厌氧消化工艺
- 格式:pdf
- 大小:429.09 KB
- 文档页数:9
AAO污水处理工艺介绍概述AAO(Anaerobic-Anoxic-Oxic)是一种常用的污水处理工艺,它以厌氧、缺氧和好氧三个阶段进行处理,能够高效地去除污水中的有机污染物和氮磷等营养物质。
本文将对AAO污水处理工艺进行详细介绍。
工艺原理AAO污水处理工艺包含三个阶段的反应区:厌氧区、缺氧区和好氧区。
主要原理如下:1. 厌氧区:在厌氧条件下,厌氧细菌通过产生酸、乙醇、氢气等代谢产物,分解有机污染物,产生可溶性有机物和矿化产物。
这个过程又被称为厌氧消化。
2. 缺氧区:在缺氧条件下,硝化细菌利用厌氧区产生的可溶性有机物进行硝化作用,将氨氮转化为亚硝酸盐和硝酸盐。
反硝化细菌利用可溶性有机物和硝酸盐作为电子受体,将硝酸盐还原为氮气释放到大气中。
3. 好氧区:在好氧条件下,好氧细菌利用缺氧区残留的有机污染物和硝酸盐,进行好氧脱氮作用和好氧降解作用。
好氧脱氮作用通过嫩膜法或自流式法进行,将硝酸盐通过反应转化为氮气释放到大气中。
好氧降解作用则进一步降解有机污染物,达到污水的净化目的。
工艺特点AAO污水处理工艺具有以下的特点:1. 节能高效:AAO工艺采用了多级别曝气方式,有效提高了氧气的利用率,降低了曝气能耗。
2. 除氮效果好:通过缺氧区和好氧区的有机物和氮的转化,AAO工艺能够高效去除污水中的氨氮和硝酸盐,降低了水体的营养盐负荷。
3. 厌氧消化:AAO工艺中的厌氧区通过有机物的分解和转化,实现了能源的回收和有机物的降解。
4. 工艺简单:相比于其他工艺,AAO工艺的运行控制较为简单,易于操作和维护。
应用领域AAO污水处理工艺广泛应用于城市污水处理厂、工业废水处理厂等水处理领域。
其在处理大量有机污染物和氮磷等营养物质方面表现出色,对于改善水质、保护水资源具有重要意义。
AAO污水处理工艺通过厌氧、缺氧和好氧三个阶段的反应,能够高效去除污水中的有机污染物和氮磷等营养物质。
它具有节能高效、除氮效果好、厌氧消化等特点,广泛应用于城市污水处理厂和工业废水处理厂。
10种污水处理工艺污水处理是保护环境、维护人类健康的重要工作。
随着城市化进程的加快和工业化的发展,污水处理工艺也在不断创新和完善。
本文将介绍10种常见的污水处理工艺,包括生物处理工艺、物理处理工艺和化学处理工艺等。
1. 活性污泥法活性污泥法是一种常见的生物处理工艺,通过在容器中培养活性污泥来分解有机物质。
污水经过初级处理后,进入活性污泥池,活性污泥中的微生物会分解有机物质,并将其转化为二氧化碳和水。
该工艺处理效果好,适用于处理有机污水。
2. 厌氧消化法厌氧消化法是一种利用厌氧菌分解有机物质的处理工艺。
污水经过初级处理后,进入厌氧消化池,在无氧环境下,厌氧菌会分解有机物质产生沼气和有机肥料。
该工艺适用于处理含有高浓度有机物质的污水。
3. 植物湿地法植物湿地法是一种利用湿地植物和微生物处理污水的工艺。
污水经过初级处理后,进入植物湿地,湿地植物和微生物会吸收和分解污水中的有机物质和营养物质。
该工艺具有景观效果好、运行成本低的特点,适用于处理低浓度有机物质的污水。
4. 活性炭吸附法活性炭吸附法是一种利用活性炭吸附有机物质的物理处理工艺。
污水经过初级处理后,进入活性炭吸附池,活性炭会吸附污水中的有机物质和重金属等污染物。
该工艺适用于处理有机物质浓度较低、含重金属的污水。
5. 膜分离法膜分离法是一种利用膜的选择性通透性分离污水中的物质的物理处理工艺。
常见的膜分离工艺包括微滤、超滤和反渗透等。
该工艺可以有效去除悬浮物、胶体、细菌和病毒等污染物,适用于处理高浓度有机物质和海水淡化等。
6. 氧化法氧化法是一种利用氧化剂氧化污水中的有机物质的化学处理工艺。
常见的氧化剂有臭氧、过氧化氢等。
该工艺可以高效去除难降解有机物质和色度等,适用于处理工业废水和高浓度有机物质的污水。
7. 离子交换法离子交换法是一种利用离子交换树脂去除污水中的离子的化学处理工艺。
离子交换树脂具有选择性吸附离子的特点,可以去除污水中的重金属离子和硝酸盐等。
厌氧加好氧加mbr工艺操作规程
厌氧-好氧-MBR工艺是一种常用的污水处理技术,其操作规程如下:
1. 预处理:污水首先经过预处理,包括格栅、沉砂池和初沉池等,以去除大颗粒物和浮渣。
2. 厌氧处理:污水进入厌氧反应器,在此进行厌氧消化,将有机物转化为沼气。
3. 好氧处理:经过厌氧处理的污水进入好氧反应器,在此进行曝气、混合和搅拌等操作,使污水中的有机物得到充分的好氧降解。
4. MBR膜过滤:经过好氧处理后的污水进入MBR膜过滤系统,通过膜组件的截留作用,将活性污泥等杂质与清水有效分离。
5. 排放:经过MBR膜过滤后的清水可达到排放标准,直接排放或回用。
在操作过程中,需要注意以下几点:
1. 控制好厌氧反应器和好氧反应器的温度、pH值、溶解氧等参数,以保证微生物的正常生长和代谢。
2. 定期检查和清洗膜组件,防止堵塞和污染。
3. 保证足够的进水量和稳定的进水水质,以维持系统的稳定运行。
4. 根据实际情况调整工艺参数,如反应器内的污泥浓度、曝气量等,以提高处理效果和降低能耗。
5. 做好日常运行记录和数据监测,及时发现问题并进行处理。
以上是厌氧-好氧-MBR工艺的操作规程,仅供参考。
在实际操作中,还需要根据具体情况进行调整和完善。
城镇污水处理厂污泥厌氧消化工艺设计与运行管理指南1总则1.0.1编制目的为了深化对城镇污水处理厂污泥厌氧消化技术原理和工艺的理解,提升我国污泥厌氧消化的工艺设计和运行管理水平,在查阅国内外相关技术材料、调研国内相关工程的基础上,依据国家和行业相关法律法规和标准规范,编制本指南。
1.0.2 适用范围本指南适用于城镇污水处理厂污泥厌氧消化的工艺设计和运行管理。
2术语和定义2.0.1污泥厌氧消化sludge anaerobic digestion在无氧条件下,使污泥中的有机物生物降解和稳定的过程,该过程可产生沼气。
[T/CECS 496-2017,术语2.1.1]2.0.2 消化时间digestion time污泥在消化池中的平均停留时间。
[GB 50014-2006(2016年版),术语2.1.110]2.0.3 挥发性固体volatile solids污泥固体物质在600℃时所失去的重量,代表污泥中可通过生物降解的有机物含量水平。
[GB 50014-2006(2016年版),术语2.1.111]2.0.4 挥发性固体容积负荷volume loading rate of volatile solids单位时间内对单位消化池容积投入的原污泥中挥发性固体重量。
[GB 50014-2006(2016年版),术语2.1.113]2.0.5沼气biogas污泥厌氧消化时有机物分解产生的气体,主要成分为甲烷和二氧化碳,并有少量的氢、氮和硫化氢等。
[T/CECS 496-2017,术语2.1.9]2.0.6沼液digestion effluent污泥厌氧消化后的上清液。
[T/CECS 496-2017,术语2.1.10]3污泥厌氧消化工艺3.1 原理与作用3.1.1污泥厌氧消化及其优缺点污泥厌氧消化是利用兼性菌和厌氧菌进行厌氧生化反应,分解有机物质,实现污泥减量化、稳定化和资源化的一种处理工艺。
污泥厌氧消化具有以下优点:∙产生甲烷这一能源气体,除满足厌氧消化自身的能量需求外,多余的甲烷气体可以用来供热及发电,或是用作电机燃料;∙由于挥发性固体在厌氧消化过程中转化为甲烷、二氧化碳和水,降低了固体总量。
厨余垃圾厌氧消化技术研究(全文) XX:X705XX:AXX:1674-9944(2021)07-0132-021 厌氧消化的基本原理厨余垃圾是家庭、餐饮服务业的固体废物的统称,其在城市生活垃圾中占的比例很大[1]。
厨余垃圾含水率多在85%~90%,因此在采纳焚烧处理时,由于热值偏低,往往需要额外添加燃料,如果参与填埋处理,则高的有机物含量又会产生大量COD值极高的渗滤液,难以处理,且填埋条件下产生的甲烷是一种温室气体,如不能有效收集,则对环境带来更大的负面影响。
因此应将其从城市生活垃圾中分离,并采纳合适的方法处理。
在对厨余垃圾进行处理的众多技术中,厌氧消化具有明显优势,如污泥产生量小,能耗低,运行费用小,占地面积小,并且能产生甲烷或者有机酸等产物,且具有一定经济效益。
[2]对厌氧消化原理的研究,经历了一个不断深入的过程。
由最初的两阶段理论,到三阶段理论再到三阶段四类群理论。
在厨余垃圾等复杂的有机废物在厌氧条件下,难溶的大分子有机物被分解为可溶的小分子脂肪酸,然后在产酸菌的作用下,被转化为乙酸,丙酸,氢气等。
在这个过程中,专性产乙酸产氢菌会利用其他有机酸生成乙酸和氢气,最后在产甲烷菌的作用下,将乙酸和氢气转化为甲烷。
对厨余等复杂有机废物,水解阶段往往是整个反应的限速阶段[3]。
2 影响因素2.1 底物特性底物的不同对厌氧消化的结果有较大影响,在厌氧消化过程中,为了满足整个微生物种群的生长代谢,需要一定量的营养物质,主要是需要保持碳、氮、磷等元素的比例合适。
氮元素含量过高,会导致溶液中氨氮浓度过高,从而对厌氧消化过程产生抑制效应[4],而氨氮浓度过低,则不能为微生物细胞生长提供必要的营养。
在厨余垃圾厌氧消化的过程中,有时为了调整底物的营养组成,往往采取将厨余垃圾与污泥联合消化的方式,可以取得更好的消化结果。
底物的颗粒粒径也是影响厌氧消化的一个主要因素,由于水解阶段往往成为厨余垃圾厌氧消化全过程的限速步骤,因此促进水解反应的进行,对改进厌氧消化的效果是有利的。
钢筋混凝土厌氧消化池施工工艺
简介
钢筋混凝土厌氧消化池是市政污水处理厂常用的处理设备之一。
本文档旨在介绍钢筋混凝土厌氧消化池的施工工艺,包括施工前准备、基坑开挖、模板安装、钢筋加工、混凝土浇筑和养护等环节。
施工前准备
在施工前,应详细了解设计图纸和相关技术规范,确保施工过
程符合要求。
另外,还需要准备好施工所需的人员、设备和材料,
并进行安全交底和安全防护。
基坑开挖
根据设计要求和现场实际情况,进行厌氧消化池的基坑开挖。
开挖过程中,需要保持基坑的稳定性,及时排水,并进行必要的地
质勘察。
模板安装
将预制模板按照设计要求进行安装,确保模板的平整度和尺寸
准确。
模板安装完成后,应进行检查和固定,以确保施工质量。
钢筋加工
根据设计要求和规范,对钢筋进行剪切和弯曲加工,并进行钢筋连接和绑扎。
钢筋加工过程中,应注意保护好钢筋的表面,防止氧化腐蚀。
混凝土浇筑
在模板安装和钢筋加工完成后,进行混凝土的浇筑。
浇筑时应确保混凝土均匀分布,避免产生空隙和裂缝。
同时,要控制好浇筑的速度和温度,以保证混凝土的强度和质量。
养护
混凝土浇筑完成后,进行养护工作。
养护过程中应及时进行湿养护,保持适宜的温度和湿度,以促进混凝土的硬化和强度发展。
结论
本文档简要介绍了钢筋混凝土厌氧消化池的施工工艺。
在施工过程中,应严格按照设计要求和技术规范进行操作,确保施工质量和安全。
同时,还应注意施工现场的环境保护和安全管理。
10种污水处理工艺污水处理是保护环境、维护人类健康的重要工作。
随着城市化进程的加快和工业化的发展,污水处理工艺也在不断创新和完善。
本文将为您介绍10种常见的污水处理工艺及其原理、应用范围和优缺点。
1. 活性污泥法活性污泥法是一种常见的生物处理工艺,通过添加活性污泥来降解有机物。
原理是利用污水中的有机物作为细菌生长的营养源,细菌通过吸附、吸收和降解有机物,将其转化为无机物和生物质。
该工艺适用于有机物浓度较高的污水处理,如生活污水和工业废水。
2. 厌氧消化法厌氧消化法是一种利用厌氧菌降解有机物的处理工艺。
厌氧消化池中缺氧条件下,厌氧菌将有机物分解为甲烷和二氧化碳等无害物质。
该工艺适用于高浓度有机废水的处理,如餐饮废水和农村生活污水。
3. 气浮法气浮法是一种物理处理工艺,通过注入微细气泡使悬浮物浮起,从而实现固液分离。
气浮法适用于悬浮物颗粒较小、密度较小的废水处理,如造纸厂废水和食品加工废水。
4. 滤池法滤池法是一种通过滤料层将悬浮物截留的处理工艺。
污水通过滤料层时,悬浮物被滤料截留,而水分则通过滤料层流出。
滤池法适用于悬浮物浓度较低、颗粒较大的废水处理,如市政污水处理和工业废水处理。
5. 活性炭吸附法活性炭吸附法是一种利用活性炭对污水中的有机物进行吸附的处理工艺。
活性炭具有较大的比表面积和吸附能力,可以有效去除有机物和部分重金属。
该工艺适用于有机物浓度较低、有机物种类较多的废水处理,如印染废水和制药废水。
6. 水解酸化法水解酸化法是一种利用酸化菌将有机物水解为有机酸的处理工艺。
有机酸可以进一步通过生物降解转化为甲烷和二氧化碳等无害物质。
该工艺适用于高浓度有机废水的处理,如酿酒废水和饲料废水。
7. 膜分离法膜分离法是一种利用半透膜将废水中的溶质和溶剂分离的处理工艺。
膜分离法可以根据溶质的大小和电荷选择不同的膜进行分离。
该工艺适用于高浓度有机物和重金属的废水处理,如电镀废水和化工废水。
8. 离子交换法离子交换法是一种通过树脂吸附和交换废水中的离子的处理工艺。
污水处理工艺比选一、引言污水处理是保护环境和人类健康的重要环节。
在污水处理过程中,选择合适的处理工艺是至关重要的。
本文将对污水处理工艺进行比选,并详细介绍每种工艺的原理、优缺点以及适用范围,以便于选择最适合的处理工艺。
二、传统工艺1. 活性污泥法活性污泥法是一种常见的传统工艺,通过将污水与含有微生物的活性污泥接触,使污水中的有机物被微生物降解,达到净化水质的目的。
该工艺具有处理效果好、运行稳定等优点,但对氮、磷等营养物质的去除效果较差。
2. 厌氧消化厌氧消化是一种将有机废水通过厌氧发酵降解的工艺。
该工艺适用于高浓度有机废水的处理,能够有效去除COD,同时产生沼气。
然而,厌氧消化工艺对氮、磷等营养物质的去除效果较差。
三、新型工艺1. 膜生物反应器(MBR)膜生物反应器是一种将活性污泥法与膜分离技术相结合的工艺。
该工艺通过膜的过滤作用,能够有效去除悬浮物、细菌等污染物,同时提高出水的水质稳定性。
MBR工艺具有占地面积小、出水水质稳定等优点,但投资和运营成本较高。
2. 生物膜反应器(MBBR)生物膜反应器是一种将活性污泥法与生物膜技术相结合的工艺。
该工艺通过生物膜的附着作用,能够增加微生物的附着面积,提高有机物的降解效率。
MBBR工艺具有处理效果好、运行稳定等优点,但对氮、磷等营养物质的去除效果较差。
3. 厌氧氨氧化(Anammox)厌氧氨氧化是一种通过厌氧微生物将氨氮直接转化为氮气的工艺。
该工艺具有能耗低、操作简单等优点,能够实现氮的高效去除。
然而,厌氧氨氧化工艺对COD的去除效果较差。
四、工艺比选根据实际情况,我们需要综合考虑以下几个方面来进行工艺比选:1. 污水水质特征:包括COD、氨氮、总磷等指标的浓度和变化范围。
2. 处理要求:根据排放标准和处理效果要求,确定对污水中各种污染物的去除率要求。
3. 运行成本:包括投资成本、运营成本和维护成本等。
4. 占地面积:根据实际场地条件,确定所需处理工艺的占地面积。
餐厨垃圾厌氧消化技术简述摘要:随着我国餐饮行业的快速发展,餐饮企业的数量大幅增加,每天的餐厨垃圾产生量巨大。
因此,要及时对餐厨垃圾进行处理,以餐厨垃圾和厨余垃圾为原料进行中温厌氧消化反应,对不同时间产生的沼渣的脱水性能进行研究,沼渣的脱水性能主要受厌氧消化时间的影响。
本文主要对餐厨垃圾和厨余垃圾厌氧消化产生沼渣的脱水性能进行分析。
关键词:餐厨垃圾;厌氧消化;脱水性能中图分类号:TU824文献标识码: A一、、餐厨垃圾的特点餐厨垃圾又称泔脚,是居民生活消费中产生的生活废物,容易腐烂、传播病菌。
其主要成分是面粉、米类食物残渣、肉骨与动植物油等,化学组成中有脂类、淀粉、纤维素与无机盐等。
餐厨垃圾营养元素非常丰富,含有大量的微生物菌种,具有较高的产甲烷能力,兼具资源与废物二重性;另外,餐厨垃圾处理难度大。
餐厨垃圾的固体含量通常在20%左右,含水率高65%~95%,油脂含量通常在1%~5%,脱水性能差;热值为2100~3100kJ/kg,与生活垃圾一同焚烧,不能达到垃圾焚烧发电所要求的5000kJ/kg热值。
在高温条件下,餐厨垃圾变质速度快,其降低了回收利用价值。
二、厌氧消化原理厌氧消化是有机物在无氧条件下,依靠兼性厌氧菌和专性厌氧菌的作用转化成二氧化碳与甲烷等,同时合成自身细胞物质的生物学过程,是实现有机固体废物资源化、无害化的一种有效的方法。
其机理如图1所示。
厌氧消化由于它较高的经济性和产能效益己经引起越来越多的关注,在处理垃圾放方面主要有以下优点:厌氧消化不需要氧气,可以减少动力消耗、节约能源、减少成本;对有机负荷承受力强,反应器效能高,容积小,占地面积小,可降低基建成本,又能达到很好的处理效果;厌氧过程中没有与氧相随的微生物合成,因此剩余污泥量少,减少了处置费用且生成的污泥较稳定;可以回收沼气能源、降低污染负荷,同时也减少了温室效应气体的排放量;发酵残留物可经过灭菌等操作转化为土壤添加剂或肥料,增加其经济效益;总之,厌氧消化实现了“无害化、减量化与资源化”,在生物质有效利用方面有着巨大的贡献。
uasb工艺原理UASB工艺原理UASB(Upflow Anaerobic Sludge Blanket)工艺是一种高效的生物处理技术,广泛应用于污水、有机废水和固体有机废物的处理。
本文将详细介绍UASB工艺的原理。
一、UASB工艺概述UASB工艺是一种基于厌氧消化原理的生物处理技术,通过在无氧条件下利用微生物将有机废水中的有机物质分解成甲烷和二氧化碳,从而实现废水的净化和资源化利用。
该技术具有处理效率高、运行成本低、占地面积小等优点,在全球范围内得到广泛应用。
二、UASB反应器结构UASB反应器通常由上部进料区、中部反应区和下部沉淀区组成。
进料区通常位于反应器顶部,通过进料管将污水引入反应器;反应区为主要反应区域,其中填充了大量微生物颗粒;沉淀区位于反应器底部,其中收集并沉淀了未被微生物颗粒消化的污泥。
三、UASB微生物群落在UASB反应器中,微生物群落是实现有机物质分解的关键。
UASB反应器内的微生物群落通常由四类微生物组成:酸化菌、乙酸菌、脱氮菌和甲烷菌。
这些微生物通过协同作用,将有机物质分解成甲烷和二氧化碳。
四、UASB反应器运行原理UASB反应器主要基于三个原理来运行:上升流、厌氧消化和污泥沉淀。
1. 上升流UASB反应器采用上升流方式进行废水处理。
废水从反应器底部进入,向上流动并与填充在反应区中的微生物颗粒接触,从而实现有机物质的分解。
2. 厌氧消化在UASB反应器中,废水处于无氧状态下,并且没有外部供氧。
在这种条件下,微生物群落通过厌氧代谢将有机物质分解成甲烷和二氧化碳。
其中,酸化菌将有机物质转化为挥发性脂肪酸(VFA),乙酸菌将VFA进一步转化为乙酸和氢气,脱氮菌将氢气和硝酸盐还原成氨,甲烷菌利用乙酸和二氧化碳生成甲烷。
3. 污泥沉淀在UASB反应器中,未被微生物颗粒消化的污泥会沉淀到反应器底部。
这些污泥可以通过周期性的排放或回流来控制反应器内部的微生物群落结构和活性。
五、UASB工艺优势UASB工艺相比其他废水处理技术具有以下优势:1. 处理效率高:UASB工艺能够高效地将有机废水中的有机物质分解成甲烷和二氧化碳,从而实现废水的净化和资源化利用。
概要:本文根据工程设计经验,简要介绍污泥厌氧消化池池型及搅拌器的形式及选择原则。
污泥的厌氧消化,是在无氧条件下依靠厌氧微生物,使有机物分解的生物处理方法。
适用于有机物含量较高的污泥。
1 污泥厌氧消化的目的(1)减少污泥体积减少污泥中可降的有机物含量,使污泥的体积减少。
与消化前相比,消化污泥的体积一般可减少1/2~1/3。
(2)稳定污泥性质减少污泥中可分解、易腐化物质的数量,使污泥性质稳定。
(3)提高污泥的脱水效果未消化的污泥呈粘性胶状结构,不易脱水。
消化过的污泥,胶体物质被气化、液化或分解,使污泥中的水分与固体易分离。
(4)利用产生的甲烷气体污泥在消化过程中产生沼气,沼气中有用的甲烷气体约占2/3,可做为燃料用来发电、烧锅炉、驱动机械等。
(5)消除恶臭污泥在厌氧消化过程,硫化氢分离出硫分子或与铁结合成为硫化铁,因此消化后的污泥不会再发出恶臭。
(6)提高污泥的卫生质量污泥中含有很多有毒物质如细菌、病原微生物、寄生虫卵,极不卫生。
污泥在消化过程中,产生的甲烷菌具有很强的抗菌作用,可杀死大部分病原菌以及其它有害微生物,使污泥卫生化。
2 保证厌氧消化池良好运行的主要设计条件要使投产使用的消化池具有良好的消化功能,设计阶段的优化是至关重要的。
工程设计人员不仅要基于生物反应过程的知识进行正确的设计,而所选择的池形和相应设备的选择也很重要。
生物系统只有在相应的物理边界条件下才能创造出最佳的运行效果。
为此,消化池的工艺设计应满足以下要求:(1)适宜的池形选择;(2)最佳的设计参数;(3)节能、高效、易操作维护的设备;(4)良好的搅拌设备,使池内污泥混合均匀,避免产生水力死角;(5)原污泥均匀投入并及时与消化污泥混合接种;(6)最小的热损失,及时的补充热量,最大限度避免池内温度波动;(7)消化池产生的沼气能及时从消化污泥中输导出去;(8)具有良好的破坏浮渣层和清除浮渣的措施;(9)具有可靠的安全防护措施;(10)可灵活操作的管道系统。
厌氧发酵工艺分析一、沼气池(厌氧消化器)采用技术分析和评价在我国已建成的沼气工程中,所采用的厌氧消化工艺,主要有以下四类,即塞流式消化器,升流式固体反应器,升流式厌氧污泥床和污泥床滤器。
1 塞流式反应器(Plug Flow Reactor,简称PFR)塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。
高浓度悬浮固体发酵原料从一端进入,从另一端排出。
优点:1不需要搅拌,池形结构简单,能耗低;2适用于高SS废水的处理,尤其适用于牛粪的厌氧消化,用于农场有较好的经济效益;3运行方便,故障少,稳定性高。
缺点:1固体物容易沉淀于池底,影响反应器的有效体积,使HRT和SRT降低,效率较低;2需要固体和微生物的回流作为接种物;3因该反应器面积/体积比较大,反应器内难以保持一致的温度;4易产生厚的结壳。
北京市大兴区留民营的鸡粪高温沼气工程采用了该反应器。
实践表明,该反应器耐粗放管理,采用高温(55℃)发酵,产气率较高,并且可以杀灭有害生物。
但因鸡粪沉渣较多,易生成沉淀而影响反应器的效率。
2 升流式固体反应器(Upflow Solids Reactor,简称USR)升流式固体反应器是一种结构简单、适用于高悬浮固体原料的反应器。
原料从底部进入消化器内,与消化器里的活性污泥接触,使原料得到快速消化。
未消化的生物质固体颗粒和沼气发酵微生物靠自然沉降滞留于消化器内,上清液从消化器上部溢出,这样可以得到比水力滞留期高得多的固体滞留期(SRT)和微生物滞留期(MRT),从而提高了固体有机物的分解率和消化器的效率。
首都师范大学利用USR进行了鸡粪沼气发酵研究,其进料浓度为TS=5%~6%,COD=42~55g/l,悬浮固体为45~55g/l,在35℃条件下,USR的负荷可达10kgCOD/m3•d,产气率4 88m3/m3•d,CH4含量60%左右,COD去除率85%左右,SS去除率为66 16%。
据计算当HRT为5天时SR T为25天。