|+1=错误!未找到引用源。
+1=3.【一题多解】本题还有如下解法:由题意,得|错误!未找到引用源。
|=错误!未找到引用源。
=2,|错误!未找到引用源。
|=1,设向量错误!未找到引用源。
,错误!未找到引用源。
的夹角为θ,所以|错误!未找到引用源。
+错误!未找到引用源。
|=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
.所以当θ=0,即错误!未找到引用源。
与错误!未找到引用源。
同向时,|错误!未找到引用源。
+错误!未找到引用源。
|max=错误!未找到引用源。
=3.9.【解析】因为错误!未找到引用源。
=3+4i,错误!未找到引用源。
=-1-i,i 是虚数单位,所以错误!未找到引用源。
=错误!未找到引用源。
-错误!未找到引用源。
=(-1-i)-(3+4i)=-4-5i.答案:-4-5i10.【思路点拨】可根据题意先求出向量错误!未找到引用源。
的坐标,再利用OA⊥AB求解.【解析】错误!未找到引用源。
=错误!未找到引用源。
-错误!未找到引用源。
=(-2,k)-(-3,1)=(1,k-1),因为OA⊥AB,所以错误!未找到引用源。