专题08 探索性问题(原卷版)
- 格式:doc
- 大小:593.50 KB
- 文档页数:13
2021年中考真题历史分项汇编专题08 近代化的早期探索与民族危机的加剧考点44 洋务运动1.(2021年江苏扬州)清政府大规模进行近代海防建设,筹建新式海军开始于()A.洋务运动B.戊戌变法C.义和团运动D.新文化运动2.(2021年江苏苏州)陈旭麓在《中国近代史十五讲》中提到:张之洞为了使汉阳铁厂放在他的湖广总督府鼻子底下,厂址选在地势低洼,离煤铁资源很远的地方,仅垫高铺平就花去三十多万两银子,资金超出计划,只好一再追加。
这反映出洋务派()A.办军事企业缺乏经验B.对企业管理封建落后C.办企业是为中饱私囊D.办企业资金严重匮乏3.(2021年河北)1875年,中国近代第一批海军留学生出国时曾宣言:“此去西洋,应深知中国自强之计,舍此无所他求。
背负国家之未来,取尽洋人之科学。
赴七万里长途,别祖国父母之邦,奋然无悔。
”可见,他们当时出国留学的最终目的是()A.游历西洋B.兴办洋务C.学习科技D.救国图强4.(2021年湖南岳阳节选)所谓近代化是指政治上的民主化、经济上的工业工业化和思想上的理性化。
阅读大事年表,回答问题。
1321年,但丁的《神曲》完稿1688年,英国“光荣革命”成功1765年,珍妮纺纱机发明1840年,鸦片战争爆发1856年,第二次鸦片战争爆发1861年,安庆内军械所开办1912年,中华民国建立1915年,陈独秀发表《敬告青年》一文(2)写出年表中与中国近代化开端有关的历史事件,并列举一位为开启中国政治民主化而英勇献身的湖湘子弟。
(3)列举年表中相邻且有直接因果关系的两个历史事件,并简要说明其因果关系。
5.(2021年湖南益阳节选)武汉是中国中部地区的一颗璀璨明珠。
阅读下列材料,回答问题。
材料一请回答:(1)根据材料一概括洋务运动中民用企业的特点,结合所学知识分析洋务运动的历史作用。
6.(2021年四川眉山节选)阅读材料,完成下列要求。
材料一 1864年,曾国藩见洋枪队在苏南打得太平天国丢盔弃甲,见识了西洋枪炮的厉害,他决定兴建现代军械厂。
专题08 规律题方法总结与例题专训【知识点睛】常见规律题类型❖周期性循环特点:常以3个或4个数据为一周期,以此循环往复;总数比较大,常和年份结合考察处理方法步骤:1.找出第一周期的几个数,确定周期数2.算出题目中的总数和待求数3.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)4.最后余几,待求数就和每周期的第几个一样;❖周期性递变循环特点:常以2个或3个一周期,后边的每组,周期数不变,但是数据的大小会以相同的关系递增或递减;处理方法:同周期性循环基本一致,最后一步需要加入递变的关系❖递变增减型特点:分以此递增和以此递减,通常是数据之间的直接变化,偶尔借助图形;常和年份结合考察处理方法:熟记单独数据规律,直接应用于考察问题;❖算式类比性特点:常给出几个算式或等式,先算简单的,再从简单的类比到复杂题目的计算处理办法:1.正确计算出前面简单算式的答案2.找出数字间的规律3.将简单数字间的关系推导到字母n的关系中❖常见数字间固定规律识记:1.裂项相消法:将一项拆分成多项,前后保持相等,然后利用某些项相消的原则简化运算;2.错位相减法:适用于两个式子间有相同项的题目,两式相减直接抵消掉中间项,剩余首项、尾项再计算;3.倒序求和发:如:计算1+2+3+......+50,可以设S=1+2+3+......+50,则亦有S=50+49+48+ (1)∴2S=51×50,∴S=51×25=…裂项法公式:kn n k n n k +-=+11)(【类题训练】1.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a ,b 的值分别为( )A .16,257B .16,91C .10,101D .10,1612.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这组数的第2022个数是( ) A .B .C .D .3.一只小球落在数轴上的某点P 0,第一次从P 0向左跳1个单位到P 1,第二次从P 1向右跳2个单位到P 2,第三次从P 2向左跳3个单位到P 3,第四次从P 3向右跳4个单位到P 4……若按以上规律跳了100次时,它落在数轴上的点P 100所表示的数恰好是2021,则这只小球的初始位置点P 0所表示的数是( ) A .1971B .1970C .﹣1971D .﹣19704.有一列数a 1,a 2,a 3,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2022为( ) A .B .2C .﹣1D .20225.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数﹣2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数﹣2022将与圆周上的哪个数字重合( )A .0B .1C .2D .36.观察图中正方形四个顶点所标的数字规律,可知数2022应标在( )A.第506个正方形的右上角B.第506个正方形的左下角C.第505个正方形的右上角D.第505个正方形的左下角7.等边三角形(三条边都相等的三角形是等边三角形)纸板ABC在数轴上的位置如图所示,点A、B 对应的数分别为2和1,若△ABC绕着顶点逆时针方向在数轴上连续翻转,翻转第1次后,点C所对应的数为0,则翻转2023次后,点C所对应的数是()A.﹣2021B.﹣2022C.﹣2023D.﹣20248.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图中黑色棋子的个数是()A.6067B.6066C.6065D.60649.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形武(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位、千位、十万位数用横式表示;“0”用空位来代替,以此类推例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.10.根据图中数字的排列规律,在第⑦个图中,a﹣b﹣c的值是()A.﹣190B.﹣66C.62D.6411.已知整数m1,m2,m3,m4,…满足下列条件:m1=0,m2=﹣|1+m1|,m3=﹣|2+m2|,m4=﹣|3+m3|,…,以此类推,m2020=.12.在2020个“□”中依次填入一列数字m1,m2,m3…,m2020,使得其中任意四个相邻的“□”中所填的数字之和都等于15.已知m3=2,m6=7,则m1+m2020的值为.27…13.有一数值转换器,原理如图所示,若开始输入x的值是1,可发现第一次输出的结果是4,第二次输出的结果是2,……,请你探索第2021次输出的结果是.14.如图,数字都是按一定规律排列的,其中x的值是.15.观察图,找出规律.,则的值为.16.观察以下等式:第1个等式:×(2﹣)=1+;第2个等式:×(2﹣)=1+;第3个等式:×(2﹣)=1+;第4个等式:×(2﹣)=1+;第2021个等式:.17.请你观察:,,;…+=+=1﹣=;++=++=1﹣=;…以上方法称为“裂项相消求和法”.请类比完成:(1)+++=;(2)++++…+=;(3)计算:的值.18.先阅读下列内容,然后解答问题.因为.所以.请解答:(1)应用上面的方法计算:….(2)类比应用上面的方法计算:….19.观察以下图案和算式,解答问题:(1)1+3+5+7+9=;(2)1+3+5+7+9+…+19=;(3)请猜想1+3+5+7+……+(2n﹣1)=;(4)求和号是数学中常用的符号,用表示,例如,其中n=2是下标,5是上标,3n+1是代数式,表示n取2到5的连续整数,然后分别代入代数式求和,即:=3×2+1+3×3+1+3×4+1+3×5+1=46请求出的值,要求写出计算过程,可利用第(2)(3)题结论.20.从2开始,连续的偶数相加,它们的和的情况如表:加数m的个数和S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)按这个规律,当m=6时,和为;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:=.(3)应用上述公式计算:①2+4+6+ (200)②202+204+206+ (300)21.观察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52;……(1)请根据你发现的规律填空:7×9+1=()2;(2)用含n的等式表示上面的规律:;(3)用找到的规律解决下面的问题:计算:22.(1)①观察一列数1,2,3,4,5,…,发现从第二项开始,每一项与前一项之差是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n =;②如果欲求1+2+3+4+…+n的值,可令S=1+2+3+4+…+n❶,将①式右边顺序倒置,得S =n+…+4+3+2+1❷,由❷式+❶式,得2S=;∴S=;由结论求1+2+3+4+…+55=;(2)①观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;②为了求1+3+32+33+…+32018的值,可令M=1+3+32+33+…+32018❶,则3M=3+32+33+…+32019❷,由❷式﹣❶式,得3M﹣M=32019﹣1,∴M=,即1+3+32+33+...+32018=.仿照以上推理,计算1+5+52+53+ (551)。
专题08 数据收集整理知识点及其练习【基础巩固】1.(2021·北京模拟)下列抽样调查最合理的是()A.了解某小区居民的消防常识,对你所在班级的同学进行调查B.了解某市垃圾分类的宣传情况,对该市的所有学校进行调查C.了解某校学生每天的平均睡眠时间,对该校学生周末的睡眠时间进行调查D.了解某市第一季度的空气质量情况,对该市第一季度随机抽取30天进行调查2.(2021·重庆实验外国语学校)下列问题适合全面调查的是()A.调查成渝两市的自来水质量B.调查某品牌电池的寿命C.调查全省小学生每周的课外阅读时间D.调查某篮球队队员的身高3.(2021·河南郑州市模拟)郑州市某区为了解参加2021年中考的8900名学生的体重情况,随机抽查了其中1500名学生的体重进行统计分析,下列叙述正确的是()A.8900名学生是总体B.每名学生是总体的一个个体C.1500名学生的体重情况是总体的一个样本D.以上调查是普查4.(2021·青海海东市)为了解某校学生今年元宵节期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生据此估计,该校元宵节期间参加社团活动时间在8~10小时之间的学生人数大约是()A.360名B.320名C.300名D.280名5.(2021·福建漳州市)某校准备为八年级学生开设A,B,C,D,E,F共6门选修课,随机抽取了部分学生对“我最喜欢的一门选修课”进行调查,并将调查结果绘制成如图所示的统计图表(不完整).下列说法正确的是()A.这次被调查的学生人数为480人B.喜欢选修课C对应扇形的圆心角为60°C.喜欢选修课A的人数最少D.这次被调查的学生喜欢选修课F的人数为80人6.(2021·山东聊城市)2020年10月16日是第40个世界粮食日,某校学生会开展了“光盘行动,从我做起”的活动,对随机抽取的100名学生的在校午餐剩余量进行调查,结果有86名学生做到“光盘”,那么下列说法不合理的是()A.个体是每一名学生的午餐剩余量B.样本容量是100C.全校只有14名学生没有做到“光盘”D.全校约有86%的学生做到“光盘”7.(2021·湖南常德市期末)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数字科技文化节•玉溪暨第10届全国三维数字化大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图,则α=_______.8.(2021·河南南阳期末)某同学按照某种规律写了下面一串数字:,当写完第93个数字时,1出现的次数是____ .9.(2020·新昌县月考)小欢为一组数据制作频数表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4,为了使数据不落在边界上,他应将这组数据分成__________组.10.(2020·内蒙古兴安盟期末)某中学要了解六年级350名学生的视力情况,在全校六年级中抽取了50名学生进行检测,在这个问题中,样本容量是____.11.(2021·广东江门市)某校为了解九年级学生“一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组行调查测试,对这部分学生“一分钟跳绳”测试的成绩按A,B,C,D四个等级进行了统计,并绘制了如图所示的不完整统计图.(1)本次抽样调查的样本容量为______,并将条形统计图补充完整;(2)若该校九年级共有400名学生,根据以上样本估计全校九年级“一分钟跳绳”测试成绩为A等级的学生人数.12.(2021·山东临沂市)我县某学校九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m=______,n=_______.(2)在扇形统计图中,“其他”类所在的扇形圆心角为_______;(3)这个学校共有1000人,则读了戏剧类书籍的学生大约有多少人?13.(2021·山东聊城市)某市对市民开展了有关雾霾的调查问卷,调查内容是“你认为哪种治理雾霾措施最有效”,有以下四个选项:A.绿化造林;B.汽车限行;C.禁止城市周边燃烧秸秆;D.使用环保能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了如图所示的条形统计图和扇形统计图.请根据图中的信息回答下列问题:(1)求这次被调查的市民人数.(2)求统计图中D所对应的百分比.(3)估计该市240000名市民中认同“汽车限行”的人数.14.(2021·浙江宁波市)某校春日郊游就“最想去的宁波市江北区旅游景点”,随机调查了本校2000名学生中的部分学生,提供四个景点选择:A.达人村;B.慈城古镇;C.保国寺;D.荪湖.要求每位学生选择一个最想去的景点.下面是根据调查结果进行数据整理后绘制的统计图.请根据图中提供的信息,解答下列问题:(1)本次一共随机调查了学生______名.(2)请补全条形统计图.(3)请估计全校“最想去景点D(荪湖)”的学生人数.15.(2021·广东深圳市)为积极落实市教育局“课后服务”的文件精神,某校积极开展学生课后服务活动.为更好了解学生对课后服务活动的需求,学校随机抽取了部分学生,进行“我最喜欢的课后服务活动”的调查(每位学生只能选其中一种活动),并将调查结果整理后,形成如下两个不完整的统计图:请根据所给信息解答以下问题:(1)这次参与调查的学生人数为______人;(2)请将条形统计图补充完整;(3)扇形统计图中“社区活动”所在扇形的圆心角度数为______ ;(4)若该校共有学生1800人,那么最喜欢的课后服务活动是“社团活动”的约有_______人.16.(2021·河南)为了解龙华区某校七年级学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《极限挑战》四个电视节目的喜爱情况,随机抽取了m位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目).并将调查结果绘制成如图两幅不完整的统计图.根据统计图提供的信息,回答下列问题:(1)m=,n=.(2)在图1中,喜爱《极限挑战》节目所对应的扇形的圆心角度数是度;(3)请根据以上信息补全图2的条形统计图;(4)已知该校七年级共有500位学生,那么他们最喜欢《最强大脑》这个节目的学生约有人.17.(2021·江苏泰州市)为有效控制新型冠状病毒的传染,目前,国家正全面推开新冠疫苗的免费接种工作.某社区为了解其辖区内居民的接种情况,随机抽查了一部分居民进行问卷调查,把调查的结果分为A(已经接种)、B(准备接种)、C(观望中)、D(不接种)四种类别,并绘制了下面两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)此次抽查的居民人数为______人;(2)请补全条形统计图,同时求出C类别所在扇形的圆心角度数;(3)若该社区共有居民4000人,请你估计该社区已接种新冠疫苗的居民约有多少人?18.(2021·内蒙古呼伦贝尔市)某中学为了更好地活跃校园文化生活,拟对本校自办的“辉煌”校报进行改版.先从全校学生中随机抽取一部分学生进行了一次问卷调查,题目为“你最喜爱校报的哪一个板块”(每人只限选一项).问卷收集整理后绘制了不完整的频数分布表和如图扇形统计图(1)填空:频数分布表中a=____________,b=____________;(2)“自然探索”板块在扇形统计图中所占的圆心角的度数为____________;(3)在参加问卷调查的学生中,最喜爱哪一个板块的人数最多?有多少人喜欢?(4)若全校有1500人,估计喜欢“校园新闻”板块的有多少人?19.(2020·泰兴市期中)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?。
专题08 中华人民共和国成立和社会主义革命与建设1.(2023·湖南岳阳·统考二模)1949年11月,刘少奇在世界工人理事会发言指出:“工人阶级反对帝国主义斗争的基本形式一一这就是武装斗争,是人民解放军的战斗行动”。
这一发言旨在强调()A.中国革命的胜利具有世界属性B.反帝是新中国外交的首要任务C.人民解放战争是社会主义革命D.“一边倒”是新中国的必然选择2.(2023·福建厦门·统考二模)新中国成立初期,有些民族资本家准备将企业上交国家,政府并未接受。
对此,周恩来说“和平转变,是要经过一个相当长的时间,而且要转变得很自然,水到渠成’”。
这主要是因为()A.统一战线性质发生转变B.国民经济尚需恢复C.计划经济体制初步建立D.国土尚未完全解放3.(2023·湖南邵阳·统考二模)下面是1950年1月《中国人民解放军北京市军事管制委员会布告》内容。
该布告反映出新中国()一、某些外国,过去利用不平等条约中所谓“驻兵权”,在北京市内占据地面,建筑兵营。
现在此项地产权,因不平等条约之取消,自应收回。
二、此项地产上所建筑之兵营及其他建筑,因地产权收回所发生之房产问题,我政府另定办法解决之。
三、目前此项兵营及其他建筑,因军事之需要,先予征用。
四、此项征用,自布告之日起,七日后实施。
A.打破了帝国主义孤立封锁B.国家政权的社会主义性质C.实行“一边倒”的外交方针D.继续完成民主革命的任务4.(2023·福建龙岩·统考二模)1950年10月,中央人民政府政务院颁布法令,规定“解放前农民所欠农民的债务及其他一般借贷关系,均继续有效”,从而改变了解放前“废除一切乡村中在土地制度改革以前的债务”的政策。
这一调整()A.满足了农民的土地要求B.适应了农村经济发展的需要C.保留了剥削制度的残余D.实现了党的工作重心的转移5.(2023·江苏南通·统考二模)1951年的华北城乡物资交流展览会上,劳模曲耀离的种棉经验得到展示和推广。
专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。
专题08 探究与表达规律(八大题型) 专项讲练1. 解题思维过程:从简单、局部或特殊情况入手,经过提炼、归纳和猜想,探索规律,获得结论.有时候还需要通过类比联想才能找到隐含条件.一般有下列几个类型:1)一列数的规律:把握常见几类数的排列规律及每个数与排列序号n 之间的关系. 2)一列等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n 之间的关系.3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n 之间的关系. 4)图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.5)数形结合的规律:观察前n 项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论. 2. 常见的数列规律:1)1,3,5,7,9,… ,21n -(n 为正整数). 2) 2,4,6,8,10,…,2n (n 为正整数). 3) 2,4,8,16,32,…,2n (n 为正整数). 4)2, 6, 12, 20,…, (1)n n +(n 为正整数).5)x -,x +,x -,x +,x -,x +,…,(1)n x -(n 为正整数). 6)特殊数列: ①三角形数:1,3,6,10,15,21,…,(1)2n n +. ②斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和.题型1:数列的规律1.(2022·山东烟台·期末)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,……,第n 个单项式是( ) A .()211nn x --B .()1211n n x -+-C .()1211n n x ---D .()211nn x +-2.(2022·山东泰安·期中)古希腊著名的毕达哥拉斯学派把1、3、6、10…,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.则第5个“三角形数”与第5个“正方形数”的和是( ) A .35B .40C .45D .503.(2022·黑龙江牡丹江·九年级期末)按顺序观察下列五个数-1,5,-7,17,-31……,找出以上数据依次出现的规律,则第n 个数是_____________.4.(2021·河北承德·七年级期末)如图,将一列有理数-1,2,-3,4,-5,6,...,有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰5”中C 的位置是有理数_ _,-2021应排在A 、B 、C 、D 、E 中的___位置.其中两个填空依次为( )A .24,EB .﹣25,EC .-24,BD .24,C5.(2022·山东威海·期末)如图,圆的周长为4个单位长度.在该圆周上4等分点处分别标上数字0、1、2、3,让圆周上表示数字0的点与数轴上表示1-的点重合,将该圆沿着数轴的负方向滚动,则数轴上表示数2022-的点对应圆周上的数字是__________.6.(2021•沂南县模拟)观察下列两行数: 0,2,4,6,8,10,12,14,16,… 0,3,6,9,12,15,18,21,24,…探究发现:第1个相同的数是0,第2个相同的数是6,…,若第n 个相同的数是102,则n 等于( ) A .20B .19C .18D .17题型2:数表的规律1.(2022·浙江温州·七年级期中)如图数表是由从1开始的连续自然数组成:则第n 行的第一个数是( )A .()211n -+B .21n -C .21n -D .2n n -2.(2022·山东泰安·期中)我国南宋数学家杨辉所著的《详解九章算术》一书中,利用如图所示的“三角形”解释二项式()n a b +的展开式的各项系数,此“三角形”称为“杨辉三角”.如()3322233a b a a b ab b +=+++其展开式的系数从左起依次是1,3,3,1,请根据“杨辉三角”计算()8a b +的展开式中从左起第三项的系数为( )A .21B .56C .35D .283.(2022·湖北十堰·七年级期末)将正整数按如图所示的规律排列下去,若有序实数对(n , m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示2021的有序数对是( )A .(63,5)B .(63,59)C .(64,5)D .(64,60)4.(2022·湖北恩施·七年级期末)古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数;图形…五边形数15 12 22 35 51 …将五边形数1,5,12,22,35,51,…,排成如下数表:1第一行512第二行223551第三行……………观察这个数表,则这个数表中的第八行从左至右第2个数为()A.1332B.1334C.1335D.13365.(2022·全国·九年级专题练习)观察数表:根据数表所反映的规律,第n行第n列交叉点上的数应为_________.6.(2022·黑龙江·哈尔滨工业大学附属中学校期中)观察下列三行数:-2,4,-8,16,-32,64,…;①-1,5,-7,17,-31,65,…;①1-,1,-2,4,-8,16,….①2(1)直接写出第①行第七个数是_________,第①行第七个数是________.(2)取每行的第8个数,计算这三个数的和.题型3:算式的规律算式规律这一类没有固定的套路,主要依靠学生对已知算式的观察、总结、逻辑推理,发现期中的规律。
专题08探究三角形全等的判定方法压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一用SAS 证明两三角形全等】 (1)【考点二用ASA 证明两三角形全等】 (3)【考点三用AAS 证明两三角形全等】 (4)【考点四用SSS 证明两三角形全等】 (6)【考点五用HL 证明两直角三角形全等】 (7)【考点六添一个条件使两三角形全等】 (8)【过关检测】 (9)【典型例题】【考点一用SAS 证明两三角形全等】例题:(2023秋·江苏·八年级专题练习)已知:如图,AB AD AC AE ==,,12∠=∠.求证:ABC ADE△△≌【变式训练】1.(2023春·福建福州·七年级福州华伦中学校考期末)已知:如图,点,F C 在线段BE 上,AB DE =,B E ∠=∠,BF EC =.求证:A D ∠=∠.2.(2023秋·浙江杭州·八年级校考开学考试)如图所示,已知ABC 和DAE ,D 是AC 上一点,AD AB =,DE AB ∥,DE AC =,求证:AE BC =.3.(2023春·四川成都·七年级统考期末)如图在ABC 中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE △≌△;(2)若10040A C ∠=︒∠=︒,,求DEC ∠的度数.4.(2023春·山东济南·七年级统考阶段练习)如图,AB BD ⊥,BC BE ⊥,AB DB =,BC BE =,AC 与DE 交于点P ,BC 与DE 交于点O .(1)ABC 与DBE 全等吗?为什么?(2)试说明AC 与DE 的位置关系.(1)求证:AEC DFB △△≌;(2)若6AEC S = ,求四边形BECF 的面积.【考点二用ASA 证明两三角形全等】例题:(2023春·广东惠州·八年级校考期中)如图,BC EF ∥,点C ,点F 在AD 上,AF DC =,A D ∠=∠.求证:ABC DEF ≌△△.【变式训练】1.(2023·校联考一模)如图,点A 、D 、B 、E 在同一条直线上,若AD BE =,A EDF ∠=∠,.E ABC ∠=∠求证:AC DF =.2.(2023·浙江温州·温州市第八中学校考三模)如图,在ABC 和ECD 中,90ABC EDC ∠=∠=︒,点B 为CE 中点,BC CD =.(1)求证:ABC ECD ≌△△.(2)若2CD =,求AC 的长.【考点三用AAS 证明两三角形全等】例题:(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E 在ABC 边AC 上,AE BC =,BC AD ∥,CED BAD ∠=∠.求证:ABC DEA△△≌【变式训练】1.(2023·浙江温州·统考二模)如图,AB BD =,DE AB ∥,C E ∠=∠.(1)求证:ABC BDE ≅ .(2)当80A ∠=︒,120ABE ∠=︒时,求EDB ∠的度数.2.(2023秋·八年级课时练习)如图,已知点C 是线段AB 上一点,DCE A B ∠∠∠==,CD CE =.(1)求证:ACD BEC △≌△;(2)求证:AB AD BE =+.【考点四用SSS 证明两三角形全等】例题:(2023·云南玉溪·统考三模)如图,点B E C F ,,,在一条直线上,AB DF AC DE BE CF ===,,,求证:ABC DFC △≌△.【变式训练】1.(2023·云南·统考中考真题)如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.2.(2023春·全国·七年级专题练习)如图,已知90E F ∠=∠=︒,点B C ,分别在AE AF ,上,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)求证:DE DF =.【考点五用HL 证明两直角三角形全等】例题:(2023·全国·九年级专题练习)如图,在ABC 和DCB △中,BA CA ⊥于A ,CD BD ⊥于D ,AC BD =,AC 与BD 相交于点O .求证:ABC DCB △≌△.【变式训练】1.(2023春·广东河源·八年级统考期中)如图,点A ,D ,B ,E 在同一直线上,,,90AC EF AD BE C F ︒==∠=∠=.(1)求证:ABC EDF ≅ ;(2)57ABC ∠=︒,求ADF ∠的度数.2.(2023春·七年级单元测试)如图,已知AD BC 、相交于点O ,AB CD =,AM BC ⊥于点M ,DN BC ⊥于点N ,BN CM =.(1)求证:ABM DCN △≌△;(2)试猜想OA 与OD 的大小关系,并说明理由.【考点六添一个条件使两三角形全等】例题:(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【变式训练】1.(2023·北京大兴·统考二模)如图,点B ,E ,C ,F 在一条直线上,AC DF ∥,BE CF =,只需添加一个条件即可证明ABC DEF ≌△△,这个条件可以是________(写出一个即可).2.(2023秋·八年级课时练习)如图,已知90A D ∠=∠=︒,要使用“HL ”证明ABC DCB △≌△,应添加条件:_______________;要使用“AAS ”证明ABC DCB △≌△,应添加条件:_______________________.【过关检测】一、单选题1.(2023秋·全国·八年级专题练习)如图,DC AE ⊥,垂足为C ,且AC CD =,若用“HL ”证明ABC DEC ≌△△,则需添加的条件是()A .CE BC =B .AB DE =C .AD ∠=∠D .ABC E∠=∠2.(2023春·四川雅安·七年级统考期末)如图,EF CF =,BF DF =,则下列结论错误的是()A .BEF DCF△≌△B .ABC ADE △≌△C .AB AD =D .DC AC=3.(2023春·河北保定·七年级校考阶段练习)如图是雨伞在开合过程中某时刻的截面图,伞骨AB AC =,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且=DM EM ,已知弹簧M 在向上滑动的过程中,总有ADM AEM △≌△,其判定依据是()A .ASAB .AASC .SSSD .SSA4.(2023秋·陕西榆林·八年级校考开学考试)如图,点A E F D ,,,在同一直线上,若AB CD ,AB CD =,AE FD =,则图中的全等三角形共有()A .0对B .1对C .2对D .3对二、填空题6.(2023春·山东青岛·七年级统考期末)如图,在数量关系是.7.(2023秋·陕西榆林·八年级校考开学考试)如图,在8.(2023春·陕西榆林·七年级统考期末)F 分别是,BC CD 上的点,且55EAF ∠=︒,则FAG ∠的度数为三、解答题9.(2023春·云南德宏·九年级统考期中)如图,点C ,E ,F ,A 在一条直线上,AF CE =,AD CB =,DE BF =.求证:A C ∠=∠.10.(2023秋·陕西榆林·八年级校考开学考试)如图,在四边形ABCD 中,BC CD =,点E ,F 分别是BC ,CD 的中点,BAE DAF ∠=∠,B D ∠=∠.求证:AE AF =.11.(2023秋·八年级课时练习)如图,ED AB ⊥,FC AB ⊥,垂足分别为D 、C ,AC BD =,AE BF =.求证:AED BFC △≌△.12.(2023秋·全国·八年级专题练习)如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△;(2)若10m BE =,3m BF =,求FC 的长度.13.(2023·全国·八年级假期作业)如图,点A 、D 、C 、F 在同一条直线上,AD CF =,AB DE =,BC EF =.(1)求证:ABC DEF ≌△△;(2)若60A ∠=︒,88B ∠=︒,求F ∠的度数.14.(2023春·海南海口·七年级海师附中校考期末)如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,,AB AC AD AE ==,点C D E 、、三点在同一直线上,连接BD 交AC 于点F .(1)求证:ΔΔBAD CAE ≌;(2)猜想,BD CE 有何特殊位置关系,并说明理由.15.(2023春·陕西西安·七年级校考期末)如图,ABC 的两条高AD 与BE 交于点O ,AD BD =,6AC =.(1)求BO 的长;(2)F 是射线BC 上一点,且CF AO =,动点P 从点O 出发,沿线段OB 以每秒1个单位长度的速度向终点B 运动,同时动点Q 从点A 出发,沿射线AC 以每秒4个单位长度的速度运动,当点P 到达点B 时,P ,Q 两点同时停止运动,设运动时间为t 秒,当AOP 与FCQ 全等时,求t 的值.16.(2023春·甘肃张掖·七年级校考期末)已知ABC ,点D F 、分别为线段AC AB 、上两点,连接BD CF 、交于点E .(1)若,BD AC CF AB ⊥⊥,如图1所示,直接写出BAC BEC ∠+∠的值;(2)若BD 平分,ABC CF ∠平分ACB ∠,如图2所示,试说明此时BAC ∠与BEC ∠的数量关系;(3)在(2)的条件下,若60BAC ∠= ,试说明:EF ED =.。
08中考数学复习探索性问题专题中考百分百——备战2008中考专题(探索性问题专题)一、知识网络梳理探索是人类认识客观世界过程中最生动、最活跃的思维活动,探索性问题存在于一切学科领域之中,在数学中则更为普遍.初中数学中的“探索发现”型试题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以证明的命题,它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,从而定格于“条件——演绎——结论”这样一个封闭的模式之中,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或由结论去探索未给予的条件;或去探索存在的各种可能性以及发现所形成的客观规律.通常情景中的“探索发现”型问题可以分为如下类型:1.条件探索型——结论明确,而需探索发现使结论成立的条件的题目.2.结论探索型——给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结3.4. 以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用. 二、 知识运用举例 (一)、条件探索型例1.(2007呼和浩特市)在四边形ABCD 中,顺次连接四边中点E F G H ,,,,构成一个新的四边形,请你对四边形ABCD 填加一个条件,使四边形EFGH成为一个菱形.这个条件是 __ .解:AC BD 或四边形ABCD 是等腰梯形(符合要求的其它答案也可以)例2.(2007荆门市)将两块全等的含30°角的A BD EFGH C三角尺如图1摆放在一起,设较短直角边为1.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:________________________. (2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说出你的结论和理由:_________________________________________.(3)在Rt △BCD 沿射线BD 方向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是图CADB 图CADB 图D 1C 1B 1CADB 图30︒30︒B DAC_____________________________________;当点B的移动距离为______时,四边形ABC1D1为菱形,其理由是_______________________________.(图3、图4用于探究)解:(1)是,此时AD BC,一组对边平行且相等的四边形是平行四边形.(2)是,在平移过程中,始终保持AB C 1D1,一组对边平行且相等的四边形是平行四边形.(3)3,此时∠ABC1=90°,有一个角是直角的平行四边形是矩形.3D与点B1重合,AC1⊥BD1,对角线互相垂直的平行四边形是菱形.例3.(2006广东)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D.(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P 运动什么位置时,使得∠CPD =∠OAB ,且AB BD =85,求这时点P 的坐标. [解析](1);过C 作CD ⊥OA 于A ,BE ⊥OA 于E则△OCD ≌△ABE ,四边形CDEB 为矩形 ∴OD =AE ,CD =BE ∵OC =AB =4,∠COA =60° ∴CD =23,OD =2 ∴CB =DE =3 ∴OE =OD +DE =5 ∵BE =CD =23 ∴B (5,23)(2)∵∠COA =60°,△OCP 为等腰三角形 ∴△OCP 是等边三角形 ∴OP =OC =4 ∴P (4,0)即P 运动到(4,0)时,△OCP 为等腰三角形 (3)∵∠CPD =∠OAB =∠COP =60°∴∠OPC +∠DPA =120° 又∵∠PDA +∠DPA =120° ∴∠OPC =∠PDA ∵∠OCP =∠A =60° ∴△COP ∽△PAD∴OP OCAD AP=∵58BD AB =,AB =4 ∴BD =52 ∴AD =32 即4372OP OP =-∴276OP OP-=得OP =1或6∴P 点坐标为(1,0)或(6,0)(二)、结论探索型例4.(2007云南省)已知:如图,四边形ABCD是矩形(AD >AB ),点E 在BC 上,且AE=AD ,DF ⊥AE ,垂足为F . 请探求DF 与AB 有何数量关系?写出你所得到的结论并给予证明.解:经探求,结论是:DF = AB .FA D CE B证明如下:∵四边形ABCD 是矩形, ∴ ∠B=90 , AD ∥BC ,∴ ∠DAF=∠AEB .∵ DF ⊥AE , ∴ ∠AFD =90,∵ AE = AD , ∴ △ABE ≌△DFA .∴ AB = DF .例5.(2007北京市)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;BO ADEC(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.解:(1)回答正确的给1分(如平行四边形、等腰梯形等).(2)答:与A ∠相等的角是BOD ∠(或COE ∠). 四边形DBCE 是等对边四边形.(3)答:此时存在等对边四边形,是四边形DBCE . 证法一:如图1,作CG BE ⊥于G 点,作BF CD ⊥交CD 延长线于F 点.因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BCF CBG △≌△. 所以BF CG =.因为BDF ABE EBC DCB ∠=∠+∠+∠,BEC ABE A∠=∠+∠,所以BDF BEC ∠=∠. 可证BDF CEG △≌△. 所以BD CE =.所以四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作FCB DBC ∠=∠,CF 交BEBO ADECF图G于F 点. 因为12DCB EBC A∠=∠=∠,BC 为公共边,所以BDC CFB △≌△. 所以BD CF =,BDC CFB ∠=∠. 所以ADC CFE ∠=∠.因为ADC DCB EBC ABE ∠=∠+∠+∠,FEC A ABE∠=∠+∠,所以ADC FEC ∠=∠. 所以FEC CFE ∠=∠. 所以CF CE =. 所以BD CE =.所以四边形DBCE 是等边四边形.说明:当AB AC =时,BD CE =仍成立.只有此证法,只给1分.例6.(07山东滨州)如图1所示,在ABC △中,2AB AC ==,90A =∠,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动. (1)点E F ,的移动过程中,OEF △是否能成为45EOF =∠的等腰三角形?若能,请指出OEF △为等BOADECF 图腰三角形时动点E F ,的位置.若不能,请说明理由.(2)当45EOF =∠时,设BE x =,CF y =,求y 与x 之间的函数解析式,写出x 的取值范围.(3)在满足(2)中的条件时,若以O 为圆心的圆与AB 相切(如图2),试探究直线EF 与O的位置关系,并证明你的结论.解:如图,(1)点E F ,移动的过程中,OEF △能成为45EOF ∠=°的等腰三角形.此时点E F ,的位置分别是: ①E 是BA 的中点,F 与A 重合.②BE CF ==E 与A 重合,F 是AC 的中点. (2)在OEB △和FOC △中,图1 图2B135EOB FOC ∠+∠=°,135EOB OEB ∠+∠=°,FOC OEB∠=∠∴. 又B C ∠=∠∵,OEB FOC ∴△∽△.BE BOCO CF=∴.BE x=∵,CF y =,OB OC ===2(12)y x x=∴≤≤.(3)EF 与O相切.OEB FOC ∵△∽△,BE OECO OF =∴. BE OEBO OF=∴.即BE BO OE OF=. 又45B EOF ∠=∠=∵°,BEO OEF ∴△∽△.BEO OEF∠=∠∴.∴点O 到AB 和EF 的距离相等. AB ∵与O相切,∴点O 到EF 的距离等于O的半径.EF∴与O相切.(三)、存在探索型存在性探索问题是指在某种题设条件下,判断具有某种性质的数学对象是否存在的一类问题.解题的策略与方法是:先假设数学对象存在,以此为条件进行运算或推理.若无矛盾,说明假设正确,由此得出符合条件的数学对象存在;否则,说明不存在.例7.(2006山东省威海市)抛物线y=ax2+bx +c (a≠0)过点A(1,-3),B(3,-3),C (-1,5),顶点为M点.⑴求该抛物线的解析式.⑵试判断抛物线上是否存在一点P,使∠POM=90︒.若不存在,说明理由;若存在,求出P点的坐标.解:⑴y=x2-4x图2-2-33⑵易求得顶点M的坐标为(2,-4).设抛物线上存在一点P,使OP⊥OM,其坐标为(a,a2-4a).过P作PE⊥y轴,垂足为E;过M点作MF ⊥y轴,垂足为F,则∠POE +∠MOF =90︒,∠POE +∠EPO =90.∴∠EPO =∠FOM .∵∠OEP =∠MFO =90︒,∴Rt △OEP ∽Rt △MFO .∴OE ∶MF =EP ∶OF .即(a 2 -4a )∶2=a ∶4.解得a 1 =0(舍去),a 2 =29. 故抛物线上存在一点P ,使∠POM =90︒,P点的坐标为(29,49)例8.(2006武汉市)已知:二次函数y =x 2 -(m +1)x +m 的图象交x 轴于A (x 1,0)、B (x 2,0)两点,交y 轴正半轴于点C ,且x 12 +x 22 =10.⑴求此二次函数的解析式;⑵是否存在过点D (0,-25)的直线与抛物线交于点M 、N ,与x 轴交于点E ,使得点M 、N 关于点E 对称?若存在,求直线MN 的解析式;若不存在,请说明理由.分析与解答 ⑴依题意,得x 1x 2=m ,x 12 +x 22 =10,∵x 1 +x 2 = m +1,∴(x 1 +x 2)2 -2x 1x 2 =10,∴(m +1)2 -2m =10,m =3或m = -3,又∵点C 在y 轴的正半轴上,∴m =3. ∴所求抛物线的解析式为y =x 2 -4x +3. ⑵假设存在过点D (0,-25)的直线与抛物线交于M (x M ,y M )、N (x N ,y N )两点,与x 轴交于点E ,使得M 、N 两点关于点E 对称.∵M 、N 两点关于点E 对称,∴y M +y N =0. 设直线MN 的解析式为:y =kx -25. 由⎪⎩⎪⎨⎧=+-=.25-kx y 3x 4x y 2,得x 2 -(k +4)x +211=0,∴x M +x N =4+k ,∴y M +y N =k (x M +x N )-5=0.∴k (k +4)-5=0,∴k =1或k = -5.当k =-5时,方程x 2 -(k +4)x +211=0的判别式⊿<0,∴k =1,∴直线MN 的解析式为y =x -25. ∴存在过点D (0,-25)的直线与抛物线交于M 、N 两点,与x 轴交于点E ,使得M 、N 两点关于点E 对称.例9.(2007乐山)如图(13),在矩形ABCD 中,4AB =,10AD =.直角尺的直角顶点P 在AD 上滑动时(点P 与A D ,不重合),一直角边经过点C ,另一直角边AB交于点E.我们知道,结论“Rt Rt AEP DPC △∽△”成立. (1)当30CPD =∠时,求AE 的长;(2)是否存在这样的点P ,使DPC △的周长等于AEP△周长的2倍?若存在,求出在,请说明理由.解(1)在Rt PCD △中,由tan CD CPD PD=∠, 得44tan tan 30CD PD CPD ===∠10AP AD PD ∴=-=-由AEP DPC △∽△知AE APPD CD=,1012AP PDAE CD∴==.(2)假设存在满足条件的点P ,设DP x =,则10AP x =- 由AEP DPC △∽△知2CD AP=, 4210x∴=-,解得8x =,此时2AP =,4AE =符合题意.(四)、规律探索型规律探索问题是根据已知条件或所提供的若干个特例,通过观察、类比、归纳,提示和发图现题目所蕴含的本质规律与特征的一类探索性问题.例10.(2006湖南衡阳)观察算式:1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52 ;……用代数式表示这个规律(n为正整数):1+3+5+7+9++(2n-1)=______________________.分析与解答由以上各等式知,等式左端是从1开始的连续若干个奇数之和,右端是左端奇数个数的平方,由此易得1+3+5+7+…+(2n-1)=n2.填n2.例11 (2006吉林省)如图2-2-1,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖数为___________.图2-2-1分析与解答根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题,首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.第1个图案有白色瓷砖5(即2+3⨯1)块;第2个图案有白色瓷砖8(即2+3⨯2)块;第3个图案有白色瓷砖11(即2+3⨯3)块. 由此可得,第n 个图案有白色瓷砖(2+3n)块. 填3n+2.例12.(2007资阳)设a1=32-12,a2=52-32,…,a n=(2n+1)2-(2n-1)2 (n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由) .解:(1)∵a n=(2n+1)2-(2n-1)2=22n n n n n,4414418又n为非零的自然数,∴a n是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数.说明:第一步用完全平方公式展开各1分,正确化简1分.(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.n为一个完全平方数的2倍时,a n为完全平方数.三、················知识巩固训练(题组训练)1.(2006年山东省)如图,△ABC中,D、E 分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件....可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.2.(2006年随州市)如图,矩形ABCD中,M 是AD的中点.(1)求证:△ABM≌△DCM;(2)请你探索,当矩形ABCD中的一组邻边满足何种数量关系时,有BM⊥CM成立,说明你的理由.3.如图,在△ABC中,D为BC上一个动点(D 点与B、C不重合),且DE∥AC交AB•于点E,DF∥AB交AC于点F.(1)试探究,当AD满足什么条件时,四边形AEDF是菱形?并说明理由.(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.4.如图,AB是⊙O的直径,EF是⊙O的切线,切点是C.点D是EF上一个动点,连接AD.试探索点D运动到什么位置时,AC是∠BAD的平分线,请说明理由.5.(2006年成都市)已知:如图,在△ABC中,D是AC的中点,E是线段BC•延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.6.(2006年常德市)如图,P是等边三角形ABC 内的一点,连结PA、PB、PC,以BP•为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.7.如图,AB是⊙O的直径,AD、BC、DC都是⊙O的切点,A、B、E分别是切点.(1)判定△COD的形状,并说明理由.(2)设AD=a,BC=b,⊙O的半径为r,试探究r与a,b之间满足的关系式,并说明理由.8.(2006年绵阳市)在正方形ABCD中,点P 是CD上一动点,连结PA,分别过点B、D 作BE⊥PA、DF⊥PA,垂足分别为E、F,如图①.(1)请探索BE、DF、EF这三条线段长度具有怎样的数量关系.若点P在DC•的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD•的延长线上呢(如图③)?请分别直接写出结论;(2)请在(1)中的三个结论中选择一个加以证明.9.(2007云南省)已知:如图,抛物线2=++经y ax bx c过(1,0)B、(0,5)A、(5,0)C三点.(1)求抛物线的函数关系式;(2)若过点C的直线y kx b=+与抛物线相交于点E(4,m),请求出△CBE的面积S的值;(3)在抛物线上求一点P使得△ABP0为等腰三角形并写出P点的坐标;(4)除(3)中所求的P点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点P(要求简要说明理由,但不证明);若不存在这样的点P,请说明理由.Array10.(2007呼和浩特市)如图,在矩形ABCD中,AB =1AD =.点P 在AC 上,PQ BP ⊥,交CD 于Q ,PE CD ⊥,交于CD 于E .点P 从A 点(不含A )沿AC 方向移动,直到使点Q 与点C 重合..为止. (1)设AP x =,PQE △的面积为S .请写出S 关于x 的函数解析式,并确定x 的取值范围.(2)点P 在运动过程中,PQE △的面积是否有最大值,若有,请求出最大值及此时AP 的取值;若无,请说明理由.11.(2007成都市)在平面直角坐标系xOy 中,已知二次函数2(0)y axbx c a =++≠的图象与x 轴交于A B,两点(点A 在点B 的左边),与y 轴交于点C,其BQED顶点的横坐标为1,且过点(23),和(312),.--(1)求此二次函数的表达式;(2)若直线:(0)l y kx k=≠与线段BC交于点D(不与点,重合),则是否存在这样的直线l,使得以B C△相似?若存在,求,,为顶点的三角形与BACB O D出该直线的函数表达式及点D的坐标;若不存在,请说明理由;(3)若点P是位于该二次函数对称轴右边图象上∠ACO坐标x的取值范围.p12(2007绵阳市)如图,已知抛物线y=ax2 +bx-3与x轴交于A、B两点,与y轴交于C 点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin (α-β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.13(07日照)如图,直线EF将矩形纸片ABCD 分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合),设AB=a,AD=b,BE=x.(Ⅰ)求证:AF=EC;(Ⅱ)用剪刀将纸片沿直线EF剪开后,再将纸片ABEF沿AB对称翻折,然后平移拼接在梯形ECDF的下方,使一底边重合,直腰落在边DC的延长线上,拼接后,下方的梯形记作EE′B′C.(1)求出直线EE′分别经过原矩形的顶点A和顶点D时,所对应的x︰b的值;(2)在直线EE′经过原矩形的一个顶点的情形下,连接B E′,直线BE′与EF是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?14.(2006江西省)如图2-2-2,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:……第1个第2个第3个图2-2-2⑴第4个图案中有白色纸片___________张;⑵第n个图案台有白色纸片___________张.15.(2006广西贺州市)观察图2-2-3中一列有规律的数,然后在“?”处填上一个合适的数,这个数是______________.16.(2006广西百色市)如图2-2-4,A 1A 2B 是直角三角形,且A 1A 2=A 2B =a ,A 2A 3⊥A 1B ,垂足为A 3,A 3A 4⊥A 2B ,垂足为A 4,A 4A 5⊥A 3B ,垂足为A 5,……,A n +1A n +2⊥A n B ,垂足为A n +2,则线段A n +1A n +2(n 为自然数)的长为( ). (A ) n)2(a(B(C )2a(D )2na17.(2006江苏泰州市)如图2-2-5,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n 的等式表示第n 个正方形点阵中的规律_______.图2-2-5 (2)11=2363+=26104+=2132+=A 2A 1A 3 A 4A 6A 5B图2-2-42415 830 35 48?图2-2-318.(2006浙江绍兴市)如图2-2-6,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2 006次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2006的位置,则P 2006的横坐标x 2006=_______________.19.(2007内江)如图(11),某小区有东西方向的街道3条,南北方向的街道4条,从位置A 出发沿街道行进到达位置B ,要求路程最短,研究共有多少种不同的走法.小东是这样想的:要使路程最短,就不能走“回头路”,只能分五步来完成,其中三步向右行进,两步数字“2”表示向上行进,那么“11221”与“11212”就表示两种符合要求的不同走法,请你思考后回答:符合要求的不同走法共有________种.图2-2-6B图A20.(2007内江)探索研究(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是________;根据此规律,如果na (n为正整数)表示这个数列的第n 项,那么18a =________,na =________;(2)如果欲求232013333+++++的值,可令232013333S =+++++……………………………………………………① 将①式两边同乘以3,得_______________________………………………………………………………② 由②减去①式,得S =____________________.(3)用由特殊到一般的方法知:若数列123na a a a ,,,,,从第二项开始每一项与前一项之比的常数为q ,则na =________(用含1a q n ,,的代数式表示),如果这个常数1q ≠,那么123n a a a a ++++=________(用含1a q n ,,的代数式表示).21.(07自贡)一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________.22.(2007德阳)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)根据这个规律探索可得,第100个点的坐标为____________.23.(2007河南省)将图①所示的正六边形进))) ) )第17行进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③, 再将图③中最小的某一个正六边形按同样的方式进行分割…,则第n 个图形中,共有________个正六边形.24.(2007安徽省)探索n ×n 的正方形钉子板上(n 是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n =2时,钉子板上所连不同线段的长度值只有1与2,所以不同长度值的线段只有2种,图图图(第…若用S 表示不同长度值的线段种数,则S =2;当n =3时,钉子板上所连不同线段的长度值只有1,2五种,比n =2时增加了3种,即S =2+3=5.(1) 观察图形,填写下表:(2) 写出(n -1)×(n -1)和n ×n 的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可) 【解】(3)对n ×n 的钉子板,写出用n 表示S 的代数式.【解】25.(07贵阳市)如图12,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线________(2 (3)“200726.(07无锡)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=.图1 图2图3 图4如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的第2第1…… 第n数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和.27.(07乐山)如图(15),在直角坐标系中,已知点0P 的坐标为(10),,将线段0OP 按逆时针方向旋转45,再将其长度伸长为0OP 的2倍,得到线段1OP ;又将线段1OP 按逆时针方向旋转45,长度伸长为1OP的2倍,得到线段2OP ;如此下去,得到线段3OP ,4OP ,,n OP (n 为正整数)(1)求点6P 的坐标; (2)求56POP △的面积;(3)我们规定:把点()nnnP x y ,的横坐标nx 、纵坐标ny 标()nnxy ,称之为点nP 的“绝对坐标”.根据图中点nP 的分布规律,请你猜想点nP 的“绝对坐标”,并写出来.28.(07山东东营)根据以下10个乘积,回答问题:11×29; 12×28; 13×27; 14×26;5P15×25;16×24;17×23;18×22;19×21;20×20.(1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由⑴、⑵猜测一个一般性的结论.(不要求证明)答案:1.答案不惟一,符合题意即可.2.(1)略(2)当AD=2AB时,有BM•⊥CM成立.说明理由(略)3.(1)当AD平分∠BAC时,四边形AEDF 是菱形.理由(略)(2)在(1)的条件下,当∠BAC=90°时,四边形AEDF是正方形.说明理由(略)4.当点D•运动到满足条件AD⊥EF时,AC平分∠BAD.证明(略)5.(1)证明△ADF≌△CDE即可(2)四边形AFCE是矩形.(证明略)6.(1)证明△BPA≌△BQC,AP=CQ (2)△PQC是直角三角形,∵PA:PB:PC=3:4:5,设PA=3k,PB=4k,PC=5k,∵∠PBQ=60°,BP=BQ,∴△PBQ是等边三角形,∴PQ=PB=4k,在△PQC中,∵PQ2+QC2=(4k)2+(3k)2=25k2,PC2=(5k)2=25k2,∴PQ2+QC2=PC2,∴△PQC是Rt△.7.(1)△COD是直角三角形,连OE,由圆的切线的性质可证得:•△OAD ≌△OED ,△OEC ≌△OBC ,∴∠AOD =∠EOD ,∠EOC =∠BOC ,可证得∠DOC =90°,•所以△COD 是直角三角形.(2)r 与a 、b 之间满足的关系是r 2=ab .证明△OAD ∽△CBO ,得OA AD BC OB =,OA ·OB =AD ·BC 即r 2=ab . 8.解:(1)①BE =DF +EF ,②BE =DF -EF ,③EF =BE +DF . (2)•证明略.9.解:(1)∵抛物线经过点(1,0)A 、(5,0)B ,∴(1)(5)y a x x =--. 又∵抛物线经过点(0,5)C , ∴55a =,1a =.∴抛物线的解析式为2(1)(5)65y x x x x =--=-+.(2)∵E 点在抛物线上,∴m = 42–4×6+5 = -3. ∵直线y = kx +b 过点C (0, 5)、E (4, –3),∴5,4 3.b k b =⎧⎨+=-⎩解得k = -2,b = 5. 设直线y =-2x +5与x 轴的交点为D ,当y =0时,-2x +5=0,解得x =52. ∴D 点的坐标为(52,0). ∴S =S △BDC + S △BDE=1515(5)5+(5)32222⨯-⨯⨯-⨯ =10.(3)∵抛物线的顶点0(3,4)P -既在抛物线的对称轴上又在抛物线上,∴点0(3,4)P -为所求满足条件的点.(4)除0P 点外,在抛物线上还存在其它的点P使得△ABP 为等腰三角形.理由如下: ∵22024254AP BP ==+=>,∴分别以A 、B 为圆心半径长为4画圆,分别与抛物线交于点B 、1P 、2P 、3P 、A 、4P 、5P 、6P ,除去B 、A 两个点外,其余6个点为满足条件的点.(说明:只说出P 点个数但未简要说明理由的不给分)10.解:(1)解:过点P 作PF BC ⊥,垂足为F . 在矩形ABCD 中,PF AB ∥ PFC ABC ∴△∽△ FC PC PFBC AC AB ==∴ 又AP x =∵,1BC AD ==,AB = 又∵在Rt ABC △中,3AC ==3PC x =-313FC x -=∴ 33xFC -=∴3133x xBF BC FC -=-=-=∴又PE CD ⊥∵ 90PEC ∠=∴°又在四边形PFCE 中,90PFC BCD PEC ∠=∠=∠=°∴四边形PFCE 为矩形90FPE ∠=∴°又PQ BP ⊥∵ 90BPQ ∠=∴°FPE BPQ ∠=∠∴ EPQ QPF BPF FPQ ∠+∠=∠+∠∴ EPQ BPF ∠=∠∴ 又90PEQ BFP ∠=∠=° PEQ PFB ∴△∽△ EQ PEBF PF=∴ 又PE FC = EQ FCBF PF =∴ 又FC PFBC AB=FC BC PF AB =∴EQ BCBF AB=∴ BC BFEQ AB=·∴3x EQ ==∴113223x S EQ PE -==∴··27224S x x =+∴或23)72S xx =-+过点B 作BK AC ⊥,垂足为K . 在Rt ABC △中,由等积法可得1122AC BK AB BC =·· AC BK AB BC =∴··31BK ⨯=BK ∴由题意可得当Q 与C 重合时,P 与K 重合即AP AK =,由ABK ABC △∽△得AK AB BK BC =即2x = 83x =∴ x∴的取值范围是803x <≤(2)PQE △面积有最大值由(1)可得2S x =2372232x ⎫=--+⎪⎝⎭∴当32x =即32AP =时, S面积最大,即32S=最大11.解:(1)二次函数图象顶点的横坐标为1,且过点(23),和(312)--,,∴由1242393212.ba abc a b ⎧-=⎪⎪++=⎨⎪-+=-⎪⎩,, 解得123.a b c =-⎧⎪=⎨⎪=⎩,,∴此二次函数的表达式为223y x x =-++.(2)假设存在直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似. 在223y xx =-++中,令0y =,则由2230xx -++=,解得1213x x =-=, (10)(30)A B ∴-,,,.令0x =,得3y =.(03)C ∴,. 设过点O 的直线l 交BC 于点D ,过点点E .点B 的坐标为(30),,点C 的坐标为(03),为(10)-,.4345.AB OB OC OBC ∴===∠=,,BC ∴==.要使BOD BAC △∽△或BDO BAC △∽△,已有B B ∠=∠,则只需BD BO BC BA=, ① 或.BO BDBC BA= ②成立.若是①,则有344BO BC BD BA ⨯===.而45OBC BE DE ∠=∴=,.∴在Rt BDE△中,由勾股定理,得2222224BE DE BE BD ⎛⎫+=== ⎪ ⎪⎝⎭.解得 94BE DE ==(负值舍去). 93344OE OB BE ∴=-=-=.∴点D 的坐标为3944⎛⎫⎪⎝⎭,. 将点D 的坐标代入(0)y kx k =≠中,求得3k =.∴满足条件的直线l 的函数表达式为3y x =.[或求出直线AC 的函数表达式为33y x =+,则与直线AC 平行的直线l 的函数表达式为3y x =.此时易知BOD BAC△∽△,再求出直线BC 的函数表达式为3y x =-+.联立33y x y x ==-+,求得点D 的坐标为3944⎛⎫⎪⎝⎭,.] 若是②,则有32BO BA BD BC===. 而45OBC BE DE ∠=∴=,.∴在Rt BDE△中,由勾股定理,得222222BE DE BE BD +===.解得 2BE DE ==(负值舍去).321OE OB BE ∴=-=-=.∴点D 的坐标为(12),.将点D 的坐标代入(0)y kx k =≠中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =. ∴存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C,重合),使得以B O D ,,为顶点的三角形与BAC△相似,且点D 的坐标分别为3944⎛⎫ ⎪⎝⎭,或(12),. (3)设过点(03)(10)C E ,,,的直线3(0)y kx k =+≠与该二次函数的图象交于点P .将点(10)E ,的坐标代入3y kx =+中,求得3k =-. ∴此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=.解得1250xx ==,(不合题意,舍去).512x y ∴==-,.∴点P 的坐标为(512)-,.此时,锐角PCO ACO ∠=∠. 又二次函数的对称轴为1x =,∴点C 关于对称轴对称的点C '的坐标为(23),. ∴当5px>时,锐角PCO ACO ∠<∠; 当5px=时,锐角PCO ACO ∠=∠;当25px<<时,锐角PCO ACO ∠>∠.12.解:(1)由题意可知C (0,-3),12=-ab ,∴ 抛物线的解析式为y = ax 2-2ax -3(a >0), 过M 作MN ⊥y 轴于N ,连结CM ,则MN = 1,5=CM ,∴ CN = 2,于是m =-1. 同理可求得B (3,0),∴ a ×32-2-2a ×3-3 = 0,得 a =1,∴ 抛物线的解析式为y = x 2-2x -3. (2)由(1)得 A (-1,0),E (1,-4),D (0,1).xBEA O C 1x =PC '·∴ 在Rt △BCE 中,23=BC ,2=CE , ∴313==OD OB ,3223==CE BC ,∴CEBCOD OB =,即CEODBC OB =,∴ Rt △BOD ∽Rt △BCE ,得 ∠CBE=∠OBD =β,因此 sin (α-β)= sin (∠DBC -∠OBD )= sin ∠OBC =22=BCCO .(3)显然 Rt △COA ∽Rt △BCE ,此时点P 1(0,0).过A 作AP 2⊥AC 交y 正半轴于P 2,由Rt △CAP 2 ∽Rt △BCE ,得)31,0(2P . 过C 作CP 3⊥AC 交x 正半轴于P 3,由Rt △P 3CA ∽Rt △BCE ,得P 3(9,0).故在坐标轴上存在三个点P 1(0,0),P 2(0,1∕3),P 3(9,0),使得以P 、A 、C 为顶点的三角形与BCE 相似.13.解:(Ⅰ)证明:∵AB =a ,AD =b ,BE =x ,S 梯形ABEF = S 梯形CDFE .∴21a (x +AF )=21a (EC +b -AF ),∴2AF =EC +(b -x ). 又∵EC =b -x ,∴2AF =2EC ,即AF =EC ; (Ⅱ)(1)当直线EE′经过原矩形的顶点D 时,如图(一), ∵EC ∥E ′B ′,∴B E EC ''=B D DC '. 由EC =b -x ,E ′B ′=EB =x , DB ′=DC +CB ′=2a ,得aax x b 2=-,∴x ︰b =32;当直线E′E 经过原矩形的顶点A 时,如图(二),在梯形AE ′B ′D 中,∵EC ∥E ′B ′,点C 是DB ′的中点, ∴CE =21(AD + E ′B ′), 即b -x =21(b +x ), ∴x ︰b =31. (2) 如图(一), 当直线EE′ 经过原矩形的顶点D 时,BE ′∥EF . 证明:连接BF . ∵FD ∥BE , FD =BE , ∴四边形FBED 是平行四边形, ∴FB ∥DE , FB =DE ,又∵EC ∥E ′B ′, 点C 是DB ′的中点, ∴DE =EE ′,∴FB ∥EE ′, FB = EE ′, ∴四边形BE ′EF 是平行四边形 ∴BE ′∥EF .如图(二), 当直线EE′ 经过原矩形的顶点A时,显然BE ′与EF 不平行,设直线EF 与BE′交于点G .过点E ′作E ′M ⊥BC 于M , 则E ′M =a .. ∵x ︰b =31, ∴EM =31BC =31b . 若BE′与EF 垂直,则有∠GBE +∠BEG =90°,又∵∠BEG =∠FEC =∠MEE ′, ∠MEE ′+∠ME ′E =90°, ∴∠GBE =∠ME ′E . 在Rt △BME ′中,tan ∠E ′BM= tan ∠GBE =BMM E '=ba 32. 在Rt △EME ′中,tan ∠ME ′E=ME EM '=a b 31, ∴ba 32=ab 31.又∵a >0,b >0,=ba 32,∴当=b a32时,BE′与EF 垂直.。
专题08 全等三角形中的边角问题【类型】一、全等三角形中的边角问题-公共角模型一、解答题1.在ABC 中,∠BAC =90°,AB AC =,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为直角边在AD 右侧作等腰直角三角形ADE (90DAE ∠=︒,AD AE =),连接CE .(1)如图1,当点D 在线段BC 上时,猜想:BC 与CE 的位置关系,并说明理由;(2)如图2,当点D 在线段CB 的延长线上时,(1)题的结论是否仍然成立?说明理由;(3)如图3,当点D 在线段BC 的延长线上时,结论(1)题的结论是否仍然成立?不需要说明理由.2.如图1,在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),过点A 作AG ∠AH 且AG =AH ,连接GC ,HB .(1)证明:AHB ∠AGC ;(2)如图2,连接GF ,HG ,HG 交AF 于点Q .∠证明:在点H 的运动过程中,总有∠HFG =90°; ∠当AQG 为等腰三角形时,求∠AHE 的度数.3.已知,∠ABC 是边长为4cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度均为1cm/s .当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ).(1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.(2)如图2,当t为何值时,∠PBQ是直角三角形?(3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,请直接写出∠CMQ度数.4.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.己知四边形ABCD中,AC∠BD.垂足为O,求证:AB2+CD2=AD2+BC2;(2)解决问题:已知AB=2.BC=2,分别以∠ABC的边BC和AB向外作等腰Rt∠BCE和等腰Rt∠ABD;∠如图2,当∠ACB=90°,连接DE,求DE的长;∠如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=6,则S△ABC=.5.在四边形ABCD中,∠DAB+∠DCB=180°,AC平分∠DAB.(1)如图1,求证:BC=CD;(2)如图2,连接BD交AC于点E,若∠ADB=90°,AE=2DE,求∠ABD的度数;(3)如图3,在(2)的条件下,过点C作CH∠AB于点H,∠BCH沿BC翻折,点H的对应点为点F,点G在线段AB上,连接FG,若∠CGF=30°,S△CHG=9,求线段CG的长.【类型】二、全等三角形中的边角问题-公共边模型一、单选题1.如图,∠ACB=90°,AC=BC,AD∠CE,BE∠CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.1.5B.2C.22D.102.如图,BN为∠MBC的平分线,P为BN上一点,且PD∠BC于点D,∠APC+∠ABC=180°,给出下列结论:∠∠MAP=∠BCP;∠P A=PC;∠AB+BC=2BD;∠四边形BAPC的面积是∠PBD面积的2倍,其中结论正确的个数有()A.4个B.3个C.2个D.1个3.如图,∠ABC的面积为9cm2,BP平分∠ABC,AP∠BP于P,连接PC,则∠PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm2二、解答题4.如图,在ABC中,BE是ABC∠=∠+∠.∠的平分线,AD BE⊥,垂足为D,求证:21C5.如图,在四边形ABCD 中,已知BD 平分∠ABC ,∠BAD +∠C =180°,求证:AD =CD .6.如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.7.已知,如图ABC ∆中,AB AC =,90A ∠=︒,ACB ∠的平分线CD 交AB 于点E ,90BDC ∠=︒, 求证:2CE BD =.8.如图,在∠ABC 中,点D 为边BC 的中点,点E 在∠ABC 内,AE 平分∠BAC ,CE∠AE 点F 在AB 上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论9.直线AB:y=x+b分别与x,y轴交于A,B两点,点A的坐标为(-3,0),过点B的直线交x轴正半轴于点C,且OB∠OC=3∠1.(1)求点B的坐标及直线BC的函数表达式;(2)在y轴上存在点P,使得以点B、C、P三点构成的三角形为等腰三角形,请直接写出点P的坐标:______________;(3)在坐标系平面内,存在点D,使以点A,B,D为顶点的三角形与∠ABC全等,画出∠ABD,并求出点D的坐标.【类型】三、全等三角形中的边角问题-边边角模型一、解答题1.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE 绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE+OD 与OC 的数量关系,并说明理由; (2)当∠DCE 绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由; (3)当∠DCE 绕点C 旋转到CD 与OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD 、OE 与OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.2.如图,OC 平分∠MON ,A 、B 分别为OM 、ON 上的点,且BO >AO ,AC =BC ,求证:∠OAC +∠OBC =180°.3.如图,在四边形ABCD 中,已知BD 平分∠ABC ,∠BAD +∠C =180°,求证:AD =CD .4.如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.【类型】四、全等三角形中的边角问题-X 模型一、填空题1.如图,已知AD 是ABC 的中线,E 是AC 上的一点,BE 交AD 于F ,AC BF =,24DAC ∠=︒,32EBC ∠=︒,∠__________.则ACB二、解答题2.问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC中,若AB=4,AC=3,求BC 边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE =AD,则得到∠ADC∠∠EDB,小明证明∠BED∠∠CAD用到的判定定理是:(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以∠ABC的边AB,AC为边向外作∠ABE和∠ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.3.如图,在∠ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.4.阅读下面材料【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图∠.在∠ABC中,若AB=8,AC=6,求BC边上的中线AD 取值范围,小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明方法思考:(1)由已知和作图能得到∠ADC∠∠EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)由三角形三边的关系可求得AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【解后感悟】解题时,条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到一个三角形中.【灵活运用】如图∠,AD是∠ABC的中线,BE交AC于E,交AD于F,且AE=EF若EF=4,EC=3,求线段BF的长.5.阅读下面的题目及分析过程.已知:如图点E是BC的中点,点A在DE上,且AB DC=说明:BAE D∠=∠分析:说明两个角相等,常用的方法是应用全等三角形或等腰三角形的性质.观察本题中说明的两个角,它们既不在同一个三角形中,而且们所在两个三角形也不全等.因此,要说明BAE D∠=∠,必须添加适当的辅助线,构造全等三角形或等腰三角形,现在提供两种添加辅助线的方法如下:CF AB,交DE的延长线于点F.如图∠过点C作//如图∠延长DE至点M,使ME DE=,连接BM.(1)请从以上两种辅助线中选择一种完成上题的说理过程.(2)在解决上述问题的过程中,你用到了哪种数学思想?请写出一个._______________.(3)反思应用:⊥于点B.如图,点B是AE的中点,BC BD+与CD之间的大小关系,并说请类比(1)中解决问题的思想方法,添加适当的辅助线,判断线段AC DE明理由.6.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到∠ADC∠∠EDB,依据是.A.SSS B.SAS C.AAS D.HL(2)由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.7.如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE 的中点,BN ∠AC ,BN 与AG 延长线交于点N .(1)若∠BAN =15°,求∠N ;(2)若AE =CF ,求证:2AG =AF .8.如图,等边三角形ABC 中,E 是线段AC 上一点,F 是BC 延长线上一点.连接BE ,AF .点G 是线段BE 的中点,BN AC ,BN 与AG 延长线交于点N .(1)若15BAN ∠=︒,求N ∠;(2)若AE CF =,求证:2AG AF =.9.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在ABC 中,AB 8=,AC 6=,D 是BC 的中点,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE AD =,请补充完整证明“ADC ∠EDB ”的推理过程.()1求证:ADC ∠EDB证明:延长AD 到点E ,使DE AD = 在ADC 和EDB 中AD ED(=已作),ADC EDB(∠∠=______),CD BD(=中点定义), ADC ∴∠EDB(______),()2探究得出AD 的取值范围是______;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】()3如图2,ABC 中,B 90∠=,AB 2=,AD 是ABC 的中线,CE BC ⊥,CE 4=,且ADE 90∠=,求AE 的长.10.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,∠ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小明的方法思考:(1)由已知和作图能得到∠ADC∠∠EDB 的理由是_____.A .SSSB .SASC .AASD .HL(2)求得AD 的取值范围是______.A .6<AD <8B .6≤AD≤8C .1<AD <7 D .1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中. 【问题解决】(3)如图2,AD 是∠ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF.求证:AC =BF.11.P 为等边∠ABC 的边AB 上一点,Q 为BC 延长线上一点,且P A =CQ ,连PQ 交AC 边于D . (1)证明:PD =DQ .(2)如图2,过P 作PE ∠AC 于E ,若AB =6,求DE 的长.12.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【类型】五、全等三角形中的边角问题-一线三等角模型一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边∠DPE ,连结BE ,则∠BDE 的面积为( )A .43B .2C .4D .632.如图,在∠ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A .3B .2C .94D .923.如图,AC =CE ,∠ACE =90°,AB ∠BD ,ED ∠BD ,AB =6cm ,DE =2cm ,则BD 等于( )A .6cmB .8cmC .10cmD .4cm二、填空题 4.如图,直线l 1∠l 3,l 2∠l 3,垂足分别为P 、Q ,一块含有45°的直角三角板的顶点A 、B 、C 分别在直线l 1、l 2、线段PQ 上,点O 是斜边AB 的中点,若PQ 72OQ 的长等于 _____.5.如图,一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°),若OA =50cm ,OB =28cm ,则点C 离地面的距离是____ cm .三、解答题6.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.∠求证:ABP PCD △△∽;∠当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.7.问题背景:(1)如图∠,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图∠,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图∠,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.8.(1)课本习题回放:“如图∠,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,2.5cm AD =,1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图∠,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN ∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图∠,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)9.(1)如图(1)在∠ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ∠直线m ,CE ∠直线m ,垂足分别为点D 、E .求证:DE =BD +CE ;(2)如图(2)将(1)中的条件改为:在∠ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请给出证明;若不成立,请说明理由.10.(1)如图1,在∠ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ∠直线m ,CE ∠直线m ,垂足分别为点D 、E .求证:∠ABD ∠∠CAE ;(2)如图2,将(1)中的条件改为:在∠ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论∠ABD ∠∠CAE 是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为∠BAC 平分线上的一点,且∠ABF 和∠ACF 均为等边三角形,连接BD ,CE ,若∠BDA =∠AEC =∠BAC ,求证:∠DEF 是等边三角形.。
专题08 作文【母题来源】2022年新高考全国Ⅰ卷【母题题文】材料作文1.阅读下面的材料,根据要求写作。
“本手、妙手、俗手”是围棋的三个术语,本手是指合乎棋理的正规下法;妙手是指出人意料的精妙下法;俗手是指貌似合理,而从全局看通常会受损的下法,对于初学者而言,应该从本手开始,本手的功夫扎实了,棋力才会提高,一些初学者热衷于追求妙手,而忽视更为常用的本手,本手是基础,妙手是创造,一般来说,对本手理解深刻,才可能出现妙手;否则,难免下出俗手,水平也不易提升。
以上材料对我们颇具启示意义。
请结合材料写一篇文章,体现你的感悟与思考。
要求:选准角度,确定立意,明确文体,自拟标题:不要套作,不得抄袋:不得泄露个人信息;不少于800字。
【试题解析】审题:这是一则材料作文题。
材料首先介绍了围棋的三个术语,然后分别对三个术语进行解释,接着指出初学者入门的途径和常见的错误做法,最后简单阐释本手、妙手和俗手的关系。
可见材料意在让考生阐释本手、妙手和俗手之间的关系,具有哲理意味,考查的是学生的思辨能力。
在围棋中,本手是最基本的下法,虽简单,却是必不可少的学习内容和入门途径,是起步,是基础,是前提,是根源。
妙手是在本手的基础上的巧思妙想、灵活运用和高瞻远瞩,是创造,是探索,是提升,更是智慧。
只有对本手掌握全面,理解深刻,才可能出现妙手。
俗手是没有本手做根基的无所适从,没有妙手做依托的盲目迷茫,既无技术含量,也无妙思可言,只会满盘皆输,是既无本手,也无妙手的结果,是没有胜算可言的,是最不可取的。
据此考生可以引申到学习,工作、做事甚至治国,可以由个人、国家延伸到社会层面。
只有扎扎实实学好基本功,做好充分的准备,埋头做实事,干好基层的民生工作,奠定牢固的基础,不投机取巧,不偷工减料,不敷衍潦草,才能搞好学习,干好工作,做好事情,治好国家。
只有在夯实基础的前提下,才能渐入佳境,灵活变通,妙手绘蓝图,巧手筑高楼。
否则,便只能以俗手将一手好牌打烂,以败局收场。
决战2020年中考典型压轴题大突破模块二中考压轴题几何变换综合专题考向导航在近几年的中考试题中,为了体现教育部关于中考命题改革的精神,出现了动手操作题。
动手操作题是让学生在通过实际操作的基础上设计有关的问题。
这类题对学生的能力有更高的要求,有利于培养学生的创新能力和实践能力,体现新课程理念。
此类试题的显著特点是以动手为基础的手脑并用的形式,有助于创新能力的培养和实践能力的提高,改变了以往一只笔一张纸的学习方式,是新课程改革的基本理念之,在中考中越来越受到关注。
常见的有折叠、旋转和平移操作。
操作型问题是指通过动手测量作图(象)、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合情合理和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯,符合新课程标准,特别强调发现式学习、探究式学习和研究式学习,鼓励学生进行“微科研”活动,提倡要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯,切实提高学生的动手能力、实践能力的指导思想因此,实验操作问题将成为今后中考的热点题型。
专题08 探索性问题方法点拨此类题目常涉及到画图、测量、猜想证明,归纳等问题,它与初中代数、几何均有联系。
此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理念。
精典例题(2019•商南二模)【问题发现】如图①,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.【问题研究】如图②,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M、N分別是⊙A、⊙B上的动点,点P为x轴上的动点,试求PM+PN的最小值.【问题解决】如图③,该图是某机器零件钢构件的模板,其外形是一个五边形,根据设计要求,边框AB 长为2米,边框BC长为3米,∠DAB=∠B=∠C=90°,联动杆DE长为2米,联动杆DE的两端D、E允许在AD、CE所在直线上滑动,点G恰好是DE的中点,点F可在边框BC上自由滑动,请确定该装置中的两根连接杆AF与FG长度和的最小值并说明理由.【点睛】(1)作点C关于AB的对称点C',连接DE,与AB交于点E,连接CE.此时EC+ED=EC'+ED=C'D最短,易证DBC'=90°,C'B=CB=2,DB=1,所以在Rt△DBC'中,C'D2=12+22=5,故CD,即EC+ED的最小值是;(2)作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B'于M'、N,交x轴于P,连接PA,交⊙A于M,根据两点之间线段最短得到此时PM+PN最小,再利用对称确定A′的坐标,接着利用两点间的距离公式计算出A′B的长,然后用A′B的长减去两个圆的半径即可得到MN的长,即得到PM+PN的最小值;(3)如图③,延长AD、CE,交于点H,连接GH.易知GE DE=1,所以点G在以H为圆心,1为半径的圆周上运动,作点A关于BC的对称点A',连接A'H,与BC交于点F,与⊙H交于点G,此时AF+FG=A'F+FG=A'G为最短,AB=2,AH=BC=3,A'B=2,A'A=4,所以A'H,因此A'G=A'H﹣GH=5﹣1=4,即该装置中的两根连接杆AF与FG长度和的最小值为4.巩固突破1.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为.(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=.②猜想∠EPF与∠EQF的数量关系,并说明理由;③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F满足怎样的数量关系?(直接写出结果)2.(2019•江夏区校级模拟)如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP∠BAC,∠DCP∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ∠BAP,∠DCQ∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK 的大小是否变化?若不变,求其值;若变化,求其取值范围.3.(2019•荷塘区)如图,已知直线AB∥CD.(1)在图1中,点E在直线AB上,点F在直线CD上,点G在AB、CD之间,若∠1=30°,∠3=75°,则∠2=;(2)如图2,若FN平分∠CFG,延长GE交FN于点M,EM平分∠AEN,当∠N∠FGE=54°时,求∠AEN的度数;(3)如图3,直线MF平分∠CFG,直线NE平分∠AEG相交于点H,试猜想∠G与∠H的数量关系,并说明理由.4.(2019•嘉兴)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM∠MBE,∠CDN∠NDE,直线MB、ND交于点F,则.5.(2019陕西)已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点.(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等;(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等;(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.6.(2019•成都)如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).(1)当α为度时,AD∥BC,并在图3中画出相应的图形;(2)在旋转过程中,试探究∠CAD与∠BAE之间的关系;(3)当△ADE旋转速度为5°/秒时,且它的一边与△ABC的某一边平行(不共线)时,直接写出时间t 的所有值.7.(2019•扬州校级模拟)如图(1),由线段AB、AM、CM、CD组成的图形像英文字母M,称为“M形BAMCD”.(1)如图(1),M形BAMCD中,若AB∥CD,∠A+∠C=50°,则∠M=;(2)如图(2),连接M形BAMCD中B、D两点,若∠B+∠D=150°,∠AMC=α,试探求∠A与∠C的数量关系,并说明理由;(3)如图(3),在(2)的条件下,且AC的延长线与BD的延长线有交点,当点M在线段BD的延长线上从左向右移动的过程中,直接写出∠A与∠C所有可能的数量关系.8.(2020•徐汇区一模)如图,在△ABC中,AB=AC=5,BC=6,点D是边AB上的动点(点D不与点AB重合),点G在边AB的延长线上,∠CDE=∠A,∠GBE=∠ABC,DE与边BC交于点F.(1)求cos A的值;(2)当∠A=2∠ACD时,求AD的长;(3)点D在边AB上运动的过程中,AD:BE的值是否会发生变化?如果不变化,请求AD:BE的值;如果变化,请说明理由.9.(2020•河南一模)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB 的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为.10.(2019•东营区校级模拟)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CP,由于CP AB,易得结论:①△ACP为等边三角形;②BP与CP 之间的数量关系为;(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明;(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论;拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣3,),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.11.(2019•南关区一模)在△ABC中,CA=CB,0°<∠C≤90°.过点A作射线AP∥BC,点M、N分别在边BC、AC上(点M、N不与所在线段端点重合),且BM=AN,连结BN并延长交AP于点D,连结MA并延长交AD的垂直平分线于点E,连结ED.【猜想】如图①,当∠C=45°时,可证△BCN≌△ACM,从而得出∠CBN=∠CAM,进而得出∠BDE 的大小为度.【探究】如图②,若∠C=α.(1)求证:△BCN≌△ACM.(2)∠BDE的大小为度(用含a的代数式表示).【应用】如图③,当∠C=90°时,连结BE.若BC=3,∠BAM=15°,则△BDE的面积为.12.(2019•南浔区二模)(1)尝试探究如图1,等腰Rt△ABC的两个顶点B,C在直线MN上,点D是直线MN上一个动点(点D在点C的右边),BC=3,BD=m,在△ABC同侧作等腰Rt△ADE,∠ABC=∠ADE=90°,EF⊥MN于点F,连接CE.①求DF的长;②在判断AC⊥CE是否成立时,小明同学发现可以由以下两种思路解决此问题:思路一:先证CF=EF,求出∠ECF=45°,从而证得结论成立.思路二:先求DF,EF的长,再求CF的长,然后证AC2+CE2=AE2,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程.(如用两种方法作答,则以第一种方法评分)(2)拓展探究将(1)中的两个等腰直角三角形都改为有一个角为30°的直角三角形,如图2,∠ABC=∠ADE=90°,∠BAC=∠DAE=30°,BC=3,BD=m,当4≤m≤6时,求CE长的范围.13.(2019•江西模拟)某数学活动小组在研究三角形拓展图形的性质时,经历了如下过程:●操作发现在等腰△ABC中,AB=AC,分别以AB和AC为腰,向△ABC的外侧作等腰直角三角形,如图①所示,连接DE,其中F是DE的中点,连接AF,则下列结论正确的是(填序号即可)①AF BC:②AF⊥BC;③整个图形是轴对称图形;④DE∥BC、●数学思考在任意△ABC中,分别以AB和AC为腰,向△ABC的外侧作等腰直角三角形,如图②所示,连接DE,其中F是DE的中点,连接AF,则AF和BC有怎样的数量和位置关系?请给出证明过程●类比探索在任意△ABC中,仍分别以AB和AC为腰,向△ABC的内侧作等腰直角三角形,如图③所示,连接DE,其中F是DE的中点,连接AF,试判断AF和BC的数量和位置关系是否发生改变?并说明理由.14.(2019•鼓楼区二模)提出问题:用一张等边三角形纸片剪一个直角边长分别为2cm和3cm的直角三角形纸片,等边三角形纸片的边最小值是多少?探究思考:几位同学画出了以下情况,其中∠C=90°,BC=2cm,△ADE为等边三角形.(1)同学们对图1,图2中的等边三角形展开了讨论:①图一中AD的长度图②中AD的长度(填“>”,“<”或“=”)②等边三角形ADE经过图形变化.AD可以更小.请描述图形变化的过程.(2)有同学画出了图3,但老师指出这种情况不存在,请说明理由.(3)在图4中画出边长最小的等边三角形,并写出它的边长.经验运用:(4)用一张等边三角形纸片剪一个直角边长为1cm和3cm的直角三角形纸片,等边三角形纸片的边长最小是多少?画出示意图并写出这个最小值.15.(2019•交城二模)综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.实践探究:(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,宽为,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)16.(2019•长春模拟)已知∠MBN=60°,BD平分∠MBN,点A在BM上,点C在BN上,且AB=BC,点P是射线BD上一动点,以AP为边向右侧作等边三角形APE,点E的位置随着点P的位置变化而变化.【探究】如图1,当点E在BD下方,连接CE.证明:BP=CE,CE⊥BN.【应用】如图2,当点E在BD上方,连接AC.若AB=2,BE,则四边形ACPE的面积为.17.(2019•长春模拟)【感知】如图①,在正方形ABCD中,点F在BC边上,AE平分∠DAF.若我们分别延长AE与BC,交于点G.则易证AF=FG.(不需要证明)【探究】如图②,在矩形ABCD中,点E是CD边的中点,点F在BC边上,AE平分∠DAF.求证:AF=AD+FC.【应用】在【探究】的条件下,若AD=6,DE=2,直接写出FC的长.18.(2019•雁塔区校级模拟)发现问题:如图1,直线a∥b,点B、C在直线b上,点D为AC的中点,过点D的直线与a,b分别相交于M、N两点,与BA的延长线交于点P,若△ABC的面积为1,则四边形AMNB的面积为;探究问题:如图2,Rt△ABC中,∠DAC∠BAC,DA=2,求△ABC面积的最小值;拓展应用:如图3,矩形花园ABCD的长AD为400米,宽CD为300米,供水点E在小路AC上,且AE=2CE,现想沿BC上一点M和CD上一点N修一条小路MN,使得MN经过E,并在四边形AMCN 围城的区域内种植花卉,剩余区域铺设草坪根据项目的要求种植花卉的区域要尽量小.请根据相关数据求出四边形AMCN面积的最小值,及面积取最小时点M、N的位置.(小路的宽忽略不计)19.(2019•通城模拟)在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,其外接圆的半径为r.【探究】(1)如图甲,作直径BD,若r=3,发现的值为.(2)猜想,,之间的关系,并证明你的猜想.【应用】(3)如图乙,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上,求此时货轮距灯塔A的距离AB.20.(2019•竞秀区一模)四边形ABCD是正方形,BC=3,点E在BC上且BE=1,以EF为直径作半圆O,点G是半圆弧的中点探究一:设定EF=4,(1)如图1,当F在BC延长线上时,DG的长;(2)将图1中的半圆O绕点E逆时针方向旋转,旋转角为a,(0°≤α≤180°)①如图2,当EF经过点D时,求A到EF的距离.②如图3,圆心O落在AB边上,求从图1到图3的旋转过程中G点的运动路径长度;③如图4,半圆O与正方形ABCD的边AD相切,切点为P,求AP的长并直接写出在旋转过程中,半圆O与正方形其它各边相切时,点A到切点的距离.探究二:设定EF=2如图5,图6,将半圆O的直径EF沿线段EC和CD滑动,E、F在EC、CD上对应的点为E′、F′,点E滑动到点C停止,请判断线段CG的取值范围.(直接写出结果)21.(2019•河南)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于时,线段BC的长取最大值,且最大值为.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.。