2019年高考数学考纲解读与热点难点突破专题11数列的求和问题教学案文含解析
- 格式:doc
- 大小:479.00 KB
- 文档页数:11
2019-2020年高考数学复习之数列求和的几种方法教案 新人教版一、学生活动(探索学习) 题型1.分组求和法:例1. 数列的通项公式是,求数列的前项和.(通项特点: ) 方法总结:练习:已知数列的首项,通项()为常数q p N n qn p a n n ,,2*∈+=,且成等差数列。
求(1)的值; (2)数列的前项和。
题型2.裂项求和法:例2.在数列中,12,12+⋅=-=n n n n a a b n a 又,求数列的前n 项和.(通项特点: ) 方法总结:练习:已知数列,且,求其前n 项和.题型3.错位相减法: 例3.求和:n nn S 2232221321⨯++⨯+⨯+⨯=(通项特点: ) 方法总结:练习:已知数列是等差数列,且 .(1)求数列的通项公式;(2)若)0,(≠∈⋅=x R x x a b nn n ,求数列的前n 项和.题型4.倒序求和法: 例4.设,计算(1)的值;(2) 求和()()()9.02.01.0f f f +++(通项特点: ) 方法总结:练习:已知函数:(1)求和⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛200220012002220021f f f ; (2)设数列满足,求此数列前1000项的和。
题型5.绝对值数列求和:例5.已知数列的通项是,数列的每一项都有,求数列的前项和(通项特点: ) 方法总结:相应练习.已知数列的前项和公式为,数列的每一项都有,求数列的前项和。
题型6.含有数列求和:(通项特点: ) 方法总结:例6. ()()1217531--+-+-+-=n S nn ,求.相应练习:已知数列的通项是,求二、回顾小结 三、课外作业A 组(基本题)1.数列的前n 项和为( A ) A. B.C. D.2.数列1, n++++++ 211,,3211,211的前n 项和为 ( B )A.B. C.D.3.设数列的前n 项和为,则等于( C )A. -xxB.-1002C. 1002D. xx4.若数列的通项公式为,则前n 项和为( B )A. B.C.D.5.等差数列的通项,则由所确定的数列的前n 项之和是( C ) A. B. C. .6.设数列 ,11,,321,211++++n n 的前n 项和为,则等于 ( C ) A.B. C. D.7.设数列1, ),221(,),221(),21(12-++++++n 的前n 项和为,求。
高考数学专题高考对本节内容的考查仍将以常用方法求和为主,尤其是错位相减法及裂项求和,题型延续解答题的形式.明年高考对数列求和仍是考查的重点.数列的应用以及数列与函数等的综合的命题趋势较强,复习时应予以关注.1.数列求和的方法技巧(1)公式法:直接应用等差、等比数列的求和公式求和.(2)错位相减法这种方法主要用于求数列{a n·b n}的前n项和,其中{a n}、{b n}分别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.数列的综合问题(1)等差数列与等比数列的综合.(2)数列与函数、方程、不等式、三角、解析几何等知识的综合.(3)增长率、分期付款、利润成本效益的增减等实际应用问题.数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读文解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推文予以解决.【误区警示】1.应用错位相减法求和时,注意项的对应.2.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n项和.高频考点一 由递推关系求通项 例1、(2018年全国III 卷)等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求. 【答案】(1)或(2)【解析】 (1)设的公比为,由题设得. 由已知得,解得(舍去),或.故或. (2)若,则.由得,此方程没有正整数解. 若,则.由得,解得,综上,.【变式探究】已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.【方法规律】求数列通项的常用方法1.归纳猜想法:已知数列的前几项,求数列的通项公式,可采用归纳猜想法.2.已知S n 与a n 的关系,利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2求a n .3.累加法:数列递推关系形如a n +1=a n +f (n ),其中数列{f (n )}前n 项和可求,这种类型的数列求通项公式时,常用累加法(叠加法).4.累乘法:数列递推关系形如a n +1=g (n )a n ,其中数列{g (n )}前n 项积可求,此数列求通项公式一般采用累乘法(叠乘法).5.构造法:(1)递推关系形如a n +1=pa n +q (p ,q 为常数)可化为a n +1+qp -1=p ⎝⎛⎭⎫a n +q p -1(p ≠1)的形式,利用⎩⎨⎧⎭⎬⎫a n +q p -1是以p 为公比的等比数列求解.(2)递推关系形如a n +1=pa n a n +p (p 为非零常数)可化为1a n +1-1a n =1p的形式.【变式探究】数列{a n }的前n 项和为S n ,且a 1=3,a n =2S n -1+3n (n ≥2),则该数列的通项公式为a n =________.解析:∵a n =2S n -1+3n ,∴a n -1=2S n -2+3n -1(n ≥3),两式相减得:a n -a n -1=2a n -1+2×3n -1,即a n =3a n-1+2×3n -1,∴a n 3n =a n -13n -1+23(n ≥3),又a 2=2S 1+32=2a 1+32=15,a 232=53,a 13+23=53,即a 232=a 13+23,∴数列⎩⎨⎧⎭⎬⎫a n 3n 是以1为首项,23为公差的等差数列,∴a n 3n =1+(n -1)×23,∴a n =(2n +1)3n -1.答案:(2n +1)3n -1高频考点二 分组转化法求和例2、S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和. 解:(1)设{a n }的公差为d , 据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. (2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. 【方法规律】1.若一个数列由若干个等差数列或等比数列组成,则求和时可用分组转化法分别求和再相加减. 形如a n =(-1)n f (n )类型,可采用相邻两项并项(分组)后,再分组求和. 2.分组求和中的分组策略 (1)根据等差、等比数列分组. (2)根据正号、负号分组.【变式探究】已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.高频考点三 错位相减法求和例3、【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ).【解析】(Ⅰ)设{}n a 的公比为q ,由题意知:.又0n a >,解得: 12,2a q ==, 所以2n n a =.(Ⅱ)由题意知:,又所以21n b n =+, 令nn nb c a =, 则212n nn c +=, 因此,又,两式相减得所以.【变式探究】已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式. (2)令c n =a n +n +1b n +n,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时, a n =S n -S n -1=6n +5.当n =1时,a 1=S 1=11=6n +5. 所以a n =6n +5.设数列{b n }的公差为d ,则a 1=2b 1+d =11,a 2=b 2+b 2+d =2b 1+3d =17,∴由⎩⎪⎨⎪⎧2b 1+d =112b 1+3d =17,解得b 1=4,d =3,所以b n =4+(n -1)×3=3n +1. (2)由(1)知,c n =n +n +1n +n=3(n +1)·2n +1.所以T n =c 1+c 2+…+c n=3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式相减得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n1-2-n +n +2=-3n ·2n +2. 所以T n =3n ·2n +2.【方法技巧】错位相减法的关注点1.适用题型:等差数列{a n }与等比数列{b n }对应项相乘({a n ·b n })型数列求和. 2.具体步骤:(1)求和时先乘以数列{b n }的公比; (2)把两个和的形式错位相减; (3)整理结果形式.【变式探究】已知数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,且有S n =1-a n (n ∈N *),点(a n ,b n )在直线y =nx 上.(1)求T n ; (1)由已知得.于是当{2,4}T =时,.又30r S =,故13030a =,即11a =. 所以数列{}n a 的通项公式为.(2)因为,,所以.因此,1r k S a +<.(3)下面分三种情况证明. ①若D 是C 的子集,则.②若C 是D 的子集,则.③若D 不是C 的子集,且C 不是D 的子集. 令,则E ≠∅,F ≠∅,EF =∅.于是,,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,l 为F 中的最大数,则.由(2)知,1E k S a +<,于是,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-,从而,故,所以,即.综合①②③得,.10.【2016高考山东文数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令求数列{}n c 的前n 项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ).【解析】(Ⅰ)由题意知当2≥n 时,,当1=n 时,1111==S a , 所以56+=n a n . 设数列{}n b 的公差为d ,由,即,可解得,所以13+=n b n .(Ⅱ)由(Ⅰ)知,又,得,,两式作差,得所以【2015江苏高考,11】数列}{n a 满足11=a ,且(*N n ∈),则数列}1{na 的前10项和为【答案】2011【解析】由题意得:所以【2015高考天津,文18】(本小题满分13分)已知数列{}n a 满足,且成等差数列.(I)求q 的值和{}n a 的通项公式;(II)设,求数列{}n b 的前n 项和.【答案】(I); (II).【解析】(Ⅰ) 由已知,有,即,所以,又因为1q ≠,故322a a ==,由31a a q =,得2q =,当时,,当时,,所以{}n a 的通项公式为(II) 由(I)得,设数列{}n b 的前n 项和为n S ,则,两式相减得,整文得所以数列{}n b 的前n 项和为.【2015高考四川,文16】设数列{}n a 的前n 项和,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求得成立的n 的最小值.【答案】(1)2n n a =;(2)10. 【解析】(1)由已知,有,即.从而.又因为123,1,a a a +成等差数列,即.所以,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =.【2015高考新课标1,文17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=错误!未找到引用源。
数列的求和问题1.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是方程2-b n +2n =0的两根,则b 10等于( )A .24B .32C .48D .64答案 D2.已知数列{a n }的前n 项和为S n =2n +1+m ,且a 1,a 4,a 5-2成等差数列,b n =a na n -1a n +1-1,数列{b n }的前n 项和为T n ,则满足T n >2 0172 018的最小正整数n 的值为( ) A .11 B .10 C .9 D .8答案 B解析 根据S n =2n +1+m 可以求得a n =⎩⎨⎧m +4,n =1,2n ,n ≥2, 所以有a 1=m +4,a 4=16,a 5=32,根据a 1,a 4,a 5-2成等差数列,可得m +4+32-2=32,从而求得m =-2,所以a 1=2满足a n =2n ,从而求得a n =2n (n ∈N *), 所以b n =a na n -1a n +1-1=2n2n -12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+17-115+…+12n -1-12n +1-1=1-12n +1-1, 令1-12n +1-1>2 0172 018,整理得2n +1>2 019,解得n ≥10.3.设S n 为数列{a n }的前n 项和,已知a 1=12,n +1a n +1=n a n+2n (n ∈N *),则S 100等于( ) A .2-492100 B .2-49299 C .2-512100 D .2-51299 答案 D解析 由n +1a n +1=n a n +2n ,得n +1a n +1-n a n=2n , 则n a n -n -1a n -1=2n -1,n -1a n -1-n -2a n -2=2n -2,…,2a 2-1a 1=21, 将各式相加得n a n -1a 1=21+22+…+2n -1=2n -2,又a 1=12,所以a n =n ·12n , 因此S 100=1×12+2×122+…+100×12100, 则12S 100=1×122+2×123+…+99×12100+100×12101, 两式相减得12S 100=12+122+123+…+12100-100×12101, 所以S 100=2-⎝ ⎛⎭⎪⎫1299-100·⎝ ⎛⎭⎪⎫12100=2-51299. 押题依据 数列的通项以及求和是高考重点考查的内容,也是《考试大纲》中明确提出的知识点,年年在考,年年有变,变的是试题的外壳,即在题设的条件上有变革,有创新,但在变中有不变性,即解答问题的常用方法有规律可循.答案 1解析 因为a n =n +22n n n +1=2n +1n 2n n n +1=12n -1n -12n n +1, 所以S n =⎝ ⎛⎭⎪⎫120×1-121×2+⎝ ⎛⎭⎪⎫121×2-122×3+…+⎣⎢⎡⎦⎥⎤12n -1n -12n n +1 =1-12n n +1,由于1-12n n +1<1, 所以M 的最小值为1.9.已知数列{a n },a 1=e(e 是自然对数的底数),a n +1=a 3n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =(2n -1)ln a n ,求数列{b n }的前n 项和T n .解 (1)由a 1=e ,a n +1=a 3n 知,a n >0,所以ln a n +1=3ln a n ,数列{}ln a n 是以1为首项,3为公比的等比数列,所以ln a n =3n -1,a n =e3n -1(n ∈N *).(2)由(1)得b n =(2n -1)ln a n =(2n -1)·3n -1,T n =1×30+3×31+5×32+…+(2n -1)×3n -1,①3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,②①-②,得-2T n =1+2(31+32+33+…+3n -1)-(2n -1)×3n=1+2×3-3n1-3-(2n -1)×3n =-2(n -1)×3n -2. 所以T n =(n -1)×3n +1(n ∈N *).10.在等比数列{a n }中,首项a 1=8,数列{b n }满足b n =log 2a n (n ∈N *),且b 1+b 2+b 3=15.(1)求数列{a n }的通项公式;(2)记数列{b n }的前n 项和为S n ,又设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 的前n 项和为T n ,求证:T n <34. (1)解 由b n =log 2a n 和b 1+b 2+b 3=15,得log 2(a 1a 2a 3)=15,∴a 1a 2a 3=215,设等比数列{a n }的公比为q ,∵a 1=8,∴a n =8q n -1,∴8·8q ·8q 2=215,解得q =4,∴a n =8·4n -1,即a n =22n +1(n ∈N *).(2)证明 由(1)得b n =2n +1,易知{b n }为等差数列,S n =3+5+…+(2n +1)=n 2+2n ,则1S n =1n n +2=12⎝ ⎛⎭⎪⎫1n -1n +2, T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2, ∴T n <34. 11.在公差不为0的等差数列{a n }中,a 22=a 3+a 6,且a 3为a 1与a 11的等比中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)n n ⎝ ⎛⎭⎪⎫a n -12⎝ ⎛⎭⎪⎫a n +1-12(n ∈N *),求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,∵a 22=a 3+a 6,∴(a 1+d )2=a 1+2d +a 1+5d ,①∵a 23=a 1·a 11,即(a 1+2d )2=a 1·(a 1+10d ),②∵d ≠0,由①②解得a 1=2,d =3.∴数列{a n }的通项公式为a n =3n -1(n ∈N *).(2)由题意知,b n =(-1)n n ⎝ ⎛⎭⎪⎫3n -32·⎝ ⎛⎭⎪⎫3n +32=(-1)n ·16·⎝⎛⎭⎪⎪⎫13n -32+13n +32 =(-1)n·19·⎝ ⎛⎭⎪⎫12n -1+12n +1 T n =19⎣⎢⎡ -⎝ ⎛⎭⎪⎫11+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+… ⎦⎥⎤1n⎝ ⎛⎭⎪⎫12n -1+12n +1=19⎣⎢⎡⎦⎥⎤-11n 12n +1. 12.数列{a n }的前n 项和S n 满足:S n =n 2,数列{b n }满足:①b 3=14;②b n >0;③2b 2n +1+b n +1b n -b 2n =0. (1)求数列{a n }与{b n }的通项公式;(2)设c n =a n b n ,求数列{c n }的前n 项和T n .押题依据 错位相减法求和是高考的重点和热点,本题先利用a n ,S n 的关系求a n ,也是高考出题的常见形式.解 (1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1(n ∈N *),又a 1=1满足a n =2n -1,∴a n =2n -1(n ∈N *).∵2b 2n +1+b n +1b n -b 2n =0,且b n >0,∴2b n +1=b n ,∴q =12,b 3=b 1q 2=14, ∴b 1=1,b n =⎝ ⎛⎭⎪⎫12n -1(n ∈N *). (2)由(1)得c n =(2n -1)⎝ ⎛⎭⎪⎫12n -1, T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -1)⎝ ⎛⎭⎪⎫12n -1, 12T n =1×12+3×⎝ ⎛⎭⎪⎫122+…+(2n -3)⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n , 两式相减,得12T n =1+2×12+2×⎝ ⎛⎭⎪⎫122+…+2×⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n =1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-⎝ ⎛⎭⎪⎫12n -1⎝ ⎛⎭⎪⎫32+n . ∴T n =6-⎝ ⎛⎭⎪⎫12n -1(2n +3)(n ∈N *).13.已知数列{a n }的前n 项和为S n ,满足S n =2a n -1(n ∈N *),数列{b n }满足nb n +1-(n +1)b n =n (n +1)(n ∈N *),且b 1=1,(1)证明数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n n 为等差数列,并求数列{a n }和{b n }的通项公式; (2)若c n =(-1)n -14n +13+2log 2a n 3+2log 2a n +1,求数列{c n }的前2n 项和T 2n ; (3)若d n =a n ·b n ,数列{}d n 的前n 项和为D n ,对任意的n ∈N *,都有D n ≤nS n -a ,求实数a 的取值范围.解 (1)由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1),得b n +1n +1-b n n =1,从而数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n n 为首项b 11=1,公差d =1的等差数列,所以b n n =n (n ∈N *),数列{b n }的通项公式为b n =n 2.当n =1时,S 1=2a 1-1=a 1,所以a 1=1.当n ≥2时,S n =2a n -1,S n -1=2a n -1-1,两式相减得a n =2a n -1,又a 1=1≠0,所以a na n -1=2, 从而数列{a n }为首项a 1=1,公比q =2的等比数列,从而数列{a n }的通项公式为a n =2n -1(n ∈N *).(3)由(1)得d n =a n b n =n ·2n -1,D n =1×1+2×2+3×22+…+(n -1)·2n -2+n ·2n -1,2D n =1×2+2×22+3×23+…+(n -1)·2n -1+n ·2n .两式相减得-D n =1+2+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n , 所以D n =(n -1)·2n +1,由(1)得S n =2a n -1=2n -1,因为对∀n ∈N *,都有D n ≤nS n -a , 即(n -1)·2n +1≤n ()2n -1-a 恒成立, 所以a ≤2n -n -1恒成立,记e n =2n -n -1,所以a ≤()e n min , 因为e n +1-e n =[]2n +1n +11-()2n -n -1=2n -1>0,从而数列{}e n 为递增数列, 所以当n =1时,e n 取最小值e 1=0,于是a ≤0.。
《高三数学总复习------数列求和》教学设计一、考纲展示熟练掌握等差、等比数列的前n 项和公式.二、备考指南1、数列求和主要考查公式法求和、分组求和、错位相减和裂项相消求和,特别是错位相减出现的机率较高.2、题型上以解答题为主.三、教学重难点:1、重点:公式法求和、分组求和、裂项相消求和。
2、难点:错位相减法求和。
四、教学过程:(一) 基础梳理:求数列的前n 项和的方法1.公式法求和(1)等差数列的前n 项和公式 S n =_____________=______________(2)等比数列的前n 项和公式 a .当q =1时,S n =na 1;b .当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q . n (a 1+a n )2 na 1+n (n -1)2d 2.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(二)课前热身设计意图:让学生练习回顾旧知,导入本节课复习。
(三)考点突破考点1 分组求和例1、 1.数列{(-1)n ·n }的前2 014项的和S 2 014为( )A .-2 014B .-1 007C .2 014D .1 007 2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ) A .120 B .100 C .75 D .70 3.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1 B.56C.16D.130 4.数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数为__________.5.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为________.(2013·长春市调研)已知等差数列{a n }满足:a 5=9,a 2+a 6=14. (1)求{a n }的通项公式; (2)若b n =a n +qa n (q >0),求数列{b n }的前n 项和S n .考点2 裂项相消法求和例2、考点3 错位相减法求和例3、设计意图:通过老师与学生的共同解答,全面复习巩固数列求和方法。
数列的求和问题 1.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是方程x 2-b n x +2n =0的两根,则b 10等于( )A .24B .32C .48D .64 答案 D2.已知数列{a n }的前n 项和为S n =2n +1+m ,且a 1,a 4,a 5-2成等差数列,b n =a n a n -1a n +1-1,数列{b n }的前n 项和为T n ,则满足T n >2 0172 018的最小正整数n 的值为( ) A .11 B .10 C .9 D .8答案 B解析 根据S n =2n +1+m 可以求得a n =⎩⎪⎨⎪⎧ m +4,n =1,2n ,n ≥2,所以有a 1=m +4,a 4=16,a 5=32,根据a 1,a 4,a 5-2成等差数列,可得m +4+32-2=32,从而求得m =-2,所以a 1=2满足a n =2n ,从而求得a n =2n (n ∈N *),所以b n =a n a n -1a n +1-1=2n 2n -12n +1-1 =12n -1-12n +1-1, 所以T n =1-13+13-17+17-115+…+12n -1-12n +1-1=1-12n +1-1, 令1-12n +1-1>2 0172 018,整理得2n +1>2 019, 解得n ≥10.3.设S n 为数列{a n }的前n 项和,已知a 1=12,n +1a n +1=n a n+2n (n ∈N *),则S 100等于( ) A .2-492100 B .2-49299 C .2-512100 D .2-51299 答案 D解析 由n +1a n +1=n a n +2n ,得n +1a n +1-n a n =2n , 则n a n -n -1a n -1=2n -1,n -1a n -1-n -2a n -2=2n -2,…,2a 2-1a 1=21, 将各式相加得n a n -1a 1=21+22+…+2n -1=2n -2,又a 1=12,所以a n =n ·12n , 因此S 100=1×12+2×122+…+100×12100, 则12S 100=1×122+2×123+…+99×12100+100×12101, 两式相减得12S 100=12+122+123+…+12100-100×12101, 所以S 100=2-⎝ ⎛⎭⎪⎫1299-100·⎝ ⎛⎭⎪⎫12100=2-51299. 押题依据 数列的通项以及求和是高考重点考查的内容,也是《考试大纲》中明确提出的知识点,年年在考,年年有变,变的是试题的外壳,即在题设的条件上有变革,有创新,但在变中有不变性,即解答问题的常用方法有规律可循.答案 1解析 因为a n =n +22n nn +1=2n +1-n 2n n n +1=12n -1n -12n n +1, 所以S n =⎝⎛⎭⎪⎫120×1-121×2+⎝ ⎛⎭⎪⎫121×2-122×3+…+⎣⎢⎡⎦⎥⎤12n -1n -12n n +1 =1-12n n +1, 由于1-12n n +1<1, 所以M 的最小值为1.9.已知数列{a n },a 1=e(e 是自然对数的底数),a n +1=a 3n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =(2n -1)ln a n ,求数列{b n }的前n 项和T n .解 (1)由a 1=e ,a n +1=a 3n 知,a n >0,所以ln a n +1=3ln a n ,数列{}ln a n 是以1为首项,3为公比的等比数列,所以ln a n =3n -1,a n =e3n -1(n ∈N *).(2)由(1)得b n =(2n -1)ln a n =(2n -1)·3n -1,T n =1×30+3×31+5×32+…+(2n -1)×3n -1,①3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n ,② ①-②,得-2T n =1+2(31+32+33+…+3n -1)-(2n -1)×3n =1+2×3-3n 1-3-(2n -1)×3n =-2(n -1)×3n -2. 所以T n =(n -1)×3n +1(n ∈N *).10.在等比数列{a n }中,首项a 1=8,数列{b n }满足b n =log 2a n (n ∈N *),且b 1+b 2+b 3=15.(1)求数列{a n }的通项公式;(2)记数列{b n }的前n 项和为S n ,又设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:T n <34. (1)解 由b n =log 2a n 和b 1+b 2+b 3=15,得log 2(a 1a 2a 3)=15,∴a 1a 2a 3=215,设等比数列{a n }的公比为q ,∵a 1=8,∴a n =8qn -1, ∴8·8q ·8q 2=215,解得q =4,∴a n =8·4n -1,即a n =22n +1(n ∈N *). (2)证明 由(1)得b n =2n +1,易知{b n }为等差数列,S n =3+5+…+(2n +1)=n 2+2n ,则1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2, T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2, ∴T n <34. 11.在公差不为0的等差数列{a n }中,a 22=a 3+a 6,且a 3为a 1与a 11的等比中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)n n⎝ ⎛⎭⎪⎫a n -12⎝ ⎛⎭⎪⎫a n +1-12(n ∈N *),求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d ,∵a 22=a 3+a 6,∴(a 1+d )2=a 1+2d +a 1+5d ,①∵a 23=a 1·a 11, 即(a 1+2d )2=a 1·(a 1+10d ),②∵d ≠0,由①②解得a 1=2,d =3.∴数列{a n }的通项公式为a n =3n -1(n ∈N *).(2)由题意知, b n =(-1)n n⎝ ⎛⎭⎪⎫3n -32·⎝ ⎛⎭⎪⎫3n +32=(-1)n ·16·⎝⎛⎭⎪⎪⎫13n -32+13n +32 =(-1)n ·19·⎝ ⎛⎭⎪⎫12n -1+12n +1 T n =19⎣⎢⎡ -⎝ ⎛⎭⎪⎫11+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…⎦⎥⎤+-1n ⎝ ⎛⎭⎪⎫12n -1+12n +1 =19⎣⎢⎡⎦⎥⎤-1+-1n 12n +1. 12.数列{a n }的前n 项和S n 满足:S n =n 2,数列{b n }满足:①b 3=14;②b n >0;③2b 2n +1+b n +1b n -b 2n =0. (1)求数列{a n }与{b n }的通项公式;(2)设c n =a n b n ,求数列{c n }的前n 项和T n .押题依据 错位相减法求和是高考的重点和热点,本题先利用a n ,S n 的关系求a n ,也是高考出题的常见形式. 解 (1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1(n ∈N *),又a 1=1满足a n =2n -1,∴a n =2n -1(n ∈N *).∵2b 2n +1+b n +1b n -b 2n =0,且b n >0,∴2b n +1=b n ,∴q =12,b 3=b 1q 2=14, ∴b 1=1,b n =⎝ ⎛⎭⎪⎫12n -1(n ∈N *).(2)由(1)得c n =(2n -1)⎝ ⎛⎭⎪⎫12n -1, T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -1)⎝ ⎛⎭⎪⎫12n -1, 12T n =1×12+3×⎝ ⎛⎭⎪⎫122+…+(2n -3)⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n , 两式相减,得12T n =1+2×12+2×⎝ ⎛⎭⎪⎫122+…+2×⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n =1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-⎝ ⎛⎭⎪⎫12n -1⎝ ⎛⎭⎪⎫32+n . ∴T n =6-⎝ ⎛⎭⎪⎫12n -1(2n +3)(n ∈N *). 13.已知数列{a n }的前n 项和为S n ,满足S n =2a n -1(n ∈N *),数列{b n }满足nb n +1-(n +1)b n =n (n +1)(n ∈N *),且b 1=1,(1)证明数列⎩⎨⎧⎭⎬⎫b n n 为等差数列,并求数列{a n }和{b n }的通项公式; (2)若c n =(-1)n -14n +13+2log 2a n 3+2log 2a n +1,求数列{c n }的前2n 项和T 2n ;(3)若d n =a n ·b n ,数列{}d n 的前n 项和为D n ,对任意的n ∈N *,都有D n ≤nS n -a ,求实数a 的取值范围.解 (1)由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b n n=1, 从而数列⎩⎨⎧⎭⎬⎫b n n 为首项b 11=1,公差d =1的等差数列, 所以b n n =n (n ∈N *),数列{b n }的通项公式为b n =n 2.当n =1时,S 1=2a 1-1=a 1,所以a 1=1.当n ≥2时,S n =2a n -1,S n -1=2a n -1-1,两式相减得a n =2a n -1,又a 1=1≠0,所以a n a n -1=2, 从而数列{a n }为首项a 1=1,公比q =2的等比数列,从而数列{a n }的通项公式为a n =2n -1(n ∈N *).(3)由(1)得d n =a n b n =n ·2n -1,D n =1×1+2×2+3×22+…+(n -1)·2n -2+n ·2n -1, 2D n =1×2+2×22+3×23+…+(n -1)·2n -1+n ·2n . 两式相减得-D n =1+2+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n , 所以D n =(n -1)·2n +1,由(1)得S n =2a n -1=2n-1,因为对∀n ∈N *,都有D n ≤nS n -a ,即(n -1)·2n +1≤n ()2n -1-a 恒成立, 所以a ≤2n-n -1恒成立,记e n =2n -n -1,所以a ≤()e n min , 因为e n +1-e n =[]2n +1-n +1-1-()2n -n -1=2n -1>0,从而数列{}e n 为递增数列, 所以当n =1时,e n 取最小值e 1=0,于是a ≤0.。
数列的综合问题【年高考考纲解读】.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式..以等差数列、等比数列为背景,利用函数观点探求参数的值或范围..将数列与实际应用问题相结合,考查数学建模和数学应用能力.【重点、难点剖析】一、利用,的关系式求.数列{}中,与的关系=(\\(,=,--,≥.)).求数列通项的常用方法()公式法:利用等差(比)数列求通项公式.()在已知数列{}中,满足+-=(),且()+()+…+()可求,则可用累加法求数列的通项.()在已知数列{}中,满足=(),且()·()·…·()可求,则可用累乘法求数列的通项.()将递推关系进行变换,转化为常见数列(等差、等比数列).二、数列与函数、不等式的综合问题数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.三、数列的实际应用用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列是等差模型还是等比模型,它的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题的结果.【高考题型示例】题型一、利用,的关系式求例、已知等差数列{}中,=,+=,数列{}中,=,其前项和满足:+=+(∈*).()求数列{},{}的通项公式;()设=,求数列{}的前项和.解()∵=,+=,∴+++=,∴=,∴=(∈*).∵+=+(∈*),①∴=-+(∈*,≥).②由①-②,得+-=--=(∈*,≥),∴+=(∈*,≥).∵=,=,∴{}是首项为,公比为的等比数列,∴=(∈*).【感悟提升】给出与的递推关系,求,常用思路:一是利用--=(≥)转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.【变式探究】已知数列{}的前项和满足:=+.()求数列{}的通项公式;()若>,数列()))的前项和为,试问当为何值时,最小?并求出最小值.解()由已知=+,①可得当=时,=+,解得=或=,当≥时,由已知可得-=+-,②①-②得=.若=,则=,此时数列{}的通项公式为=.若=,则=,化简得=-,即此时数列{}是以为首项,为公比的等比数列,故=(∈*).综上所述,数列{}的通项公式为=或=.。
高中数学数列的求和教案
一、教学目标
1. 知识与技能:了解数列的基本概念与性质,掌握等差数列、等比数列的求和公式,能够熟练计算数列的和。
2. 过程与方法:通过理论学习和实际练习,培养学生的数学思维能力和解决问题的方法。
3. 情感态度:培养学生对数学的兴趣,激发学生学习数学的积极性。
二、教学重点和难点
1. 等差数列、等比数列的求和公式的掌握和应用。
2. 解题方法的灵活应用和实际问题的转化。
三、教学内容
1. 数列的基本概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
四、教学过程
1. 导入:通过提出一个生活中的实际问题,引出数列的概念和重要性。
2. 讲解:介绍数列的基本概念和性质,重点讲解等差数列、等比数列的求和公式。
3. 实例讲解:通过几个具体的例题,讲解如何应用求和公式计算数列的和。
4. 练习:学生独立或分组完成一些练习题,巩固所学知识。
5. 拓展:带领学生思考更复杂的数列求和问题,引导学生拓展思维。
6. 讲评:对学生的练习情况进行总结和讲评,指导学生做好巩固练习。
五、板书设计
1. 数列的概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
六、教学反思
通过本节课的教学,学生能够较好地掌握数列求和的基本方法和技巧,但是在应用中还存在一定的困难,需要通过更多的实践和练习加以巩固。
下节课可以通过更复杂的案例实践来提高学生的解题能力。
2019-2020年高考数学重点难点讲解数列综合应用教案旧人教版纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.●难点磁场(★★★★★)已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.(1)求y=f(x)的表达式;(2)若任意实数x都满足等式f(x)·g(x)+anx+bn=xn+1[g(x)]为多项式,n∈N*),试用t表示an和bn;(3)设圆Cn的方程为(x-an)2+(y-bn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn、Sn.●案例探究[例1]从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型,属★★★★★级题目.知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.错解分析:(1)问an、bn实际上是两个数列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.解:(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n -1万元,所以,n年内的总投入为an=800+800×(1-)+…+800×(1-)n-1=800×(1-)k-1=4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为bn=400+400×(1+)+…+400×(1+)k-1=400×()k-1.=1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此bn-an>0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少经过5年,旅游业的总收入才能超过总投入.[例2]已知Sn=1++…+,(n∈N*)设f(n)=S2n+1-Sn+1,试确定实数m的取值范围,使得对于一切大于1的自然数n,不等式:f(n)>[logm(m-1)]2-[log(m-1)m]2恒成立.命题意图:本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力.属★★★★★级题目.知识依托:本题把函数、不等式恒成立等问题组合在一起,构思巧妙.错解分析:本题学生很容易求f(n)的和,但由于无法求和,故对不等式难以处理.技巧与方法:解决本题的关键是把f(n)(n ∈N*)看作是n 的函数,此时不等式的恒成立就转化为:函数f(n)的最小值大于[logm(m -1)]2-[log(m -1)m ]2.解:∵Sn=1++…+.(n ∈N*)0)421321()421221(42232122121321221)()1(1213121)(112>+-+++-+=+-+++=+-+++=-+++++++=-=∴++n n n n n n n n n n n f n f n n n S S n f n n 又∴f(n+1)>f(n)∴f(n)是关于n 的增函数∴f(n) min=f(2)=∴要使一切大于1的自然数n ,不等式f(n)>[logm(m -1)]2-[log(m -1)m ]2恒成立只要>[logm(m -1)]2-[log(m -1)m ]2成立即可由得m >1且m ≠2此时设[logm(m -1)]2=t 则t >0 于是⎪⎩⎪⎨⎧>->02011209t t 解得0<t <1由此得0<[logm(m -1)]2<1解得m >且m ≠2.●锦囊妙计1.解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题.2.纵观近几年高考应用题看,解决一个应用题,重点过三关:(1)事理关:需要读懂题意,明确问题的实际背景,即需要一定的阅读能力.(2)文理关:需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系.(3)事理关:在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化.构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力.●歼灭难点训练一、选择题1.(★★★★★)已知二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,…,n ,…时,其抛物线在x 轴上截得的线段长依次为d1,d2,…,dn,…,则 (d1+d2+…+dn)的值是( )A.1B.2C.3D.4二、填空题2.(★★★★★)在直角坐标系中,O 是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是_________.3.(★★★★)从盛满a升酒精的容器里倒出b升,然后再用水加满,再倒出b升,再用水加满;这样倒了n次,则容器中有纯酒精_________升.4.(★★★★★)据2000年3月5日九届人大五次会议《政府工作报告》:“xx年国内生产总值达到95933亿元,比上年增长7.3%,”如果“十·五”期间(xx年~xx年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为_________亿元.三、解答题5.(★★★★★)已知数列{an}满足条件:a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n=1,2,…).(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;(2)求bn和,其中Sn=b1+b2+…+bn;(3)设r=219.2-1,q=,求数列{}的最大项和最小项的值.6.(★★★★★)某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.(1)设ak(1≤k≤n)为第k位职工所得奖金金额,试求a2,a3,并用k、n和b表示ak(不必证明);(2)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求Pn(b).7.(★★★★)据有关资料,1995年我国工业废弃垃圾达到7.4×108吨,占地562.4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问:(1)xx年回收废旧物资多少吨?(2)从1996年至xx年可节约开采矿石多少吨(精确到万吨)?(3)从1996年至xx年可节约多少平方公里土地?8.(★★★★★)已知点的序列An(xn,0),n∈N,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,…,An是线段An-2An-1的中点,….(1)写出xn与xn-1、xn-2之间关系式(n≥3);(2)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明;(3)求xn.参考答案难点磁场解:(1)设f(x)=a(x-)2-,由f(1)=0得a=1.∴f(x)=x2-(t+2)x+t+1.(2)将f(x)=(x-1)[x-(t+1)]代入已知得:(x-1)[x-(t+1)]g(x)+anx+bn=xn+1,上式对任意的x∈R都成立,取x=1和x=t+1分别代入上式得:且t≠0,解得an=[(t+1)n+1-1],bn=[1-(t+1n)(3)由于圆的方程为(x-an)2+(y-bn)2=rn2,又由(2)知an+bn=1,故圆Cn的圆心On在直线x+y=1上,又圆Cn与圆Cn+1相切,故有rn+rn+1=|an+1-an|=(t+1)n+1设{rn}的公比为q,则①②②÷①得q==t+1,代入①得rn= ∴Sn=π(r12+r22+…+rn2)=[(t+1)2n -1]歼灭难点训练一、1.解析:当a=n 时y=n(n+1)x2-(2n+1)x+1由|x1-x2|=,得dn=,∴d1+d2+…+dn1)111(lim )(lim 1111113121211)1(132121121=+-=+++∴+-=+-++-+-=+++⋅+⋅=∞→∞→n d d d n n n n n n n n答案:A二、2.解析:由1,x1,x2,4依次成等差数列得:2x1=x2+1,x1+x2=5解得x1=2,x2=3.又由1,y1,y2,8依次成等比数列,得y12=y2,y1y2=8,解得y1=2,y2=4,∴P1(2,2),P2(3,4).∴=(3,4) ∴,5||,22,14862121===+=OP OP OP 110252221sin ||||21102sin ,102722514||||cos 21212121212121=⨯⨯⨯==∴=∴=⨯=∴∆OP P OP S OP P OP OP OP P P OP 答案:13.解析:第一次容器中有纯酒精a -b 即a(1-)升,第二次有纯酒精a(1-)-,即a(1-)2升,故第n 次有纯酒精a(1-)n 升.答案:a(1-)n4.解析:从xx 年到xx 年每年的国内生产总值构成以95933为首项,以7.3%为公比的等比数列,∴a5=95933(1+7.3%)4≈1xx0(亿元).答案:1xx0三、5.解:(1)由题意得rqn -1+rqn >rqn+1.由题设r >0,q >0,故从上式可得:q2-q -1<0,解得<q <,因q >0,故0<q <;(2)∵0,212212212221212121≠=++=++=∴==---+++++++q a a q a q a a a a a b b q a a a a a a n n n n n n n n n n n n n n n n .b1=1+r ≠0,所以{bn}是首项为1+r ,公比为q 的等比数列,从而bn=(1+r)qn-1.当q=1时,Sn=n(1+r),1)1(),2()3()1( ,0)10( ,111lim ,0)1)(1(1lim 1lim ,1)1)(1(,1;11)1)(1(1lim 1lim ,1)1)(1(,10;0)1(1lim 1lim -∞→∞→∞→∞→∞→∞→∞→+=⎪⎩⎪⎨⎧≥<<+-==-+-=--+=>+-=-+-=--+=<<=+=n n n n n n n n n n n n n n n n n n n q r b q q r q S q r q S qq r S q rq q r q S qq r S q r n S 有由所以时当时当.2.2011log )1)(1(log log )1(log ])1[(log ])1[(log log log 2222122212-+=-+++=++=-+n q n r q n r q r q r b b n n n n,从上式可知,当n -20.2>0,即n ≥21(n ∈N*)时,Cn 随n 的增大而减小,故1<Cn ≤C21=1+=2.25 ①当n -20.2<0,即n ≤20(n ∈N*)时,Cn 也随n 的增大而减小,故1>Cn ≥C20=1+=-4 ②综合①②两式知,对任意的自然数n 有C20≤Cn ≤C21,故{Cn}的最大项C21=2.25,最小项C20=-4.6.解:(1)第1位职工的奖金a1=,第2位职工的奖金a2=(1-)b ,第3位职工的奖金a3=(1-)2b ,…,第k 位职工的奖金ak= (1-)k -1b;(2)ak -ak+1=(1-)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3)设fk(b)表示奖金发给第k 位职工后所剩余数,则f1(b)=(1-)b,f2(b)=(1-)2b,…,fk(b)=(1-)kb.得Pn(b)=fn(b)=(1-)nb,故.7.解:设an 表示第n 年的废旧物资回收量,Sn 表示前n 年废旧物资回收总量,则数列{an}是以10为首项,1+20%为公比的等比数列.(1)a6=10(1+20%)5=10×1.25=24.8832≈25(万吨) (2)S6=2.016.1101%)201(]1%)201[(1066-⨯=-+-+=99.2992≈99.3(万吨) ∴从1996年到xx 年共节约开采矿石20×99.3≈1986(万吨)(3)由于从1996年到xx 年共减少工业废弃垃圾4×99.3=397.2(万吨),∴从1996年到xx 年共节约:≈3 平方公里.8.解:(1)当n ≥3时,xn=;a a x x x x x x x a a x x x x x x x a a x x a 41)21(21)(212,21)(212,)2(2332334212212232121=--=--=-+=-=-=--=-+=-==-=由此推测an=(-)n-1a(n ∈N)证法一:因为a1=a >0,且1111121)(2122----+-=-=-=-+=-=n n n n n n n n n n n a x x x x x x x x x a (n ≥2)所以an=(-)n-1a.证法二:用数学归纳法证明:(ⅰ)当n=1时,a1=x2-x1=a=(-)0a,公式成立;(ⅱ)假设当n=k 时,公式成立,即ak=(-)k -1a 成立.那么当n=k+1时,ak+1=xk+2-xk+1=k k k k k k a x x x x x 21)(212111-=--=-++++ .)21()21(21111公式仍成立a a )(k k -+--=--=据(ⅰ)(ⅱ)可知,对任意n ∈N ,公式an=(-)n-1a 成立.(3)当n ≥3时,有xn=(xn -xn -1)+(xn -1-xn -2)+…+(x2-x1)+x1=an -1+an -2+…+a1,由(2)知{an}是公比为-的等比数列,所以a.2019-2020年高考数学重点难点讲解 直线方程及其应用教案 旧人教版 直线是最简单的几何图形,是解析几何最基础的部分,本章的基本概念;基本公式;直线方程的各种形式以及两直线平行、垂直、重合的判定都是解析几何重要的基础内容.应达到熟练掌握、灵活运用的程度,线性规划是直线方程一个方面的应用,属教材新增内容,高考中单纯的直线方程问题不难,但将直线方程与其他知识综合的问题是学生比较棘手的. ●难点磁场(★★★★★)已知|a|<1,|b|<1,|c|<1,求证:abc+2>a+b+c.●案例探究[例1]某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α(90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a >b).问学生距离镜框下缘多远看画的效果最佳?命题意图:本题是一个非常实际的数学问题,它不仅考查了直线的有关概念以及对三角知识的综合运用,而且更重要的是考查了把实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:三角函数的定义,两点连线的斜率公式,不等式法求最值.错解分析:解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二是把问题进一步转化成求tanACB 的最大值.如果坐标系选择不当,或选择求sinACB 的最大值.都将使问题变得复杂起来.技巧与方法:欲使看画的效果最佳,应使∠ACB 取最大值,欲求角的最值,又需求角的一个三角函数值.解:建立如图所示的直角坐标系,AO 为镜框边,AB 为画的宽度,O为下边缘上的一点,在x 轴的正半轴上找一点C(x,0)(x >0),欲使看画的效果最佳,应使∠ACB 取得最大值.由三角函数的定义知:A 、B 两点坐标分别为(acos α,asin α)、(bcos α,bsin α),于是直线AC 、BC 的斜率分别为: kAC=tanxCA=,.cos sin tan x b b xCB k BC -==αα于是tanACB=ααααcos )(sin )(cos )(sin )(2⋅+-+⋅-=++-⋅-=b a x x ab b a x x b a ab x b a由于∠ACB 为锐角,且x >0,则tanACB ≤,当且仅当=x ,即x=时,等号成立,此时∠ACB 取最大值,对应的点为C(,0),因此,学生距离镜框下缘 cm 处时,视角最大,即看画效果最佳. [例2]预算用xx 元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行?命题意图:利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,本题主要考查找出约束条件与目标函数、准确地描画可行域,再利用图形直观求得满足题设的最优解,属★★★★★级题目.知识依托:约束条件,目标函数,可行域,最优解.错解分析:解题中应当注意到问题中的桌、椅张数应是自然数这个隐含条件,若从图形直观上得出的最优解不满足题设时,应作出相应地调整,直至满足题设.技巧与方法:先设出桌、椅的变数后,目标函数即为这两个变数之和,再由此在可行域内求出最优解.解:设桌椅分别买x,y 张,把所给的条件表示成不等式组,即约束条件 为⎪⎪⎩⎪⎪⎨⎧≥≥≤≥≤+0,05.120002050y x x y x y y x 由⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==+72007200,20002050y x x y y x 解得 ∴A 点的坐标为(,) 由⎪⎩⎪⎨⎧==⎩⎨⎧==+27525,5.120002050y x x y y x 解得 ∴B 点的坐标为(25,)所以满足约束条件的可行域是以A(,),B(25,),O(0,0)为顶点的三角形区域(如右图)由图形直观可知,目标函数z=x+y 在可行域内的最优解为(25,),但注意到x ∈N,y ∈N*,故取y=37.故有买桌子25张,椅子37张是最好选择.[例3]抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p >0).一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P ,折射后又射向抛物线上的点Q ,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l :2x -4y -17=0上的点N ,再折射后又射回点M(如下图所示)(1)设P 、Q 两点坐标分别为(x1,y1)、(x2,y2),证明:y1·y2=-p2;(2)求抛物线的方程;(3)试判断在抛物线上是否存在一点,使该点与点M 关于PN 所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.命题意图:对称问题是直线方程的又一个重要应用.本题是一道与物理中的光学知识相结合的综合性题目,考查了学生理解问题、分析问题、解决问题的能力,属★★★★★★级题目. 知识依托:韦达定理,点关于直线对称,直线关于直线对称,直线的点斜式方程,两点式方程.错解分析:在证明第(1)问题,注意讨论直线PQ 的斜率不存在时.技巧与方法:点关于直线对称是解决第(2)、第(3)问的关键.(1)证明:由抛物线的光学性质及题意知光线PQ 必过抛物线的焦点F(,0),设直线PQ 的方程为y=k(x -) ①由①式得x=y+,将其代入抛物线方程y2=2px 中,整理,得y2-y -p2=0,由韦达定理,y1y2=-p2.当直线PQ 的斜率角为90°时,将x=代入抛物线方程,得y=±p,同样得到y1·y2= -p2.(2)解:因为光线QN 经直线l 反射后又射向M 点,所以直线MN 与直线QN 关于直线l 对称,设点M(,4)关于l 的对称点为M ′(x ′,y ′),则⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+'⨯-+'⨯-=⨯-'-'017244244121214414y x x y 解得⎪⎩⎪⎨⎧-='='1451y x直线QN 的方程为y=-1,Q 点的纵坐标y2=-1,由题设P 点的纵坐标y1=4,且由(1)知:y1·y2=-p2,则4·(-1)=-p2,得p=2,故所求抛物线方程为y2=4x.(3)解:将y=4代入y2=4x,得x=4,故P 点坐标为(4,4)将y=-1代入直线l 的方程为2x -4y -17=0,得x=,故N 点坐标为(,-1)由P 、N 两点坐标得直线PN 的方程为2x+y -12=0,设M 点关于直线NP 的对称点M1(x1,y1)⎪⎩⎪⎨⎧-==⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++⨯-=-⨯--14101224244121)2(4414111111y x y x x y 解得则又M1(,-1)的坐标是抛物线方程y2=4x 的解,故抛物线上存在一点(,-1)与点M 关于直线PN 对称.●锦囊妙计1.对直线方程中的基本概念,要重点掌握好直线方程的特征值(主要指斜率、截距)等问题;直线平行和垂直的条件;与距离有关的问题等.2.对称问题是直线方程的一个重要应用,中学里面所涉及到的对称一般都可转化为点关于点或点关于直线的对称.中点坐标公式和两条直线垂直的条件是解决对称问题的重要工具.3.线性规划是直线方程的又一应用.线性规划中的可行域,实际上是二元一次不等式(组)表示的平面区域.求线性目标函数z=ax+by 的最大值或最小值时,设t=ax+by,则此直线往右(或左)平移时,t 值随之增大(或减小),要会在可行域中确定最优解.4.由于一次函数的图象是一条直线,因此有关函数、数列、不等式、复数等代数问题往往借助直线方程进行,考查学生的综合能力及创新能力.●歼灭难点训练一、选择题1.(★★★★★)设M=,则M 与N 的大小关系为( )A.M >NB.M=NC.M <ND.无法判断2.(★★★★★)三边均为整数且最大边的长为11的三角形的个数为( )A.15B.30C.36D.以上都不对二、填空题3.(★★★★)直线2x -y -4=0上有一点P ,它与两定点A(4,-1),B(3,4)的距离之差最大,则P 点坐标是_________.4.(★★★★)自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x2+y2-4x -4y+7=0相切,则光线l 所在直线方程为_________.5.(★★★★)函数f(θ)=的最大值为_________,最小值为_________.6.(★★★★★)设不等式2x -1>m(x2-1)对一切满足|m|≤2的值均成立,则x 的范围为_________.三、解答题7.(★★★★★)已知过原点O 的一条直线与函数y=log8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y=log2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一直线上.(2)当BC 平行于x 轴时,求点A 的坐标.8.(★★★★★)设数列{an}的前n 项和Sn=na+n(n -1)b ,(n=1,2,…),a 、b 是常数且b ≠0.(1)证明:{an}是等差数列.(2)证明:以(an,-1)为坐标的点Pn(n=1,2,…)都落在同一条直线上,并写出此直线的方程.(3)设a=1,b=,C 是以(r,r)为圆心,r 为半径的圆(r >0),求使得点P1、P2、P3都落在圆C 外时,r 的取值范围.参考答案难点磁场证明:设线段的方程为y=f(x)=(bc -1)x+2-b -c,其中|b|<1,|c|<1,|x|<1,且-1<b <1. ∵f(-1)=1-bc+2-b -c=(1-bc)+(1-b)+(1-c)>0f(1)=bc -1+2-b -c=(1-b)(1-c)>0∴线段y=(bc -1)x+2-b -c(-1<x <1)在x 轴上方,这就是说,当|a|<1,|b|<1,|c|<1时,恒有abc+2>a+b+c.歼灭难点训练一、1.解析:将问题转化为比较A(-1,-1)与B(10xx ,10xx )及C(10xx ,10xx )连线的斜率大小,因为B 、C 两点的直线方程为y=x ,点A 在直线的下方,∴kAB >kAC,即M >N. 答案:A2.解析:设三角形的另外两边长为x,y,则⎪⎩⎪⎨⎧>+≤<≤<11110110y x y x点(x,y )应在如右图所示区域内当x=1时,y=11;当x=2时,y=10,11;当x=3时,y=9,10,11;当x=4时,y=8,9,10,11;当x=5时,y=7,8,9,10,11.以上共有15个,x,y 对调又有15个,再加上(6,6),(7,7),(8,8),(9,9),(10,10)、(11,11)六组,所以共有36个.答案:C二、3.解析:找A 关于l 的对称点A ′,A ′B 与直线l 的交点即为所求的P 点.答案:P(5,6)4.解析:光线l 所在的直线与圆x2+y2-4x -4y+7=0关于x 轴对称的圆相切.答案:3x+4y -3=0或4x+3y+3=05.解析:f(θ)=表示两点(cos θ,sin θ)与(2,1)连线的斜率.答案: 06.解析:原不等式变为(x2-1)m+(1-2x)<0,构造线段f(m)=(x2-1)m+1-2x,-2≤m ≤2,则f(-2)<0,且f(2)<0.答案:三、7.(1)证明:设A 、B 的横坐标分别为x1、x2,由题设知x1>1,x2>1,点A(x1,log8x1),B(x2,log8x2).因为A 、B 在过点O 的直线上,所以,又点C 、D 的坐标分别为(x1,log2x1)、(x2,log2x2). 由于log2x1=3log8x1,log2x2=3log8x2,则228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====由此得kOC=kOD,即O 、C 、D 在同一直线上.(2)解:由BC 平行于x 轴,有log2x1=log8x2,又log2x1=3log8x1∴x2=x13将其代入,得x13log8x1=3x1log8x1,由于x1>1知log8x1≠0,故x13=3x1x2=,于是A(,log8).9.(1)证明:由条件,得a1=S1=a,当n ≥2时,有an=Sn -Sn -1=[na+n(n -1)b ]-[(n -1)a+(n -1)(n -2)b ]=a+2(n -1)b.因此,当n ≥2时,有an -an -1=[a+2(n -1)b ]-[a+2(n -2)b ]=2b.所以{an}是以a 为首项,2b 为公差的等差数列.(2)证明:∵b ≠0,对于n ≥2,有21)1(2)1()1(2)1()11()1(11=--=--+--+=----b n b n a b n a a a b n n na a a S n S n n ∴所有的点Pn(an,-1)(n=1,2,…)都落在通过P1(a,a -1)且以为斜率的直线上.此直线方程为y -(a -1)= (x -a),即x -2y+a -2=0.(3)解:当a=1,b=时,Pn 的坐标为(n,),使P1(1,0)、P2(2, )、P3(3,1)都落在圆C 外的条件是⎪⎪⎩⎪⎪⎨⎧>-+->-+->+-222222222)1()3()21()1()1(r r r r r r r r r ⎪⎪⎩⎪⎪⎨⎧>+->+->-010*******)1(222r r r r r 即由不等式①,得r ≠1由不等式②,得r <-或r >+由不等式③,得r <4-或r >4+再注意到r >0,1<-<4-=+<4+故使P1、P2、P3都落在圆C 外时,r 的取值范围是(0,1)∪(1,-)∪(4+,+∞) ① ② ③。
数列求和【考点梳理】1.公式法(1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d ;(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形:①1n n +=1n -1n +1; ②1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n . 4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.5.倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.2例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.【考点突破】考点一、公式法求和【例1】已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.[解析] (1)设{a n }的公差为d ,由a 1=1,a 2+a 4=10得1+d +1+3d =10,所以d =2,所以a n =a 1+(n -1)d =2n -1.(2)由(1)知a 5=9.设{b n }的公比为q ,由b 1=1,b 2·b 4=a 5得qq 3=9,所以q 2=3,所以{b 2n -1}是以b 1=1为首项,q ′=q 2=3为公比的等比数列,所以b 1+b 3+b 5+…+b 2n -1=1·(1-3n )1-3=3n -12. 【类题通法】1.数列求和应从通项入手,若无通项,则先求通项.2.通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.【对点训练】已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.[解析] (1)设{a n }公差为d ,{b n }公比为q ,由题意得⎩⎪⎨⎪⎧-1+d +q =2,-1+2d +q 2=5,解得⎩⎪⎨⎪⎧d =1,q =2或⎩⎪⎨⎪⎧d =3,q =0(舍去), 故{b n }的通项公式为b n =2n -1.(2)由已知得⎩⎪⎨⎪⎧-1+d +q =2,1+q +q 2=21,解得⎩⎪⎨⎪⎧q =4,d =-1或⎩⎪⎨⎪⎧q =-5,d =8.3∴当q =4,d =-1时,S 3=-6;当q =-5,d =8时,S 3=21.考点二、分组转化求和【例2】已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.[解析] (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 【类题通法】1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【对点训练】已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.4[解析] (1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27,所以b n =3n -1(n =1,2,3,…).设等差数列{a n }的公差为d .因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1(n =1,2,3,…).(2)由(1)知a n =2n -1,b n =3n -1.因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n +2n -2+1-3n 1-3=n 2+3n-12.考点三、裂项相消法求和【例3】已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.[解析] (1)设等差数列{a n }的首项为a 1,公差为d .由已知得⎩⎪⎨⎪⎧ 2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧ a 1=1,d =2,所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)b n =1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.【类题通法】5 1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【对点训练】设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n . [解析] (1)设数列{a n }的首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3, 解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-12⎝ ⎛⎭⎪⎫1n +1+1n +2. 考点四、错位相减法求和【例4】已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,且a 2=3,a 3=5. (1)求数列{a n }的通项公式;(2)设b n =a n ·3n ,求数列{b n }的前n 项和T n .[解析](1)由题意,得S n n=a 1+n -1,即S n =n (a 1+n -1),所以a 1+a 2=2(a 1+1),a 1+a 2+a 3=3(a 1+2),且a 2=3,a 3=5.6解得a 1=1,所以S n =n 2,所以当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,n =1时也满足. 故a n =2n -1.(2)由(1)得b n =(2n -1)·3n ,所以T n =1×3+3×32+…+(2n -1)·3n , 则3T n =1×32+3×33+…+(2n -1)·3n +1. ∴T n -3T n =3+2×(32+33+…+3n )-(2n -1)·3n +1, 则-2T n =3+2×32-3n ×31-3-(2n -1)·3n +1=3n +1-6+(1-2n )·3n +1 =(2-2n )·3n +1-6,故T n =(n -1)·3n +1+3.【类题通法】 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和.2.在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.【对点训练】已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=15.(1)求{a n }的通项公式;(2)设b n =2n n a a ,求数列{b n }的前n 项和T n . [解析] (1)设等差数列{a n }的公差为d ,首项为a 1. ∵S 3=6,S 5=15,∴⎩⎪⎨⎪⎧ 3a 1+12-d =6,5a 1+12-d =15,即⎩⎪⎨⎪⎧ a 1+d =2,a 1+2d =3,解得⎩⎪⎨⎪⎧ a 1=1,d =1.7 ∴{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×1=n .(2)由(1)得b n =2n na a =n2n , ∴T n =12+222+323+…+n -12n -1+n 2n ,① ①式两边同乘12, 得12T n =122+223+324+…+n -12n +n 2n +1,② ①-②得12T n =12+122+123+…+12n -n 2n +1 =12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n2n +1,∴T n =2-12n -1-n2n .。
高考数列求和教案教案标题:高考数列求和教案教学目标:1. 理解数列的概念和性质;2. 掌握常见数列的通项公式和求和公式;3. 能够应用数列求和的知识解决高考数学题目。
教学重点:1. 数列的概念和性质;2. 常见数列的通项公式和求和公式;3. 数列求和在高考数学中的应用。
教学难点:1. 掌握数列求和的方法和技巧;2. 运用数列求和解决高考数学题目。
教学准备:1. 教师准备:投影仪、教学PPT、白板、黑板、教材、练习题等;2. 学生准备:教材、作业本、练习题等。
教学过程:一、导入(5分钟)1. 利用教学PPT或白板,回顾数列的概念和常见数列的例子,引起学生对数列求和的兴趣;2. 提出高考数列求和的重要性和应用,激发学生学习的积极性。
二、知识讲解(15分钟)1. 介绍常见数列的通项公式和求和公式,如等差数列、等比数列等;2. 解释数列求和的基本思路和方法,引导学生理解数列求和的意义;3. 通过具体的例子,讲解数列求和的步骤和技巧。
三、示范演练(20分钟)1. 在黑板或教学PPT上呈现一些高考数列求和的题目,逐步引导学生解题思路;2. 选择一些典型的题目进行详细讲解,包括求等差数列和等比数列的前n项和、求等差数列和等比数列的无穷项和等;3. 鼓励学生积极参与,提出解题思路和方法。
四、合作探究(15分钟)1. 将学生分成小组,让他们合作解决一些数列求和的问题;2. 每个小组选择一个代表,向全班展示他们的解题思路和答案;3. 教师引导学生互相讨论,分享解题方法和答案,共同提高。
五、巩固练习(15分钟)1. 发放练习题给学生,让他们独立完成;2. 教师巡回指导,解答学生疑问,纠正错误;3. 收集学生的练习题,进行批改和评价。
六、拓展延伸(10分钟)1. 提出一些高考数列求和的拓展问题,鼓励学生进行思考和探究;2. 引导学生应用数列求和解决实际问题,培养他们的应用能力。
七、总结归纳(5分钟)1. 教师对本节课的重点知识进行总结归纳;2. 强调数列求和在高考数学中的重要性和应用;3. 鼓励学生进行自主学习和练习。
数列的求和问题【2019年高考考纲解读】高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现了转化与化归的思想. 【重点、难点剖析】 一、分组转化法求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. 二、错位相减法求和错位相减法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列. 三、裂项相消法求和裂项相消法是指把数列和式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2(其中{a n }为等差数列)等形式的数列求和. 【高考题型示例】 题型一、分组转化法求和例1、若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n∈N *). (1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .解析:(1)∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ, ∴S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+ (22)+2n +1 =(22+24+ (22))+(3+5+…+2n +1) =4-4n ·41-4+n 3+2n +2=4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43. 【变式探究】在各项均为正数的等比数列{a n }中,a 1a 3=4,a 3是a 2-2与a 4的等差中项,若a n +1=2nb (n ∈N *). (1)求数列{b n }的通项公式; (2)若数列{}c n 满足c n =a n +1+1b 2n -1·b 2n +1,求数列{}c n 的前n 项和S n .(2)由(1)得,c n =a n +1+1b 2n -1·b 2n +1=2n+12n -n +=2n+12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴数列{}c n 的前n 项和S n =2+22+…+2n +12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n -1-12n +1=-2n1-2+12⎝⎛⎭⎪⎫1-12n +1=2n +1-2+n2n +1(n ∈N *).【感悟提升】在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行讨论,最后再验证是否可以合并为一个公式.【变式探究】已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{}b n -a n 为等比数列(n ∈N *).(1)求数列{a n }和{}b n -a n 的通项公式; (2)求数列{b n }的前n 项和S n .(2)由(1)得b n =3n+2n -1, 所以S n =()3+32+33+ (3)+()1+3+5+…+2n -1=3()1-3n1-3+n ()1+2n -12=32()3n -1+n 2=3n +12+n 2-32(n ∈N *). 【变式探究】已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式;(2)若b n =2an +(-1)n·a n ,求数列{b n }的前n 项和T n . 解 (1)∵{a n }为等差数列,∴⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎪⎨⎪⎧a 1=3,d =2.因此{a n }的通项公式a n =2n +1. (2)∵b n =2an+(-1)n·a n =22n +1+(-1)n·(2n +1)=2×4n+(-1)n·(2n +1),∴T n =2×(41+42+…+4n )+[-3+5-7+9-…+(-1)n(2n +1)]=8(4n-1)3+G n .当n 为偶数时,G n =2×n2=n ,∴T n =8(4n-1)3+n ;当n 为奇数时,G n =2×n -12-(2n +1)=-n -2,∴T n =8(4n-1)3-n -2,∴T n =⎩⎪⎨⎪⎧8(4n-1)3+n (n 为偶数),8(4n-1)3-n -2 (n 为奇数). 题型二、错位相减法求和例2、[2018·浙江卷]已知等比数列{an }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{bn }满足b 1=1,数列{(bn +1-bn )an }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{bn }的通项公式.【解析】 (1)解:由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28, 解得a 4=8.由a 3+a 5=20,得8⎝⎛⎭⎪⎫q +1q =20,解得q =2或q =12.因为q >1,所以q =2.(2)解:设cn =(bn +1-bn )an ,数列{cn }的前n 项和为Sn .由cn =⎩⎪⎨⎪⎧S 1,n =1,Sn -Sn -1,n ≥2,解得cn =4n -1.由(1)可得an =2n -1,所以bn +1-bn =(4n -1)×⎝ ⎛⎭⎪⎫12n -1,故bn -bn -1=(4n -5)×⎝ ⎛⎭⎪⎫12n -2,n ≥2, bn -b 1=(bn -bn -1)+(bn -1-bn -2)+…+(b 3-b 2)+(b 2-b 1)=(4n -5)×⎝ ⎛⎭⎪⎫12n -2+(4n -9)×⎝ ⎛⎭⎪⎫12n -3+…+7×12+3.设Tn =3+7×12+11×⎝ ⎛⎭⎪⎫122+…+(4n -5)×⎝ ⎛⎭⎪⎫12n -2,n ≥2,则12Tn =3×12+7×⎝ ⎛⎭⎪⎫122+…+(4n -9)×⎝ ⎛⎭⎪⎫12n -2+(4n -5)×⎝ ⎛⎭⎪⎫12n -1, 所以12Tn =3+4×12+4×⎝ ⎛⎭⎪⎫122+…+4×⎝ ⎛⎭⎪⎫12n -2-(4n -5)×⎝ ⎛⎭⎪⎫12n -1,因此Tn =14-(4n +3)×⎝ ⎛⎭⎪⎫12n -2,n ≥2.又b 1=1,所以bn =15-(4n +3)×⎝ ⎛⎭⎪⎫12n -2.【变式探究】已知各项均不为零的数列{a n }的前n 项和为S n ,且对任意的n ∈N *,满足S n =13a 1(a n -1).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解析:(1)当n =1时,a 1=S 1=13a 1(a 1-1)=13a 21-13a 1,∵a 1≠0,∴a 1=4.∴S n =43(a n -1),∴当n ≥2时,S n -1=43(a n -1-1),两式相减得a n =4a n -1(n ≥2),∴数列{a n }是首项为4,公比为4的等比数列, ∴a n =4n.(2)∵a n b n =log 2a n =2n ,∴b n =2n 4n ,∴T n =241+442+643+…+2n 4n ,14T n =242+443+644+…+2n 4n +1,两式相减得34T n =24+242+243+244+…+24n -2n 4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n 4n +1=23-6n +83×4n +1. ∴T n =89-6n +89×4n <89.【变式探究】已知数列{a n }满足a 1=a 3,a n +1-a n 2=32n +1,设b n =2n a n (n ∈N *).(1)求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .解 (1)由b n =2na n ,得a n =b n 2n ,代入a n +1-a n 2=32n +1得b n +12n +1-b n2n +1=32n +1,即b n +1-b n =3,所以数列{b n }是公差为3的等差数列,又a 1=a 3,所以b 12=b 38,即b 12=b 1+68,所以b 1=2,所以b n =b 1+3(n -1)=3n -1(n ∈N *).(2)由b n =3n -1,得a n =b n 2n =3n -12n ,所以S n =22+522+823+…+3n -12n ,12S n =222+523+824+…+3n -12n +1, 两式相减得12S n =1+3⎝ ⎛⎭⎪⎫122+123+…+12n -3n -12n +1=52-3n +52n +1, 所以S n =5-3n +52n (n ∈N *).【感悟提升】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后得到部分求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.【变式探究】已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).数列{b n }是公差d 不等于0的等差数列,且满足:b 1=32a 1,b 2,b 5,b 14成等比数列.(1)求数列{a n },{b n }的通项公式;(2)设c n =a n ·b n ,求数列{c n }的前n 项和T n . 解 (1)n =1时,a 1+12a 1=1,a 1=23,n ≥2时,⎩⎪⎨⎪⎧S n=1-12a n,S n -1=1-12a n -1,S n -S n -1=12()a n -1-a n ,∴a n =13a n -1(n ≥2), {a n }是以23为首项,13为公比的等比数列,a n =23×⎝ ⎛⎭⎪⎫13n -1=2⎝ ⎛⎭⎪⎫13n . b 1=1,由b 25=b 2b 14得,()1+4d 2=()1+d ()1+13d ,d 2-2d =0,因为d ≠0,解得d =2, b n =2n -1(n ∈N *).(2)c n =4n -23n ,T n =23+632+1033+…+4n -23n ,① 13T n =232+633+1034+…+4n -63n +4n -23n +1,② ①-②得,23T n =23+4⎝ ⎛⎭⎪⎫132+133+…+13n -4n -23n +1=23+4×19-13n +11-13-4n -23n +1 =43-23n -4n -23n +1, 所以T n =2-2n +23n (n ∈N *).【变式探究】公差不为0的等差数列{a n }的前n 项和为S n ,已知S 4=10,且a 1,a 3,a 9成等比数列. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和T n .解 (1)设{a n }的公差为d ,由题设得⎩⎪⎨⎪⎧4a 1+6d =10,a 23=a 1·a 9,∴⎩⎪⎨⎪⎧4a 1+6d =10,(a 1+2d )2=a 1(a 1+8d ).解之得a 1=1,且d =1. 因此a n =n .(2)令c n =n3n ,则T n =c 1+c 2+…+c n=13+232+333+…+n -13n -1+n3n ,① 13T n =132+233+…+n -13n +n3n +1,② ①-②得:23T n =⎝ ⎛⎭⎪⎫13+132+…+13n -n 3n +1=13⎝ ⎛⎭⎪⎫1-13n 1-13-n 3n +1=12-12×3n -n 3n +1,∴T n =34-2n +34×3n .【变式探究】已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得⎩⎪⎨⎪⎧b 1=4,d =3.所以b n =3n +1.题型三 裂项相消法求和例3、[2018·天津卷]设{an }是等比数列,公比大于0,其前n 项和为Sn (n ∈N *),{bn }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{an }和{bn }的通项公式.(2)设数列{Sn }的前n 项和为Tn (n ∈N *), ①求Tn ;②.【解析】(1)解:设等比数列{an }的公比为q .由a 1=1,a 3=a 2+2,可得q 2-q -2=0.由q >0,可得q =2,故an =2n -1.设等差数列{bn }的公差为d .由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6,可得3b 1+13d =16,从而b 1=1,d =1,故bn =n . (2)若b n =1a n ·a n +1,其前n 项和为T n ,若T n >919成立,求n 的最小值.解 (1)由2S n =a 2n -2S n -1+1知, 2S n -1=a 2n -1-2S n -2+1()n ≥3,两式相减得,2a n =a 2n -a 2n -1-2a n -1, 即2()a n +a n -1=()a n -a n -1()a n +a n -1, 又数列{a n }为递增数列,a 1=1,∴a n +a n -1>0, ∴a n -a n -1=2()n ≥3,又当n =2时,2()a 1+a 2=a 22-2a 1+1,即a 22-2a 2-3=0,解得a 2=3或a 2=-1(舍),a 2-a 1=2,符合a n -a n -1=2,∴{a n }是以1为首项,以2为公差的等差数列, ∴a n =1+(n -1)×2=2n -1(n ∈N *). (2)b n =12n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎝ ⎛⎭⎪⎫11-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫11-12n +1, 又∵T n >919,即12⎝ ⎛⎭⎪⎫11-12n +1>919,解得n >9,又n ∈N *,∴n 的最小值为10. 【变式探究】设S n 为数列{a n }的前n 项和,S n =2n 2+5n . (1)求证:数列{3an}为等比数列; (2)设b n =2S n -3n ,求数列⎩⎨⎧⎭⎬⎫n a n b n 的前n 项和T n .(2)解 ∵b n =4n 2+7n , ∴n a n b n =1(4n +3)(4n +7)=14⎝ ⎛⎭⎪⎫14n +3-14n +7,∴T n =14⎝ ⎛⎭⎪⎫17-111+111-115+…+14n +3-14n +7 =14⎝ ⎛⎭⎪⎫17-14n +7=n7(4n +7). 【变式探究】设正项等比数列{a n },a 4=81,且a 2,a 3的等差中项为32(a 1+a 2).(1)求数列{a n }的通项公式;(2)若b n =log 3a 2n -1,数列{b n }的前n 项和为S n ,数列{c n }满足c n =14S n -1,T n 为数列{c n }的前n 项和,若T n <λn恒成立,求λ的取值范围.解 (1)设等比数列{a n }的公比为q (q >0),由题意,得⎩⎪⎨⎪⎧a 4=a 1q 3=81,a 1q +a 1q 2=3(a 1+a 1q ),解得⎩⎪⎨⎪⎧a 1=3,q =3. 所以a n =a 1qn -1=3n.(2)由(1)得b n =log 332n -1=2n -1, S n =n (b 1+b n )2=n [1+(2n -1)]2=n 2∴c n =14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =n2n +1. 若T n =n 2n +1<λn 恒成立,则λ>12n +1(n ∈N *)恒成立, 则λ>⎝⎛⎭⎪⎫12n +1max,所以λ>13.11。