2017年湖南学业水平考试数学真题
- 格式:doc
- 大小:244.50 KB
- 文档页数:4
2017年湖南省普通高中学业水平考试数学(真题)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知一个几何体的三视图如图所示,则该几何体可以是( )A. 正方体B. 圆柱C. 三棱柱D. 球【答案】A【解析】【分析】 主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,即可求得答案. 【详解】主视图、左视图、俯视图都是正方形∴该几何体为正方体故选:A.【点睛】本题主要考查了根据三视图判断其立体图形,解题关键是掌握三视图的基础知识,考查了分析能力和空间想象能力,属于基础题.2.已知集合{}0,1A =,{}1,2B =,则A B 中元素的个数为( ) A. 1B. 2C. 3D. 4 【答案】C【解析】【分析】根据并集定义求得A B ,即可求得答案. 【详解】{}0,1A =,{}1,2B =∴{}{}{}0,11,20,1,2A B ==∴A B 中元素的个数为:3.故选:C.【点睛】本题主要考查了并集运算,解题关键是掌握并集定义,考查了分析能力和计算能力,属于基础题.3.已知向量(),1a x =,()4,2b =,()6,3c =.若c a b =+,则x =( )A. 10-B. 10C. 2-D. 2【答案】D【解析】【分析】因为(),1a x =,()4,2b =,()6,3c =,由向量和的坐标计算法则计算可得c a b =+,即可求得答案. 【详解】向量(),1a x =,()4,2b =, (4,3)a b x ∴+=+()6,3c =且=+c a b∴46x +=可得:2x =故选: D.【点睛】本题主要考查了向量和的坐标计算法则,解题关键是掌握向量坐标运算基础知识,考查了分析能力和计算能力,属于基础题.4.执行如图所示的程序框图,若输入x 的值为2-,则输出的y =( )A. 2-B. 0C. 2D. 4【答案】B【解析】【分析】 由已知中的程序框图可知:该程序的功能是利用条件结构计算并输出变量y 的值,模拟程序的运行过程,即可求得答案.【详解】由已知中的程序框图可知:该程序的功能是计算并输出分段函数:2,02,0x x y x x -≥⎧=⎨+<⎩ 输入x 的值为2-,20-< ∴()220y =+-=故输出结果是:0.故选:B.【点睛】本题主要考查了根据框图求输出结果,解题关键是掌握框图的基础知识,考查了分析能力和计算能力,属于基础题.5.在等差数列{}n a 中,已知1211a a +=,316a =,则公差d =( )A. 4B. 5C. 6D. 7【答案】D【解析】【分析】利用等差数列的通项公式,即可求得答案. 【详解】等差数列{}n a 中,已知1211a a +=,316a =,可得:11211216a d a d +=⎧⎨+=⎩ 解得:12,7a d ==故选:D.【点睛】本题主要考查了求等差数列公差,解题关键是掌握等差数列通项公式,考查了分析能力和计算能力,属于基础题.6.既在函数12()f x x =的图像上,又在函数1()g x x -=的图像上的点是( ) A. (0,0)B. (1,1)C. 1(2,)2D. 1(,2)2【答案】B【解析】【分析】根据幂函数的性质解答. 【详解】解:由幂函数y x α=图象恒过()1,1,故B 选项满足条件.故选B【点睛】本题考查幂函数的性质,属于基础题.7.如图所示,四面体ABCD 中,,E F 分别为,AC AD 的中点,则直线CD 跟平面BEF 的位置关系是( )A. 平行B. 在平面内C. 相交但不垂直D. 相交且垂直【答案】A【解析】【分析】根据条件可得//EF CD ,根据线面平行判断定理,即可求得答案. 【详解】ACD 中,E F 分别为,AC AD 的中点∴//EF CDCD ⊄平面BEF ,EF ⊂平面BEF∴//CD 平面BEF故选:A【点睛】本题主要考查了判断线面位置关系,解题关键是掌握线面平行判定定理,考查了分析能力和空间想象能力,属于基础题.8.已知()sin2sin ,0,θθθπ=∈,则cos θ=( )A. B. 12- C. 12 D. 【答案】C【解析】【分析】因为()sin2sin ,0,θθθπ=∈,根据正弦二倍角公式,即可求得答案. 【详解】sin 2sin θθ=根据正弦二倍角公式可得:2sin cos sin θθθ=()0,θπ∈∴sin 0θ≠∴2cos 1θ=,即1cos 2θ=故选:C. 【点睛】本题主要考查了求三角函数值,解题关键是掌握正弦二倍角公式,考查了分析能力和计算能力,属于基础题.9.已知221log ,1,log 42a b c ===,则( ) A. a b c <<B. b a c <<C. c a b <<D. c b a <<【答案】A【解析】【分析】根据对数运算化简221log ,log 42a c ==,即可求得答案. 【详解】122log 2log 21a -==-=-222222g 2lo log c ===又1b =∴a b c <<故选:A.【点睛】本题主要考查了对数化简和比较对数大小,解题关键是掌握对数运算基础知识,考查了分析能力和计算能力,属于基础题. 10.如图所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( )A. 45B. 35C. 12D. 25【答案】B【解析】【分析】设阴影部分的面积大约为S ,由已知可得正方形面积为1,在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,可得60011000S =,即可求得答案. 【详解】设阴影部分的面积大约为S ,由已知可得正方形面积为1,在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内 ∴6001135000S == ∴35S =. ∴阴影部分的面积大约是35. 故选: B.【点睛】本题主要考查了根据概率估计面积问题,解题关键是掌握概率的定义和根据概率估计面积的解题方法,考查了分析能力和计算能力,属于基础题.二、填空题:本大题共5小题。
湖南省2009年普通高中学业水平考试数 学一、选择题1. 已知集合A={-1,0,1,2},B={-2,1,2}则A B=(A{1} B.{2} C.{1,2} D.{-2,0,1,2} 2.若运行右图的程序,则输出的结果是 ( ) , B. 9 C. 133.将一枚质地均匀的 子抛掷一次,出现“正面向上的点数为6”的概率是( ) A.31 B.41 C.51 D.61 4.4cos4sinππ的值为( )A.21B.22C.42D.25.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( ) =-4x-7 =4x-7 =-4x+7 =4x+76.已知向量),1,(),2,1(-==x b a 若⊥,则实数x 的值为( )7.已知函数f(x)的图像是连续不断的,且有如下对应值表: 在下列区间中,函数f(x)必有零点的区间为 ( ) A.(1,2) B.(2,3) C.(3,4) D. (4,5)8.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( ) A.相交 B.相切 C.相离 D.不能确定 9.下列函数中,在区间(0,+∞)上为增函数的是( ) A.xy )31(= =log 3x C.xy 1= =cosx10.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )二、填空题11.已知函数f(x)=⎩⎨⎧<+≥-),0(1)0(2x x x x x 则f(2)=___________.12.把二进制数101(2)化成十进制数为____________.13.在△ABC 中,角A 、B 的对边分别为a,b,A=600,a=3,B=300,则b=__________. 14.如图是一个几何体的三视图,该几何体的体积为_________.15.如图,在△ABC 中,M 是BC 的中点,若,AM AC AB λ=+则实数λ=________.三、解答题16.已知函数f(x)=2sin(x-3π), (1)写出函数f(x)的周期;(2)将函数f(x)图像上所有的点向左平移3π个单位,得到函数g(x)的图像,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.2 223 3ABMC17.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.右表是这100位居民月均用水量(单位:吨)的频率分布表,根据右表解答下列问题:(1)求右表中a 和b 的值;(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18.在四棱锥P-ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AB. (1)求证:BD ⊥平面PAC ; (2)求异面直线BC 与PD 所成的角.分组 频数 频率 [0,1) 10 [1,2) a [2,3) 30 [3,4) 20 b [4,5) 10 [5,6) 10 合计10010 1 2 3 4 5 6频率/组距 月均用水量BCDAP19.如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米(2≤x ≤6). (1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元, 请将墙壁的总造价y(元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低20.在正项等比数列{a n }中,a 1=4,a 3=64. (1)求数列{a n }的通项公式a n ;(2)记b n =log 4a n ,求数列{b n }的前n 项和S n ;(3)记y=-λ2+4λ-m,对于(2)中的S n ,不等式y ≤S n 对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围.AEx湖南省2009年普通高中学业水平考试参考答案数 学一、选择题二、填空题π 三、解答题 16.(1)2π(2)g(x)=2sinx ,奇函数. 17.(1)a=20,b= (2)吨 18.(1)略 (2)450 19.(1)AB=24/x; (2)y=3000(x+x16) (3)x=4,y min =24000. 20.(1)a n =4n ; (2)S n =2)1(+n n (3)m ≥3.2010年湖南省普通高中学业水平考试试卷数 学本试卷包括选择题、填空题和解答题三部分,共3页。
【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数 【考点】科学计数法 4.【答案】C【解析】解:A.既不是轴对称图形,也不是中心对称图形,故本选项错误;B.是轴对称图形,不是中心对称图形,故本选项错误;C.既是轴对称图形,又是中心对称图形,故本选项正确;D.不是轴对称图形,是中心对称图形,故本选项错误.故选C.【提示】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【考点】中心对称图形,轴对称图形的判定 5.【答案】B【解析】解:设三角形的三个内角的度数之比为x 、2x 、3x ,则23180x x x ︒++=,解得,30x ︒=,则390x ︒=,∴这个三角形一定是直角三角形故选:B. 【提示】根据三角形内角和等于180︒计算即可.【解析】解:∵直线a b ∥,∴31110∠=∠=,∴218011070∠=-=故选B.为O 的直径,,设O 的半径为1BE x -=-22(1)x +-,∴O 的半径为,故答案为:OC ,由垂径定理知,点可得到关于半径的方程,求得圆半径即可【考点】垂径定理xx>20.【答案】2x>,将解集表示在数轴上如下:集为221.【答案】(1)0.3a=45b =︒(3)列树形图得:1(3)将同一班级的甲、乙学生记为A 、B ,另外两学生记为C 、D ,列树形图得:22.【答案】(1)30APB ︒∠= sin6050PB ︒=【提示】(1)在ABP △中,求出PAB ∠、PBA ∠的度数即可解决问题; (2)作PH AB ⊥于H .求出PH 的值即可判定; 【考点】解直角三角形的应用 23.【答案】(1)证明见解析(2)2πS =阴影与O 相切于点AOC BOC ∠=∠BC =3(2)1017500v m =+80125m ≤≤(3)①当100a ->时,125m =时,最大利润为(18750125)a -元.25.【答案】(1)不能,理由见解析 (2)t 的值为4-、2-或2 (3)①证明见解析 OP <≤1OP ≠次函数,利用二次函数的性质可求得2OP 的取值范围,从而可求得OP 的取值范围. 【考点】新定义的理解与运用,一次函数,二次函数的性质.26.【答案】(1)14m =(2)点D 的坐标为(8,16)m -11 / 11。
7.向量a(1,m),b(3,1),假设ab,那么mA.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x〔个〕的回归方程为y0.67x51.401 / 48A.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x y0.67x51.A.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x y0.67x51.A.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x y0.67x51.A.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x y0.67x51.A.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x y0.67x51.A.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x y0.67x51.A.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x y0.67x51.A.3B.1C.1D.38.函数yx(xa)的图象如图3所示,那么不等式x(xa)0的解集为A.{x|0x2}B.{x|0x2}C.{x|x0或x2}D.{x|x0或x2}9.两直线x2y0和xy30的交点为M,那么以点M为圆心,半径长为1的圆的方程是A.22(x1)(y2)1B.22(x1)(y2)1C.22(x2)(y1)1D.22(x2)(y1)110.某社区有300户居民,为了解该社区居民的用水情况,从中随机抽取一局部住户某年每月的用水量(单位:t)进展分析,得到这些住户月均用水量的频率分布直方图〔如图4〕,由此可以估计该社区居民月均用水量在[4,6)的住户数为A.50B.80C.120D.150二、填空题:本大题共5小题,每题4分,总分值2,0分.11.假设sin5cos,那么tan____________.12.直线l1:3xy20,l2:mxy10.假设l1//l2,那么m________.13.幂函数yx〔为常数〕的图象经过点A(4,2),那么________.14.在ABC中,角A,B,C的对边分别为a,b,c.假设a2,b3,1 cosC,那么4c_______.15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此收集假设干数据,并对数据进展分析,得到加工时间y(min)与零件数x y0.67x51.。
2017年湖南省普通高中学业水平考试数学(真题)本试卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分100分。
一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知一个几何体的三视图如图1所示,则该几何体可以是( ) A 、正方体 B 、圆柱 C 、三棱柱 D 、球2.已知集合A={}1,0,B={}2,1,则B A ⋃中元素的个数为( ) A 、1 B 、2 C 、3 D 、43.已知向量a =(x,1),b =(4,2),c =(6,3).若c=a+b ,则x=( ) A 、-10 B 、10 C 、-2 D 、24.执行如图2所示的程序框图,若输入x 的值为-2,则输出的y=( ) A 、-2 B 、0 C 、2D 、45.在等差数列{}n a 中,已知1121=+a a ,163=a , 则公差d=( )A 、4B 、5C 、6D 、7 6.既在函数21)(x x f =的图像上,又在函数1)(-=x x g 的图像上的点是( )A 、(0,0)B 、(1,1)C 、(2,21)D 、(21,2)7.如图3所示,四面体ABCD 中,E,F 分别为AC,AD 的中点, 则直线CD 跟平面BEF 的位置关系是( ) A 、平行 B 、在平面内 C 、相交但不垂直 D 、相交且垂直8.已知sin 2sin ,(0,)θθθπ=∈,则cos θ=( ) A 、23- B 、21- C 、21D 、23 9.已知4log ,1,21log 22===c b a ,则( )(图1)俯视图侧视图正视图图3BDA图2结束输出yy=2+xy=2-xx ≥0?输入x开始否是A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<10、如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内, 则用随机模拟方法计算得阴影部分的面积为( )A 、 54B 、53C 、21D 、52二、填空题:本大题共5小题,每小题4分,共20分。
1D 、 ( , 2) 1)27.如图3所示,四面体ABCD 中, E,F 分别为AC,AD 的中点,则直线CD 跟平面BEF 的位置关系是()平行在平面内 相交但不垂直 相交且垂直 A (0,0) B 、( 1,1)C 、(2, A B 、 C8.已知Sin 2 / = Sin(0 ,c.),贝U cos = ().31 亠1、3AB、- —CD、 -22229.已知a = log 1 M r2,b = 1,c = log 2 4 ,贝9( )2A a :::B 、 b :: a ::C C 、c :::D 、 c ::2017年湖南省普通高中学业水平考试数学(真题)本试卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分100分。
一、选择题:本大题共10小题,每小题 只有一项是符合题目要求的。
4分,共40分,在每小题给出的四个选项中, 1. 已知一个几何体的三视图如图1所示,则该几何体可以是() A 正方体 B 、圆柱 C 、三棱柱 D 、球2. 已知集合A=0,1 B=I 1,2二则A B 中元素的个数为()A 1B 、2C 、3D 、43. 已知向量 a=(x,1), b=(4,2),c=(6,3).若 c=a+b,则 x=() A -10 B 、10 C 、-2 D 、2俯视图 (图1)4. 执行如图2所示的程序框图,若输入X 的值为-2 ,则输出的y= () A -2 B 、 0 C 、 2 D 45. 在等差数列^n /中,已知a 1 ■ a2=11 ,日 3 =16 ,则公差d=()A 4B 、5C 、6D 、716. 既在函数f (x ) = X 2的图像上,又在函数g (x ) = X 亠的图像上的点是()正视图侧视图开始:D10、如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为 -------------- ()4 (3)IA B、—55C 、1D2、—25__________________、填空题:本大题共5小题,每小题4分,共20分图411.已知函数f (X) =COS .,X,X. R(其中.0 )的最小正周期为二,贝U _____12. ___________________________________ 某班有男生30人,女生20人,用分层抽样的方法从该班抽取 5人参加社区服务, 则抽出的学生中男生比女生多人。
2017年某某省普通高中学业水平考试数学〔真题〕本试卷包括选择题、填空题和解答题三局部,共4页,时量120分钟,总分为100分。
一、选择题:本大题共10小题,每一小题4分,共40分,在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.一个几何体的三视图如图1所示,如此该几何体可以是〔 〕 A 、正方体 B 、圆柱 C 、三棱柱 D 、球2.集合A={}1,0,B={}2,1,如此B A ⋃中元素的个数为〔 〕 A 、1 B 、2 C 、3 D 、4 a =(x,1),b =(4,2),c =(6,3).假如c=a+b ,如此x=( ) A 、-10 B 、10 C 、-2 D 、24.执行如图2所示的程序框图,假如输入x 的值为-2,如此输出的y=〔 〕 A 、-2 B 、0 C 、2 D 、4{}n a 中,1121=+a a ,163=a ,如此公差d=〔 〕A 、4B 、5C 、6D 、721)(x x f =的图像上,又在函数1)(-=x x g 的图像上的点是〔 〕(图1)俯视图侧视图正视图图2结束输出yy=2+xy=2-x x ≥0?输入x开始A 、〔0,0〕B 、〔1,1〕C 、〔2,21〕 D 、〔21,2〕 7.如图3所示,四面体ABCD 中,E,F 分别为AC,AD 的中点,如此直线CD 跟平面BEF 的位置关系是〔 〕 A 、平行 B 、在平面内 C 、相交但不垂直 D 、相交且垂直),0(,sin 2sin π∈∂∂=∂,如此∂cos =〔 〕A 、23-B 、21-C 、21D 、234log ,1,21log 22===c b a ,如此〔 〕A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<10、如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影局部内,如此用随机模拟方法计算得阴影局部的面积为〔 〕A 、54B 、53C 、21D 、52二、填空题:本大题共5小题,每一小题4分,共20分。
2017年省普通高中学业水平考试数学〔真题〕本试卷包括选择题、填空题和解答题三局部,共4页,时量120分钟,总分值100分。
一、选择题:本大题共10小题,每题4分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.一个几何体的三视图如图1所示,那么该几何体可以是〔 〕 A 、正方体 B 、圆柱 C 、三棱柱 D 、球2.集合A={}1,0,B={}2,1,那么B A ⋃中元素的个数为〔 〕 A 、1 B 、2 C 、3 D 、4 3.向量a =(x,1),b =(4,2),c =(6,3).假设c=a+b ,那么x=( ) A 、-10 B 、10 C 、-2 D 、24.执行如图2所示的程序框图,假设输入x 的值为-2,那么输出的y=〔 〕 A 、-2 B 、0 C 、2 D 、45.在等差数列{}n a 中,1121=+a a ,163=a ,那么公差d=〔 〕 A 、4 B 、5 C 、6 D 、76.既在函数21)(x x f =的图像上,又在函数1)(-=x x g 的图像上的点是〔 〕(图1)俯视图侧视图正视图图2结束输出yy=2+xy=2-x x ≥0?输入x开始A 、〔0,0〕B 、〔1,1〕C 、〔2,21〕 D 、〔21,2〕 7.如图3所示,四面体ABCD 中,E,F 分别为AC,AD 的中点,那么直线CD 跟平面BEF 的位置关系是〔 〕 A 、平行 B 、在平面 C 、相交但不垂直 D 、相交且垂直8.),0(,sin 2sin π∈∂∂=∂,那么∂cos =〔 〕A 、23-B 、21-C 、21D 、239.4log ,1,21log 22===c b a ,那么〔 〕A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<10、如图4所示,正方形的面积为1.在正方形随机撒1000粒豆子,恰好有600粒豆子落在阴影局部,那么用随机模拟方法计算得阴影局部的面积为〔 〕 A 、54B 、53C 、21D 、52二、填空题:本大题共5小题,每题4分,共20分。
湖南省2017学业水平考试数学(真题含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2017年湖南省学业水平考试(真题)数 学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分100分。
一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知一个几何体的三视图如图1所示,则该几何体可以是()A 、正方体B 、圆柱C 、三棱柱D 、球2.已知集合{0,1},{1,2}A B == ,则B A 中元素的个数为( )A 、1B 、2C 、3D 、43.已知向量,若,则(,1),(4,2),(6,3)a x b c === ,若c a b =+ ,则x = ( )A 、-10B 、10C 、-2D 、24.执行如图2所示的程序框图,若输入x 的值为-2,则输出的y =( )A 、-2B 、0C 、2D 、45.在等差数列{}n a 中,已知12311,16a a a +== ,则公差d = ( )A 、4B 、5C 、6D 、76.既在函数12()f x x = 的图象上,又在函数1()g x x -= 的图象上的点是 A 、(0,0) B 、(1,1) C 、(12,2 ) D 、(1,22) 7.如图3所示,四面体ABCD 中,E,F 分别为AC,AD 的中点,则直线CD 与平面BEF 的位置关系是( )A 、平行B 、在平面内C 、相交但不垂直D 、相交且垂直8.已知sin 2sin ,(0,)αααπ=∈ ,则cos α=( )A 、 32-B 、12-C 、12D 、32 9.已知14222log ,1,log a b c === ,则A 、 a b c <<B 、b a c <<C 、c a b <<D 、c b a <<10.如图4所示,正方形的面积为1,在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( )A 、 45B 、35C 、12D 、25二、填空题:本大题共5小题,每小题4分,共20分.11.已知函数()cos ,f x x x R ω=∈ (其中0ω>)的最小正周期为π ,则ω= .12.某班有男生30人,女生20人,用分层抽样的方法从该班抽取5人参加社区服务,则抽出的学生中男生比女生多 人。
2017年湖南省普通高中学业水平考试
数学(真题)
本试卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分100分。
一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知一个几何体的三视图如图1所示,则该几何体可以是( ) A 、正方体 B 、圆柱 C 、三棱柱 D 、球
2.已知集合A={}1,0,B={
}2,1,则B A ⋃中元素的个数为( ) A 、1 B 、2 C 、3 D 、4
3.已知向量a =(x,1),b =(4,2),c =(6,3).若c=a+b ,则x=( ) A 、-10 B 、10 C 、-2 D 、2
4.执行如图2所示的程序框图,若输入x 的值为-2,则输出的y=( ) A 、-2 B 、0 C 、2 D 、4
5.在等差数列{}n a 中,已知1121=+a a ,163=a ,则公差d=( ) A 、4 B 、5 C 、6 D 、7
6.既在函数2
1)(x x f =的图像上,又在函数1)(-=x x g 的图像上的点是( )
A 、(0,0)
B 、(1,1)
C 、(2,
21) D 、(2
1
,2) 7.如图3所示,四面体ABCD 中,E,F 分别为AC,AD 的中点,则直线CD 跟平面BEF 的位置关系是( ) A 、平行 B 、在平面内 C 、相交但不垂直 D 、相交且垂直
8.已知),0(,sin 2sin π∈∂∂=∂,则∂cos =( ) A 、23- B 、21- C 、2
1
D 、23
9.已知4log ,1,2
1
log 22===c b a ,则( )
A 、c b a <<
B 、c a b <<
C 、b a c <<
D 、a b c <<
(图1)
俯视图侧视图
正视图图3
B
D
A
图2
结束输出y
y=2+x
y=2-x x ≥0?
输入x
开始
10、如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( )
A 、54
B 、53
C 、21
D 、52
二、填空题:本大题共5小题,每小题4分,共20分。
11. 已知函数R x x x f ∈=,cos )(ω(其中0>ω)的最小正周期为π,
则=ω
12.某班有男生30人,女生20人,用分层抽样的方法从该班抽取5人参加社区服务,则抽出的学生中男生比女生多 人。
13. 在ABC ∆中,角A,B,C 所对的边分别为a,b,c.已知a=4,b=3,1sin =C ,则ABC ∆的面积为 。
14. 已知点A (1,m )在不等式组⎪⎩
⎪
⎨⎧<+>>4,0,0y x y x 表示的平面区域内,则实数m 的取值范围
为 。
15. 已知圆柱1OO 及其侧面展开图如图所
示,则该圆柱的体积为 。
三、解答题:本大题共有5小题,共40分。
解答题应写出文字说明、证明过程或演算步骤。
16. (本小题满分6分)
已知定义在区间[]ππ,-上的函数x x f sin )(=的部分函数图象如图所示。
(1)将函数)(x f 的图像补充完整; (2)写出函数)(x f 的单调递增区间.
17. (本小题满分8分)已知数列{}n a 满足)(3*1N n a a n n ∈=+,且62=a .
图
4
(1)求1a 及n a ;
(2)设2-=n n a b ,求数列{}n b 的前n 项和n S .
18. (本小题满分8分)为了解数学课外兴趣小组的学习情况,从某次测试的成绩中随机抽取20名学生的成绩进行分析,得到如图7所示的频率分布直方图, (1)根据频率分布直方图估计本次测试成绩的众数;
(2)从成绩不低于80分的两组学生中任选2人,求选出的两人来自同一组的概率.
、
19. (本小题满分8分)
已知函数⎩
⎨⎧≥+-<=.0,)1(2,
0,2)(2
x m x x x f x (1)若m= -1,求)0(f 和)1(f 的值,并判断函数)(x f 在区间(0,1)内是否有零点; (2)若函数)(x f 的值域为[-2,∞+),求实数m 的值.
20. (本小题满分10分)
已知O 为坐标原点,点P (1,2)在圆M :014-22=+++ay x y x 上, (1)求实数a 的值;
(2)求过圆心M 且与直线OP 平行的直线的方程;
(3)过点O 作互相垂直的直线21,l l ,1l 与圆M 交于A,B 两点,2l 与圆M 交于C,D 两点,求CD AB •的最大值.。