勾股定理3
- 格式:ppt
- 大小:608.50 KB
- 文档页数:12
勾股定理的三个公式
1.勾股定理的三个公式是a=k(m²+n²),b=2kmn,c=k(m
²+n²)。
2.勾股定理是一个基本的几何定理,指直角三角形的两条直
角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
3.勾股定理现约有500种证明方法,是数学定理中证明方法
最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
4.勾股数有:
1、能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c为正整数时,称a,b,c为一组勾股数。
2、记住常见的勾股数可以提高解题速度,如
3、
4、5;6、8、10;
5、12、13;7、24、25等。
3、用含字母的代数式表示n组勾股数:(n为正整数);(n 为正整数);(m>n,m,n为正整数)。
经验内容仅供参考,如果您需解决具体。
3 勾股定理的应用1.长方体(或正方体)面上的两点间的最短距离长方体(或正方体)是立体图形,但它的每个面都是平面.假设计算同一个面上的两点之间的距离比较容易,假设计算不同面上的两点之间的距离,就必须把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,这样就可以利用勾股定理加以解决了.所以立体图形中求两点之间的最短距离,一定要审清题意,弄清楚到底是同一平面中两点间的距离问题还是异面上两点间的距离问题.谈重点 长方体外表上两点间最短距离因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【例1-1】 如图①是一个棱长为3 cm 的正方体,它的6个外表都分别被分成了3×3的小正方形,其边长为1 cm.现在有一只爬行速度为2 cm/s 的蚂蚁,从下底面的A 点沿着正方体的外表爬行到右侧外表上的B 点,小明把蚂蚁爬行的时间记录了下来,是2.5 s .经过简短的思考,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.你知道小明为什么会佩服这只蚂蚁的举动吗?解:如图②,在Rt△ABD 中,AD =4 cm ,BD =3 cm.由勾股定理,AB 2=BD 2+AD 2=32+42=25,AB =5 cm ,∴蚂蚁的爬行距离为5 cm.又知道蚂蚁的爬行速度为2 cm/s ,∴它从点A 沿着正方体的外表爬行到点B 处,需要时间为52=2.5 s. 小明通过思考、判断,发现蚂蚁爬行的时间恰恰就是选择了这种最优的方式,所以他感到惊讶和佩服.【例1-2】 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的外表爬到对角顶点C 1处(三条棱长如下列图),问怎样走路线最短?最短路线长为多少?解:蚂蚁由A点沿长方体的外表爬行到C1点,有三种方式,分别展成平面图形如下:如图①,在Rt△ABC1中,AC21=AB2+BC21=42+32=52=25.故AC1=5.如图②,在Rt△ACC1中,AC21=AC2+CC21=62+12=37.如图③,在Rt△AB1C1中,AC21=AB21+B1C21=52+22=29.∵25<29<37,∴沿图①的方式爬行路线最短,最短的路线是5.点技巧巧展长方体求解此类问题时只需对长方体进行局部展开,画出局部的展开图,假设将长方体全部展开,不仅没有必要反而会扰乱视线.2.圆柱体(或圆锥体)面上的两点间的最短距离圆柱体(或圆锥体)是立体图形,从其外表看两点之间的连线绝大局部是曲线,那么怎样确定哪一条是最短的呢?解决问题的方法是将圆柱(或圆锥)的侧面展开,转化为平面图形,应用勾股定理解决,而不能盲目地凭感觉来确定.【例2】如图①所示,一只蚂蚁在底面半径为20 cm,高为30π cm的圆柱下底的点A 处,发现自己正上方圆柱上边缘的B处有一只小昆虫,便决定捕捉这只小昆虫,为了不引起这只小昆虫的注意,它成心不走直线,而绕着圆柱,沿一条螺旋路线,从背后对小昆虫进行突然袭击,结果蚂蚁偷袭成功,得到了一顿美餐.根据上述信息,请问蚂蚁至少爬行多少路程才能捕捉到小昆虫?分析:解此题的关键是把圆柱的侧面展开,利用两点之间线段最短和勾股定理作答.解:假设将圆柱体的侧面沿AB剪开铺平如图②,那么对角线AB即为蚂蚁爬行的最短路线.在Rt△ACB中,AC=40π cm,BC=30π cm.由勾股定理,得AB2=AC2+BC2=(40π)2+(30π)2=(50π)2,∴AB=50π cm.∴蚂蚁至少爬行50π cm才能捕捉到小昆虫.谈重点圆柱体两点间的最短距离此题文字表达较多,要求在阅读的根底上提炼有用的信息,具体解题时先将圆柱沿AB 剪开,将侧面展开成一矩形,会发现对角线AB即为蚂蚁爬行的最短路线,再运用勾股定理即可求得.3.生活中两点间的最短距离用勾股定理解决实际问题的关键是从实际问题中构建数学模型——直角三角形,再正确利用两点之间线段最短解答.【例3】如图①是一个三级台阶,它的每一级的长、宽和高分别为5 dm,3 dm和1 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是多少?分析:由于蚂蚁是沿台阶的外表由A爬行到B,故需把三个台阶展开成平面图形(如图②).解:将台阶展开成平面图形后,可知AC=5 dm,BC=3×(3+1)=12 dm,∠C=90°.在Rt△ABC中,∵AB2=AC2+BC2,∴AB2=52+122=132,∴AB=13 dm.故蚂蚁爬到B点的最短路程是13 dm.4.如何正确利用勾股定理及其逆定理解决生活中的问题利用勾股定理及其逆定理解决生活中的实际问题,重要的是将实际问题转化成数学模型(直角三角形模型),将实际问题中的“数〞转化为定理中的“形〞,再转化为“数〞.解题的关键是深刻理解题意,并画出符合条件的图形.解决几何体外表上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,具体步骤是:(1)把立体图形展成平面图形;(2)确定点的位置;(3)确定直角三角形;(4)分析直角三角形的边长,用勾股定理求解.【例4】 如图①,圆柱形玻璃容器的高为18 cm ,底面周长为60 cm ,在外侧距下底1 cm 的点S 处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1 cm 的点F 处有一只苍蝇,急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离是__________cm.解析:将圆柱的侧面展开得到它的侧面展开图(如图②),CD ∥AB ,且AD =BC =12底面周长,BS =DF =1 cm.那么蜘蛛所走的最短路线的长度即为线段SF 的长度.过S 点作SM ⊥CD ,垂足为M ,由条件知,SM =AD =12×60=30 cm ,MC =SB =DF =1 cm ,所以MF =18-1-1=16 cm ,在Rt△MFS 中,由勾股定理得SF 2=162+302=342,所以SF =34 cm.故蜘蛛需要爬行的最短距离是34 cm.答案:345.勾股定理与方程相结合的应用方程思想是一种重要的数学思想.所谓方程思想是指从分析问题的数量关系入手,将问题中的量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.而勾股定理反映的直角三角形三边的关系正是构建方程的根底.故勾股定理的许多问题的解决都要跟方程相结合.方程思想是勾股定理中的重要思想.【例5】 如图,有一张直角三角形状纸片ABC ,两直角边AC =6 cm ,BC =8 cm ,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?解:设CD=x cm,由题意知DE=x cm,BD=(8-x) cm,AE=AC=6 cm,在Rt△ABC中,由勾股定理得AB=AC2+BC2=10 cm.于是BE=10-6=4 cm.在Rt△BDE中,由勾股定理得42+x2=(8-x)2,解得x=3.故CD的长为3 cm.。
勾股定理三条边的公式
勾股定理是数学中的一个重要定理,它描述了直角三角形中的关系。
勾股定理有三个公式,它们分别是:
1. a² = b² + c²
2. b² = a² - c²
3. c² = a² - b²
这三个公式中,a、b、c分别代表直角三角形的三条边,其中a为斜边,b、c为直角边。
这三个公式是勾股定理的不同表述,它们之间是等价的。
以第一个公式为例,它的意思是直角三角形中斜边的平方等于直角边的平方和。
这个公式可以用来求解直角三角形中未知的边长,只需要已知两条边的长度,就可以通过勾股定理求出第三条边的长度。
第二个和第三个公式则是将第一个公式中的某一条边表示为其他两条边的函数形式。
这样做的好处是,在一些特定的问题中,可以更方便地使用这些公式。
除了上述三个公式以外,勾股定理还有其他形式的表述,比如三角函数形式、向量形式等。
这些表述方式在不同的数学领域和问题中都有着广泛的应用,比如在物理学、工程学、计算机科学等领域中都有着重要的作用。
总之,勾股定理是数学中的一个经典定理,它有着多种不同
的表述方式和应用场景。
掌握这个定理,不仅可以帮助我们更好地理解直角三角形的性质,还可以在实际问题中提供有效的解决方法。
勾3股4定理公式大全【原创版】目录1.勾股定理的概述2.勾股定理的公式3.勾股定理的证明方法4.勾股定理的应用正文1.勾股定理的概述勾股定理,又称毕达哥拉斯定理,是一个关于直角三角形的数学定理。
它指出:在直角三角形中,直角边上的两个边(勾)的平方和等于斜边(股)的平方。
即 a + b = c。
这个定理在我国古代称为“勾三股四定理”,其中 a、b 为直角边,c 为斜边。
2.勾股定理的公式勾股定理的公式为:a + b = c。
其中,a、b 为直角边,c 为斜边。
这个公式描述了直角三角形的一个重要性质,被广泛应用于各种实际问题中。
3.勾股定理的证明方法勾股定理的证明方法有很多,其中比较著名的有几何证明、代数证明和相似三角形证明等。
这些证明方法各具特点,都能从不同角度展示勾股定理的正确性。
几何证明:利用几何图形,如切比雪夫五边形等,来证明勾股定理。
这种证明方法直观且易于理解。
代数证明:利用代数方法,如平方根、完全平方公式等,来证明勾股定理。
这种证明方法简洁且具有普遍性。
相似三角形证明:利用相似三角形的性质,结合角度和边长关系,来证明勾股定理。
这种证明方法较为繁琐,但能更好地揭示勾股定理与相似三角形之间的关系。
4.勾股定理的应用勾股定理在实际生活中的应用非常广泛,如测量距离、计算三角形的面积、解决几何图形问题等。
此外,勾股定理也是许多高级数学理论的基础,如解析几何、微积分等。
学习和掌握勾股定理,对于提高我们的数学素养和解决实际问题具有重要意义。
综上所述,勾股定理是一个关于直角三角形的重要定理,它描述了直角三角形的一个基本性质。
勾3股4定理公式大全
摘要:
1.勾股定理的概述
2.勾股定理的公式
3.勾股定理的证明方法
4.勾股定理的应用实例
正文:
1.勾股定理的概述
勾股定理,又称为勾股定理,是中国古代数学家勾股发现的一条关于直角三角形的重要定理。
该定理描述了直角三角形斜边的平方等于两直角边的平方和,即a2 + b2 = c2。
这一定理在我国古代数学发展史上具有重要地位,被古代数学家广泛应用于各种实际问题中。
2.勾股定理的公式
勾股定理的公式为:a2 + b2 = c2。
其中,a、b 表示直角三角形的两条直角边,c 表示直角三角形的斜边。
该公式描述了直角三角形的一个重要性质,即斜边的平方等于两直角边的平方和。
3.勾股定理的证明方法
勾股定理的证明方法有很多,其中最著名的证明方法是欧几里得证明法。
欧几里得证明法是通过构造一个边长为a、b 的正方形,以及一个边长为c 的正方形,然后通过证明这两个正方形的面积之和等于一个边长为c 的正方形的面积,从而证明勾股定理。
4.勾股定理的应用实例
勾股定理在实际生活中的应用非常广泛,例如在测量土地面积、设计建筑结构、解决物理问题等方面都会用到勾股定理。
例如,在一个直角三角形中,已知两条直角边的长度分别为3 和4,可以通过勾股定理求得斜边的长度,即c = √(32 + 42) = 5。
这样,在实际问题中就可以利用勾股定理来计算直角三角形的斜边长度。
总之,勾股定理是数学中的一条重要定理,不仅在我国古代数学发展史上具有重要地位,而且在现实生活中也有广泛的应用。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
具体来说,如果直角三角形的两条直角边长度分别为a和b,斜边长度为c,则勾股定理可以表示为:a² + b² = c²。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。
而在西方,最早提出并证明此定理的是公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一,也是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
此外,勾股定理在数学、工程和物理等领域有着广泛的应用,例如用于测量、计算和解决与直角三角形有关的各种问题。
以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询数学专业人士。