概率统计试题
- 格式:docx
- 大小:15.93 KB
- 文档页数:2
第一章 概率统计基础知识第一节 概率基础知识一、单项选择题(每题的备选项中,只有1个最符合题意)ZL1A0001.已知5.0)(=A P ,6.0)(=B P ,8.0)(=⋃B A P ,可算得=)(AB P ( )。
A.0.2B.0.3C.0.4D.0.5ZL1A0002.已知已知3.0)(=A P ,7.0)(=B P ,9.0)(=⋃B A P ,则事件A 与B ( )。
A.互不兼容B.互为对立事件C.互为独立事件D.同时发生的概率大于0ZL1A0003.某种动物能活到20岁的概率为0.8,活到25岁的概率为0.4,如今已活到到20岁的这种动物至少能再活5年的概率是( )。
A. 0.3B. 0.4C. 0.5D. 0.6ZL1A0004.关于随机事件,下列说法正确的是( )。
A.随机事件的发生有偶然性与必然性之分,而没有大小之别B.随机事件发生的可能性虽有大小之别,但无法度量C.随机事件发生的可能性的大小与概率没有必然联系D.概率愈大,事件发生的可能性就愈大,相反也成立ZL1A0005.( )成为随机现象。
A.在一定条件下,总是出现相同结果的现象B.出现不同结果的现象C.在一定条件下,并不总是出现相同结果的现象D.不总是出现相同结果的现象ZL1A0006.关于样本空间,下列说法不正确的是( )。
A.“抛一枚硬币”的样本空间=Ω{正面,反面}B.“抛一粒骰子的点数”的样本空间=Ω{0,1,2,3,4,5,6}C.“一顾客在超市中购买商品件数”的样本空间=Ω{0,1,…}D.“一台电视机从开始使用到发生第一次故障的时间”的样本空间=Ω{0:≥t t } ZL1A0007.某企业总经理办公室由10人组成,现在从中选出正、副主任各一人(不兼职),将所有可能的选举结果构成样本空间,则其中包含的样本点共有( )个。
A. 4B.8C. 16D.90ZL1A0008.8件产品中有3件不合格品,每次从中随机抽取一只(取出后不放回),直到把不合格品都取出,将可能抽取的次数构成样本空间,则其中包含的样本点共有( )个。
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
高中概率统计试题及答案一、选择题(每题3分,共30分)1. 某班级有50名学生,其中男生30人,女生20人。
随机抽取1名学生,抽到男生的概率是多少?A. 0.4B. 0.5C. 0.6D. 0.72. 掷一枚均匀的硬币,连续掷两次,至少出现一次正面的概率是多少?A. 0.5B. 0.75C. 0.8D. 1.03. 一个袋子里有10个红球和20个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 2/5D. 3/54. 某工厂生产的产品中有5%是次品。
如果从一批产品中随机抽取100件,至少有1件次品的概率是多少?A. 0.95B. 0.975C. 0.99D. 1.005. 某城市每天下雨的概率为0.3,那么这个月(30天)至少下15天雨的概率是多少?A. 0.2B. 0.3C. 0.4D. 0.56. 某学校有5个班级,每个班级有40名学生。
如果随机选择一个班级,然后在该班级中随机选择一名学生,那么这名学生的学号是偶数的概率是多少?A. 0.2B. 0.25C. 0.5D. 0.757. 一个骰子连续掷两次,两次点数之和为7的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/38. 某次考试,学生通过的概率为0.8,那么一个班级中至少有80%的学生通过考试的概率是多少?A. 0.64B. 0.72C. 0.80D. 0.969. 某次抽奖活动,中奖的概率为0.01,那么一个人连续参加100次抽奖,至少中一次奖的概率是多少?A. 0.63B. 0.73C. 0.84D. 0.9510. 某公司有100名员工,其中5名是经理。
如果随机选择一名员工,那么这名员工是经理的概率是多少?A. 0.05B. 0.1C. 0.5D. 0.95答案:1-5 C B A B A 6-10 C A B C A二、填空题(每题2分,共20分)1. 概率的取值范围在0和1之间,即0 ≤ P(A) ≤ ______。
概率与统计试题一、选择题(每题2分,共40分)1. 在某个班级中,学生的身高服从正态分布,均值为165厘米,标准差为5厘米。
如果随机选择一个学生,他的身高大于170厘米的概率是多少?A. 0.1587B. 0.3413C. 0.0228D. 0.47722. 某电子产品的工厂生产的电视机中,有10%出现质量问题。
如果从中随机抽取4台电视机进行检验,未出现质量问题的概率是多少?A. 0.0001B. 0.0006C. 0.0072D. 0.12963. 甲、乙、丙三个城市的年降雨量分别为1000毫米、1200毫米、800毫米,标准差分别为200毫米、100毫米、150毫米。
要选择一个城市旅行,选择降雨量最稳定的城市是?A. 甲市B. 乙市C. 丙市D. 无法确定4. 某批次产品的质量指标服从正态分布,平均值为80,标准差为5。
为了保证质量,要求产品的质量指标不低于75。
该批次产品中,有多少比例的产品不符合要求?A. 0.0228B. 0.1587C. 0.3413D. 0.47725. 某班级有60名学生,其中30名男生,30名女生。
从中随机选择10名学生,其中恰好有5名男生的概率是多少?A. 0.0002B. 0.1908C. 0.2461D. 0.7539...二、计算题(每题10分,共60分)1. 已知某地每天发生交通事故的概率为0.2%,共有365天。
求该地每年发生交通事故2次的概率。
2. 某地有三家超市提供手机销售服务。
已知超市A的手机有10%出现质量问题,超市B的手机有5%出现质量问题,超市C的手机有8%出现质量问题。
今天小明在超市A购买了一部手机,发现手机质量问题。
已知小明购买手机是随机的,求小明购买到来自超市A的手机且质量有问题的概率。
3. 某学校的学生体重服从均值为60千克,标准差为10千克的正态分布。
有一位学生的体重为75千克,求其体重超过其他学生的概率。
4. 某批产品的长度服从均值为100厘米,标准差为5厘米的正态分布。
概率统计试题及答案一、选择题(每题5分,共20分)1. 以下哪项不是概率论的基本概念?A. 随机事件B. 必然事件C. 随机变量D. 函数答案:D2. 随机变量X服从标准正态分布,其概率密度函数为:A. f(x) = 1/√(2π)e^(-x^2/2)B. f(x) = 1/π(1+x^2)C. f(x) = 1/2e^(-|x|)D. f(x) = 1/√(2π)e^(-x^2)答案:A3. 以下哪个选项是大数定律的描述?A. 随着试验次数的增加,事件发生的概率趋近于其频率B. 随机变量的期望值等于其方差C. 随机变量的方差等于其期望值的平方D. 随着样本容量的增加,样本均值的分布趋近于正态分布答案:A4. 两独立随机变量X和Y的协方差为0,以下哪个结论是正确的?A. X和Y一定相互独立B. X和Y一定相关C. X和Y一定正相关D. X和Y一定负相关答案:A二、填空题(每题5分,共20分)1. 如果随机变量X的概率密度函数为f(x),则其期望E(X)等于______。
答案:∫xf(x)dx2. 概率P(A)表示事件A发生的______。
答案:概率3. 假设检验中的零假设通常用符号______表示。
答案:H04. 随机变量X的方差Var(X)是衡量X的______的度量。
答案:离散程度三、计算题(每题10分,共30分)1. 设随机变量X服从参数为λ的泊松分布,求X的期望和方差。
答案:期望E(X) = λ,方差Var(X) = λ。
2. 已知随机变量X和Y相互独立,X服从参数为μ和σ^2的正态分布,Y服从参数为μ'和σ'^2的正态分布,求Z=X+Y的期望和方差。
答案:E(Z) = μ + μ',Var(Z) = σ^2 + σ'^2。
3. 一个袋子里有5个红球和3个蓝球,不放回地随机抽取3个球,求至少抽到1个红球的概率。
答案:1 - (3/8)^3 = 0.9375。
高中概率统计试题及答案一、选择题(每题3分,共30分)1. 如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 3/5D. 2/5答案:C2. 一枚均匀的硬币连续抛掷两次,出现至少一次正面的概率是多少?A. 1/2B. 3/4C. 1/4D. 1/8答案:B3. 一个班级有30个学生,其中15个男生和15个女生。
随机抽取3名学生,抽到至少1名男生的概率是多少?A. 2/3B. 3/4C. 1/2D. 5/6答案:D4. 一个骰子投掷一次,得到偶数点数的概率是多少?A. 1/2B. 1/3C. 1/6D. 2/3答案:A5. 一个袋子里有3个白球和2个黑球,不放回地连续抽取两次,抽到一白一黑的概率是多少?A. 1/5B. 3/5C. 2/5D. 4/5答案:B6. 一个袋子里有2个红球,3个蓝球和5个绿球,随机抽取一个球,抽到蓝球的概率是多少?A. 1/5B. 3/10C. 1/2D. 1/4答案:B7. 一个班级有50名学生,其中20名是优秀学生。
随机抽取5名学生,抽到至少2名优秀学生的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.9答案:A8. 一个袋子里有5个红球和5个蓝球,随机抽取3个球,抽到至少2个红球的概率是多少?A. 1/2B. 2/3C. 1/3D. 1/4答案:B9. 一个骰子投掷两次,两次都是6点的概率是多少?A. 1/6B. 1/36C. 1/12D. 1/24答案:B10. 一个班级有40名学生,其中10名是优秀学生。
随机抽取4名学生,抽到至少1名优秀学生的概率是多少?A. 1B. 3/4C. 2/5D. 1/4答案:A二、填空题(每题4分,共20分)1. 一个袋子里有10个球,其中4个是红球,6个是蓝球。
随机抽取一个球,抽到红球的概率是________。
答案:2/52. 一个班级有50名学生,其中25名是女生。
初三概率统计试题及答案一、选择题(每题3分,共30分)1. 一个袋子里有5个红球和3个白球,随机抽取一个球,抽到红球的概率是多少?A. 0.5B. 0.6C. 0.8D. 0.4答案:B2. 抛一枚均匀的硬币,连续抛两次,两次都是正面朝上的概率是多少?A. 0.25B. 0.5C. 0.75D. 1答案:A3. 一个班级有50名学生,其中30名男生和20名女生,随机抽取一名学生,抽到女生的概率是多少?A. 0.4B. 0.5C. 0.6D. 0.3答案:D4. 一个袋子里有10个球,其中3个是红球,7个是蓝球,随机抽取一个球,抽到红球的概率是多少?A. 0.3B. 0.7C. 0.5D. 0.25答案:A5. 一个袋子里有5个红球和5个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 0.5B. 0.75C. 0.25D. 0.8答案:A6. 一个袋子里有3个红球和2个白球,随机抽取两个球,两个都是红球的概率是多少?A. 0.25B. 0.5C. 0.75D. 0.33答案:A7. 一个袋子里有4个红球和6个蓝球,随机抽取一个球,抽到蓝球的概率是多少?A. 0.6B. 0.4C. 0.5D. 0.3答案:A8. 一个袋子里有7个红球和3个白球,随机抽取一个球,抽到白球的概率是多少?A. 0.3B. 0.4C. 0.33D. 0.25答案:C9. 一个袋子里有10个球,其中5个是红球,5个是蓝球,随机抽取两个球,两个都是红球的概率是多少?A. 0.25B. 0.5C. 0.1D. 0.05答案:C10. 一个袋子里有6个红球和4个蓝球,随机抽取一个球,抽到蓝球的概率是多少?A. 0.4B. 0.6C. 0.5D. 0.25答案:A二、填空题(每题4分,共20分)1. 一个袋子里有8个红球和2个白球,随机抽取一个球,抽到红球的概率是________。
答案:0.82. 抛一枚均匀的硬币,连续抛三次,至少有一次正面朝上的概率是________。
<概率论〉试题一、填空题1.设 A、B、C是三个随机事件。
试用 A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,.则=3.若事件A和事件B相互独立,,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6。
设离散型随机变量分布律为则A=______________7。
已知随机变量X的密度为,且,则________ ________8。
设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11。
设,,则12.用()的联合分布函数F(x,y)表示13。
用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为 . 15。
已知,则=16。
设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20。
设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~ .21.设是独立同分布的随机变量序列,且, 那么依概率收敛于 .22。
设是来自正态总体的样本,令则当时~。
23。
设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A); (B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销",则其对立事件为(A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销"。
概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。
假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。
2. 至多有5件产品是不合格的。
试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。
2. X的方差Var(X)。
试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。
求:1. 该银行连续5天的总交易量超过500万元的概率。
2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。
试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。
2. 零件长度的95%置信区间。
试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。
品牌B:平均打印速度为每分钟55页,标准差为4页。
样本量均为30台打印机。
假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。
答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。
根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。
2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。
根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。
答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。
2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。
概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。
本文将提供一套概率统计的试题及答案,以供学习和复习之用。
一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。
答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。
答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。
答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。
答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。
答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。
概率统计试题
概率统计试题
一.选择填空
1. 设A B =Φ ,则下列选项成立的是______B_____。
(A )()()P A 1P B =- (B)(|)0P A B = (C)1P(A |B )= (D)0P(AB )=
2.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的是___________。
A
(A )0()1F x ≤≤ (B)0()1f x ≤≤ (C){}()P X x F x ==(D){}()P X x f x ==
3.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现2点的概率___D________。
(A) 3/6 (B)2/3 (C)1/6 (D) 1/3
4.已知DX=2,DY=1,且X 和Y 相互独立,则D(X-2Y)=_____C____。
(A)1 (B)-2 (C)6 (D)4
5.设)4,5.1(~N ξ,且,9599.0)75.1(=Φ,则P{-2<ξ<4}=___A______。
(A)0.8543 (B)0.1457 (C)0.3541 (D)0.2543
6.随机变量X 的分布函数为F(x),则Y=3X+1的分布函数为_____ ____。
(A))31(-y F (B) )13(+y F (C) 1)(3+y F (D) 3
1)(31-y F
7.有r 个球,随机地放在n 个盒子中(r ≤n),则某指定的r 个盒子中各有一球的概率为 1/cnr 。
8..已知3.0)(=B P ,7.0)(=?B A P ,且A 与B 相互独立,则=)(A P 。
9.设随机变量的概率密度21()01
qx x f x x -?>=?
≤?,则q=_1___。
10.设),2(~2σN X ,且2.0}42{=<<="" p="" ,则="<}0{X">
11. 随机变量)4,1(~N X ,)6,2(~N Y ,则~23Y X Z +=_______N
(7,33)_______。
12. D(ξ)=4, D(η)=9, 5.0=ξηρ,则D(ηξ+)=____7______。
二、一箱子有100件产品,其中一、二、三等品分别为80件,10件,10件. 现从中随机抽取一件,记:
1, 0,X ?=??若抽到一等品其它 1, 0,Y ?=??若抽到二等品其它
求(1)二维随机变量(X ,Y )的联合分布列及分别关于X 、Y 的边缘分布;
(2)求F(0,1),F (1/2,1/2)并判断X,Y 是否相互独立。
(满分15分)
三、设总体X 的概率密度为??
∈+=)1,0(,0)1,0(,)1(),(x x x x f θθθ 1θ>-为未知参数,
已知12,,,n X X X 是取自总体X 的一个样本,求:(1) 未知参数θ的矩估计量;
(2) 未知参数θ的极大似然估计量。
(满分10分)。