Cபைடு நூலகம்
BD
(4) 以点A为圆心,m为半径画弧,交CD于点B;
(5) 连接AB.
△ABC即为所求作的三角形.
如图:已知AC=BD,∠C=∠D=90°.
求证:Rt∆ABC≌Rt∆BAD.
D
O
A
C B
1.应用斜边直角边(HL)定理判定两个三角 形全等,要按照定理的条件,准确地找出“对应 相等”的边;
2.寻找使结论成立所需要的条件时,要注意 充分利用图形中的隐含条件,如“公共边、公共 角、对顶角等等”.
作业;
习题5.6 3题4题5题
现在你有几种判定直角三角形
全等的方法?
前
1.边角边 简称 “SAS” 三 个
2.角边角 简称 “ASA” 是
3.边边边
简称 “SSS”
基 本
4.角角边 简称 “AAS” 事
实
如图,在Rt△ABC和Rt△A ´B ´C´中,∠C= ∠C =90°,AB=A ´B ´,AC=A ´C ´. 能证明Rt∆ABC ≌Rt∆A´B´C´吗?
先利用基本作图“过一点作已知直线的 垂线”,作出三角形的直角顶点C.再根据直角 边AC的长确定顶点A,最后根据斜边长作出 另一个顶点B.
已知:线段l,m(l<m).
l
求作Rt∆ABC,使直角边AC=l,斜边AB=m.
m
作法: E
(1)任取一点C,作射线CD; A
(2) 过点C作射线CE⊥CD;
(3) 在CE上截取CA=l;
A/ ( A )
B/
B
C/ ( C)
方法2 将两个直角三角形的斜边重合在一起, 你能证明这两个直角三角形全等吗?
B(B/)
C