2008年秋九年级数学期末测试试卷(3)
- 格式:doc
- 大小:547.00 KB
- 文档页数:4
(第2题)(第3题)(第6题)九年级数学期末模拟精品测试题及答案,精品3套九年级上全册精品试卷(满分:150分)一、选择题。
(本题共10个小题,每小题4分,共40分)1、2010上海世博会刚刚圆满闭幕,下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、 B、 C、 D、2、如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A、、、cm3、图中∠BOD的度数是()A、55°B、110°C、125° D.150°4、若x<0,则xxx2-的结果是()A.0 B.-2 C.0或-2 D.25、下列各式中,最简二次根式是()A、32B、22+a C、a8 D、23a6、我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O 于A、B两点,PC•切⊙O于点C,则点P到⊙O的距离是()A、线段PO的长度B、线段PA的长度C、线段PB的长度 D、线段PC的长度7、下列命题错误..的是()A、经过三个点一定可以作圆B、三角形的外心到三角形各顶点的距离相等C、同圆或等圆中,相等的圆心角所对的弧相等D、经过切点且垂直于切线的直线必经过圆心8、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,(第8题)(第14题)(第15题)(第16题)∠AOD =90°,则∠B 的度数是( )A 、500B 、400C 、450D 、6009、已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .410、若m,n 是方程020102=--x x 的两根,则代数式)20102()20102(22++-⨯--n n m m 的值为( ).A .-2010 B.2010 C.0 D.1二、填空题。
2024-2025学年九年级数学上学期期末模拟卷(全国通用)(考试时间:120分钟,分值:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.测试范围:人教版九年级上、下册。
4.难度系数:0.65。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示的是一个由5块大小相同的小正方体搭建成的几何体,则它的主视图是( )A.B.C.D.【答案】A【解析】从正面看,底层是三个小正方形,上层的左边是一个小正方形,故选A.2.一元二次方程2230x x-+=的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C .只有一个实数根D .没有实数根【答案】D 【解析】224(2)41380b ac D =-=--´´=-<,所以方程无实数根,故选D .3.如图,△ABC 的三个顶点都在正方形网格的格点上,则tan BAC Ð的值为( )A .1B .45C .43D .34【答案】C 【解析】由图得:4BC =,3AC =,90ACB Ð=°,\4tan 3BC BAC AC Ð==,故选C .4.一个不透明的布袋里装有3个红球、1个黑球、若干个白球.从布袋中随机摸出一个球,摸出的球是红球的是概率是310,袋中白球共有( )A .4个B .5个C .6个D .7个【答案】C【解析】设白球有x 个,根据题意,得333110x =++,解得:6x =,经检验6x =是方程的解,即袋中白球有6个,故选C .5.如图,四边形ABCD 内接于O e ,E 为BC 延长线上一点,连接OD ,OB ,若//OD BC ,且OD BC =,则BOD Ð的度数是( )A .65°B .115°C .130°D .120°【答案】D 【解析】//OD BC Q ,且OD BC =,\四边形OBCD 是平行四边形,BOD BCD \Ð=Ð,12BAD BOD Ð=ÐQ ,180BCD A Ð+Ð=°,\11802BOD BOD Ð+Ð=°,解得120BOD Ð=°,故选D .6.对于二次函数24(6)5y x =-+-的图象,下列说法正确的是( )A .图象与y 轴交点的坐标是(0,5)-B .对称轴是直线6x =C .顶点坐标为(6,5)-D .当6x <-时,y 随x 的增大而增大【答案】D【解析】二次函数的顶点式为2()y a x h k =-+,\将0x =代入24(6)5y x =-+-中得149y =-,\图象与y 轴得交点为(0,149)-,故A 项不符合题意;对称轴为6x =-,顶点坐标为(6,5)--,故B ,C 两项不符合题意;40a =-<,图象开口向下,\当6x <-时,y 随x 的增大而增大,故D 项符合题意.故选D .7.如图,ABC D 中,80C Ð=°,4AC =,6BC =.将ABC D 沿图示中的虚线剪开,按下面四种方式剪下的阴影三角形与原三角形相似的是( )A .①②③B .②③④C .①②D .④【答案】A【解析】①阴影部分的三角形与原三角形有两个角相等,故两三角形相似;②阴影部分的三角形与原三角形有两个角相等,故两三角形相似;③413-=,642-=,6432=,两三角形对应边成比例且夹角相等,故两三角形相似;④两三角形的对应边不成比例,故两三角形不相似.故选A .8.如图,正六边形ABCDEF 内接于O e ,O e 的半径是1,则正六边形ABCDEF 的周长是( )A .B .6C .D .12【答案】B 【解析】如图,连接OA ,OB .在正六边形ABCDEF 中,1OA OB =,360606AOB °Ð==°,OAB \D 是等边三角形,1AB OA \==,\正六边形ABCDEF 的周长是166´=.故选B .9.关于反比例函数4y x=-,点(,)a b 在它的图象上,下列说法中错误的是( )A .当0x <时,y 随x 的增大而增大B .图象位于第二、四象限C .点(,)b a 和(,)b a --都在该图象上D .当1x <-时,2y <【答案】D【解析】A .40k =-<Q ,\当0x <时,y 随x 的增大而增大,选项A 不符合题意;B .40k =-<Q ,\反比例函数4y x =-的图象位于第二、四象限,选项B 不符合题意;C .Q 点(,)a b 在反比例函数4y x=-的图象上,4ab \=-,\点(,)b a 和(,)b a --都在反比例函数4y x =-的图象上,选项C 不符合题意;D .当1x =-时,441y =-=-,且当0x <时,y 随x 的增大而增大,\当1x <-时,4y <,选项D 符合题意.故选D .10.如图,反比例函数(0)k y x x=>图象经过正方形OABC 的顶点A ,BC 边与y 轴交于点D ,若正方形OABC 的面积为12,2BD CD =,则k 的值为( )A .3B .185C .165D .103【答案】B 【解析】过B 作BH x ^轴于H ,过A 作AM x ^轴于M ,CN BH ^于N ,交y 值于E ,如图,Q 四边形OABC 是正方形,OA OC \=,90AOC Ð=°,90COE AOE AOE AOM \Ð+Ð=Ð+Ð=°,COE AOM \Ð=Ð,在COE D 与AOM D 中,COE AOM CEO AMO OC OA Ð=ÐìïÐ=Ðíï=î,()AOM COE AAS \D @D,OM OE \=,AM CE =,同理,COE BCN D @D ,CN OE \=,BN CE =,//BH y Q 轴,\CD CE BC CN =,2BD CD \=,\13CE CN =,\13CE AM OE OM ==,222OA OM AM =+Q ,正方形22129AM AM \=+,AM \=OM \=,A \,Q 反比例函数(0)k y x x =>图象经过正方形OABC 的顶点A ,185k \==,故选B .第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分。
九年级(上)期末数学试卷一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<23.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.64.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm25.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4二、填空题9.一元二次方程x2=3x的解是:.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.2017-2018学年云南省红河州九年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【点评】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<2【考点】根的判别式;一元一次方程的解;一元二次方程的定义.【分析】分类讨论:当m=0,方程变形为﹣4x+2=0,一元一次方程有实数解;当m≠0,根据判别式的意义得到△=(﹣4)2﹣4m×2≥0,解得m≤2,然后综合两种情况即可.【解答】解:当m=0,方程变形为﹣4x+2=0,方程的解为x=;当m≠0,△=(﹣4)2﹣4m×2≥0,解得m≤2;综上所知当m≤2时,方程有实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.6【考点】垂径定理的应用;勾股定理.【分析】过O作OD⊥AB交AB于C,交圆于点D,根据垂径定理求出BC的长,再根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.【解答】解:过O作OD⊥AB交AB于C,交圆于点D,如图所示:∴OD=OB=10,∵AB=16,∴由垂径定理得:BC=AB=8,∴OC===6,∴CD=OD﹣OC=10﹣6=4.故选A.【点评】本题考查了垂径定理的应用、勾股定理等知识;熟练掌握垂径定理与勾股定理是解决问题的关键.4.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm2【考点】正多边形和圆.【分析】根据正六边形的边长等于半径进行解答即可.【解答】解:∵正六边形内接于半径为2cm的圆内,∴正六边形的半径为2cm,∵正六边形的半径等于边长,∴正六边形的边长a=2cm;∴正六边形的面积S=6××2×2sin60°=6cm2.故选B.【点评】本题考查的是正六边形的性质,熟知正六边形的边长等于半径是解答此题的关键.5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】根据x1、x2与对称轴的大小关系,判断y1、y2的大小关系.【解答】解:∵y=﹣2x2﹣8x+m,∴此函数的对称轴为:x=﹣=﹣=﹣2,∵x1<x2<﹣2,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y2.故选:A.【点评】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.【考点】二次函数的图象;一次函数的图象.【分析】可根据a>0时,﹣a<0和a<0时,﹣a>0分别判定.【解答】解:当a>0时,﹣a<0,二次函数开口向上,当b>0时一次函数过一,二,四象限,当b <0时一次函数过二,三,四象限;当a<0时,﹣a>0,二次函数开口向下,当b>0时一次函数过一,二,三象限,当b<0时一次函数过一,三,四象限.所以B正确.故选:B.【点评】本题主要考查了二次函数及一次函数的图象,解题的关键是根据a,b的取值来判定二次函数及一次函数的图象的正误.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4【考点】平面展开-最短路径问题.【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P 在展开图中的距离,就是这只小猫经过的最短距离.【解答】解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是3m.故选C.【点评】本题考查的是平面展开﹣最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键.二、填空题9.一元二次方程x2=3x的解是:x1=0,x2=3.【考点】解一元二次方程-因式分解法.【分析】利用因式分解法解方程.【解答】解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.【点评】本题考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为y=3(x+2)2﹣5.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=3x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律得到点(0,﹣2)平移后所得对应点的坐标为(﹣2,﹣5),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(﹣2,﹣5),所以所得抛物线的解析式为y=3(x+2)2﹣5.故答案为y=3(x+2)2﹣5.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为13.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故答案为:13.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为(﹣3,2).【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】如图,作PQ⊥y轴于点Q,由P点坐标得PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,根据旋转的性质得∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,然后根据第二象限点的坐标特征可写出P′点的坐标.【解答】解:如图,作PQ⊥y轴于点Q,∵点P坐标为(﹣2,3),∴PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,∴∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,∴P′点的坐标为(﹣3,2).故答案为(﹣3,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把点旋转的问题转化为直角三角形旋转的问题和画出旋转图形.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.【考点】抛物线与x轴的交点;一次函数的性质.【专题】分类讨论.【分析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.【点评】此题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【专题】压轴题.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点评】此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.【考点】实数的运算;平方根;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出解;(2)原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义计算,第三项利用负整数指数幂、零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果.【解答】解:(1)开方得:2x﹣3=3或2x﹣3=﹣3,解得:x1=3,x2=0;(2)原式=﹣1﹣+1+4﹣2=4﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.【考点】根的判别式;根与系数的关系.【专题】计算题.【分析】(1)先计算出△=(m+2)2﹣4(2m﹣1),变形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则△>0,然后根据△的意义得到方程有两个不相等的实数根;(2)利用根与系数的关系得到x1+x2=0,即m+2=0,解得m=﹣2,则原方程化为x2﹣5=0,然后利用直接开平方法求解.【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程和根与系数的关系.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?【考点】一元二次方程的应用.【专题】销售问题.【分析】首先根据1月份和3月份的销售量求得月平均增长率,然后求得4月份的销量即可【解答】解:设前4个月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.【点评】本题考查了一元二次方程的应用,解题关键是根据题意列出方程,这也是本题的难点.20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.【考点】作图-旋转变换;作图-轴对称变换.【专题】计算题;作图题.【分析】(1)根据关于x轴对称的点的坐标特征,写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2;(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可;(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2BC2的面积.【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==,所以C点旋转到C2点所经过的路径长==π;(4)△A2BC2的面积=3×3﹣×1×2﹣×1×3﹣×2×3=.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式,结合摸出一个球是白球的概率为求出答案;(2)采用列表法或树状图法,解题时要注意是放回实验还是不放回实验.【解答】解:(1)设蓝球个数为x个,则由题意得=,解得:x=1,答:蓝球有1个;(2)故两次摸到都是白球的概率==.【点评】此题主要考查了树状图法求概率,解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【考点】二次函数的应用.【专题】方程思想.【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=90﹣3(x﹣50),然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(3分)(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3分)(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.【考点】三角形的内切圆与内心.【分析】根据切线长定理,可设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.再根据题意列方程组,即可求解.【解答】解:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得,解得:.即AF=4cm、BD=5cm、CE=9cm.【点评】此题要熟练运用切线长定理.注意解方程组的简便方法:三个方程相加,得到x+y+z的值,再进一步用减法求得x,y,z的值.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【分析】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),此时S△POC=×OC×|m|=|m|,S△BOC==,由S△POC=4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.【点评】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.。
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
新人教版九年级数学下册期末测试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5) 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.若2x y +=-,则222x y xy ++的值为( )A .2-B .2C .4-D .47.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .B.C .D .8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB 的面积是()A.4 B.3 C.2 D.19.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:2242a a ++=___________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.某校为了解初中学生每天在校体育活动的时间(单位:h ),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、D5、B6、D7、C8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、22(1)a +3、x 1≥-且x 0≠4、﹣2<x <25、136、三、解答题(本大题共6小题,共72分)1、32x =-.23、详略.4、(1)二次函数的表达式为:213222y x x =--;(2)4;(3)2或2911.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h 的学生人数约为720.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
A B C D2010年秋九年级数学期末测试试卷(1)一、选择题:1.下列方程中有实数根的是 ( )A.x2+2x+3=0.B.x2+1=0.C.x2+3x+1=0.D.111xx x=--.2.设x1、x2是方程的两根,则x1+x2的值是()A.2 B.-2 C.21D.21-3、△ABC 的三边之比为 3∶4∶5,若△ABC∽△A'B'C' ,且△A'B'C' 的最短边长为 6,则△A'B'C'的周长为()A、36B、24C、18D、124.下列计算中正确的是()A、 B、 C、 D、5、下列各组图形不一定相似的是()A.两个等腰直角三角形; B.各有一个角是100°的两个等腰三角形;C.各有一个角是50°的两个直角三角形;D.两个矩形;6、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )7、以下列长度(同一单位)为长的四条线段中,不成比例的是()A、2,5,10,25B、4,7,4,7C、2,12,12,4 D、2,5,25,528、若方程02=++cbxax)0(≠a中,cba,,满足0=++cba和0=+-cba,则方程的根是()(A)1,0 (B)-1,0 (C)1,-1 (D)无法确定9、下列每组图中的两个图形是相似图形的是()532=+yxyx-=-2(aa11=3243=10、如图,D 是BC 上的点,∠ADC =∠BAC ,则下列结论正确的是 ( )A 、△ABC ∽△DACB 、△ABC ∽△DAB C 、△ABD ∽△ACDD 、以上都不对11、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( )A.1B.1-C.1或1-D.0.512、下列各式:()03 x ,01,02 ,034,01512222=+=+=-=-=-x x xy x x x π其中一元二次方程的个数为( ) A 、2 B 、3 C 、4 D 、5 13、下列各式正确的是( )A 、4221=B 、x x =2C 、()a a =2D 、x y xy =214.方程022=-x x 的根是 ( )A 、2,021==x xB 、2,021-==x xC 、0=xD 、2=x15、关于x 的方程210x +-=有两个不相等的实数根,则k 的取值范围是( )A .0k ≥B .0k >C .1k ≥-D .1k >-16、方程0)2)(1(=-+x x x 的解是( )(A )—1,2 (B )1,—2 (C )、0,—1,2 (D )0,1,—217 ( )二、填空题(每小题2分,满分30分)请将答案直接填在题后的横线上。
2008年秋期中考试九年级数学试题时间120分钟,满分120分,难度值:0.6一、选择题(每小题3分,共30分)1、下面哪组数据可以做为直角三角形三边长( )A 、1,2,3B 、2,2,2C 、5,12,13D 、30,60,902、把方程x(x+2)=5(x-2)化成一般形式,则二次项系数、一次项系数、常数项的值分别为( ) A 、1,-3,10 B 、1,7,-10 C 、1,-5,12 D 、1,3,23、如图,在△ABC 中,AC=BC ,∠ACB=90°,D 是AB 的中点, 则图中与∠A 相等的角(除∠A 外)共有( ) A 、1个 B 、2个 C 、3个 D 、4个4、在⊿ABC 所在的平面内存在一点P ,它到A 、B 、C 三点的距离都相等,那么点P 一定是 ( )A 、⊿ABC 三边垂直平分线的交点B 、⊿ABC 三边上高线的交点 C 、⊿ABC 三内角平分线的交点D 、⊿ABC 一条中位线的中点5、如图,四边形ABCD 是菱形,两对角线的长分别为菱形ABCD 的面积是( )A 、 260 cm 2B 、 130 cm 2C 、 120 cm 2D 、 100 cm 2 6、顺次连接等腰梯形各边中点所得的是( ) A 、任意四边形 B 、正方形 C 、菱形 D 、矩形7、下列命题中的假命题是( )A 、一组邻边相等的平行四边形是菱形B 、一组邻边相等的矩形是正方形C 、一组对边平行且一组对角相等的四边形是平行四边形D 、一组对边相等且有一个角是直角的四边形是矩形8、用配方法解方程01422=--x x 时,配方后的方程为( ) A 、23)1(2=-x B 、21)1(2=-x C 、21)1(2=+x D 、23)1(2=+x9、若方程01032=+-m x x 没有实数根,则m 的取值范围是( ) A 、m <0B 、m<325 C 、m>325 D 、m>325-10、薄利电器家电超市销售A 、B 两种价格不同的电器,其中电器A 连续两次提价20%,同时电器B 连续两次降价20%,结果都以每件2304元的价格出售,若超市同时售出两种电器各一件,与价格不升不降的情况比较,超市最后的盈利情况是( ) A 、多赚592元 B 、少赚592元 C 、多赚2892元 D 、盈利相同DC BA(第2题图)C5题图)二、填空题(每小题3分,共15分)11、关于x 的一元二次方程02)1(2=++-m x x m 中,m 的取值范围是___________ 12、一元二次方程0)52)(3(=+-x x 的根是x 1= ,x 2=13、如图,⊿ABC 中,D 、E 分别为AB 、AC 边上中点,若DE=2.5cm ,则BC=_________cm 14、若菱形周长为48cm ,则其边长是__________cm15、如图,⊿ABC 中,AB=AC ,AB 边上的垂直平分线EF 交AC 边于点F ,垂足为E ,若∠C=70°,则∠ABF=___________°三、解答题(共28分) 16、解一元二次方程:(每小题4分,共16分) ①9)2(2=-x②012522=-+x x③1052=-x x ④14)1(5)1(2+-=-y y17、已知:如图,□ABCD 中,E 、F 分别是AD 、BC 上两点,且AE=CF.求证:四边形BFDE 是平行四边形(6分)第15题图第13题图18、已知:如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,OD=3cm,求AB的长(6分)四、解答题(每小题7分,共21分)19、用长为16米的绳子,能否围成一个面积为15平方米的矩形?若能,请求出它的长和宽;若不能,请说明理由。
人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。
( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。
若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。
10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。
九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.﹣1 C.1 D.22.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A.B.C.D.3.下面的几何体中,主视图为三角形的是()A.B.C.D.4.若△ABC∽△DEF,相似比为1:3,则△ABC与△DEF的面积比为()A.1:9 B.1:3 C.1:2 D.1:5.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为()A.B.C.D.6.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于()A.25°B.30°C.40°D.50°7.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB的值为()A.B.C.D.8.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A. B. C.D.9.某地下车库出口处安装了“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图所示的位置,其中AB⊥BC,EF∥BC,∠AEF=135°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为(栏杆宽度忽略不计.参考数据:≈1.4)()A.B.C.D.10.一个寻宝游戏的寻宝通道如图1所示,四边形ABCD为矩形,且AB>AD>,为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.O→D→C→B B.A→B→C C.D→O→C→B D.B→C→O→A二、填空题(本题共18分,每小题3分)11.点P(﹣3,4)关于原点对称的点的坐标是.12.关于x的一元二次方程ax2+bx﹣2015=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.13.某农科院在相同条件下做了某种玉米种子发芽率的试验,结果如下:种子总数100 400 800 1000 3500 7000 9000 14000发芽种子数91 354 716 901 3164 5613 8094 12614发芽的频率0.91 0.885 0.895 0.901 0.904 0.902 0.899 0.901则该玉米种子发芽的概率估计值为(结果精确到0.1).14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门步而见木.15.老师在课堂上出了一个问题:若点A(﹣2,y1),B(1,y2)和C(4,y3)都在反比例函数的图象上,比较y1,y2,y3的大小.小明是这样思考的:当k<0时,反比例函数的图象是y随x的增大而增大的,并且﹣2<1<4,所以y1<y2<y3.你认为小明的思考(填“正确”和“不正确”),理由是.16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.已知线段a,c如图.小芸的作法如下:①取AB=c,作AB的垂直平分线交AB于点O;②以点O为圆心,OB长为半径画圆;③以点B为圆心,a长为半径画弧,与⊙O交于点C;④连接BC,AC.则Rt△ABC即为所求.老师说:“小芸的作法正确.”请回答:小芸的作法中判断∠ACB是直角的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题8分,第29题7分)解答应写出文字说明,演算步骤或证明过程.17.计算:cos45°﹣tan30°•sin60°.18.解方程:x2﹣3x﹣1=0.19.如图,⊙O的半径为5,AB为弦,OC⊥AB,交AB于点D,交⊙O于点C,CD=2,求弦AB 的长.20.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.21.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.将△ABC绕点A 顺时针旋转90°得到△AB1C1.(1)在网格中画出△AB1C1;(2)计算点B旋转到B1的过程中所经过的路径长.(结果保留π)22.已知二次函数y=2x2﹣8x.(1)用配方法将y=2x2﹣8x化成y=a(x﹣h)2+k的形式;(2)求出该二次函数的图象与x轴的交点A,B的坐标(A在B的左侧);(3)将该二次函数的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,请直接写出得到的新图象的函数表达式.23.如图,一次函数y=x+2的图象与反比例函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求反比例函数y=(k≠0)的表达式;(2)若P是y轴上一点,且满足△ABP的面积为6,求点P的坐标.24.北京联合张家口成功申办2022年冬奥会后,滑雪运动已成为人们喜爱的娱乐健身项目.如图是某滑雪场为初学者练习用的斜坡示意图,出于安全因素考虑,决定将斜坡的倾角由45°降为30°,已知原斜坡坡面AB长为200米,点D,B,C在同一水平地面上,求改善后的斜坡坡角向前推进的距离BD.(结果保留整数.参考数据:≈1.41,≈1.73,≈2.45)25.如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.26.有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …﹣3 ﹣2 ﹣1 0 2 3 4 5 …y …﹣﹣﹣﹣1﹣﹣3 m …求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可):.27.在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(﹣1,t),B(3,t),与y轴交于点C (0,﹣1).一次函数y=x+n的图象经过抛物线的顶点D.(1)求抛物线的表达式;(2)求一次函数y=x+n的表达式;(3)将直线l:y=mx+n绕其与y轴的交点E旋转,使当﹣1≤x≤1时,直线l总位于抛物线的下方,请结合函数图象,求m的取值范围.28.如图1,△ABC和△CDE都是等腰直角三角形,∠C=90°,将△CDE绕点C逆时针旋转一个角度α(0°<α<90°),使点A,D,E在同一直线上,连接AD,BE.(1)①依题意补全图2;②求证:AD=BE,且AD⊥BE;③作CM⊥DE,垂足为M,请用等式表示出线段CM,AE,BE之间的数量关系;(2)如图3,正方形ABCD边长为,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP 的距离.29.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.右图为点P及其关于⊙C的反演点P′的示意图.(1)如图1,当⊙O的半径为1时,分别求出点M(1,0),N(0,2),T(,)关于⊙O的反演点M′,N′,T′的坐标;(2)如图2,已知点A(1,4),B(3,0),以AB为直径的⊙G与y轴交于点C,D(点C位于点D下方),E为CD的中点.①若点O,E关于⊙G的反演点分别为O′,E′,求∠E′O′G的大小;②若点P在⊙G上,且∠BAP=∠OBC,设直线AP与x轴的交点为Q,点Q关于⊙G的反演点为Q′,请直接写出线段GQ′的长度.2017-2018学年北京市燕山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.﹣1 C.1 D.2【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣1)2+2,∴当x=1时,函数有最小值2.故选D.2.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各个选项中的图形进行判断即可.【解答】解:A、B、C都不是中心对称图形,D是中心对称图形,故选:D.3.下面的几何体中,主视图为三角形的是()A.B.C.D.【分析】主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.4.若△ABC∽△DEF,相似比为1:3,则△ABC与△DEF的面积比为()A.1:9 B.1:3 C.1:2 D.1:【分析】根据相似三角形的面积的比等于相似比的平方解答即可.【解答】解:∵△ABC∽△DEF,相似比为1:3,∴△ABC与△DEF的面积比为1:9,故选:A.5.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为()A.B.C.D.【分析】根据统计图求出总的水彩笔和蓝色水彩笔的支数,再根据概率公式进行计算即可.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.6.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于()A.25°B.30°C.40°D.50°【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠AOC与∠D是同弧所对的圆心角与圆周角,∠AOC=50°,∴∠D=∠AOC=25°.故选A.7.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB的值为()A.B.C.D.【分析】根据勾股定理,可得BC的长,根据锐角的余弦等于邻边比斜边,可得答案.【解答】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得BC===4.cosB==,故选:B.8.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A. B. C.D.【分析】首先设I=,再把点(4,8)代入可得k的值,进而可得函数解析式.【解答】解:设I=,∵图象经过点(4,8),∴8=,解得:k=32,∴电流I关于电阻R的函数解析式为I=.故选:C.9.某地下车库出口处安装了“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图所示的位置,其中AB⊥BC,EF∥BC,∠AEF=135°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为(栏杆宽度忽略不计.参考数据:≈1.4)()A.B.C.D.【分析】过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=45°,则∠EAH=45°,然后在△EAH中,利用正弦函数的定义得出EH=AE•sin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.【解答】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=135°,∴∠AEH=∠AEF﹣∠HEF=45°,∠EAH=45°,在△EAH中,∠EHA=90°,∠EAH=45°,AE=1.3米,∴EH=AE•sin∠EAH≈1.3×0.7=0.91(米),∵AB=1.3米,∴AB+EH≈1.3+0.91=1.92≈2.2米.故选B.10.一个寻宝游戏的寻宝通道如图1所示,四边形ABCD为矩形,且AB>AD>,为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.O→D→C→B B.A→B→C C.D→O→C→B D.B→C→O→A【分析】观察图2,发现寻宝者与定位仪器之间的距离先越来越远,再先近后远,最后越来越近,确定出寻宝者的行进路线即可.【解答】解:观察图2得:寻宝者与定位仪器之间的距离先越来越远,再先近后远,最后越来越近,结合图1得:寻宝者的行进路线可能为O→D→C→B,故选A.二、填空题(本题共18分,每小题3分)11.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).12.关于x的一元二次方程ax2+bx﹣2015=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2014.【分析】根据一元二次方程的解的定义,把x=1代入方程得到a+b﹣2015=0,于是a取1时,计算对应的b的值.【解答】解:把x=1代入ax2+bx﹣2015=0得a+b﹣2015=0,当a=1时,b=2014.故答案为1,2014.13.某农科院在相同条件下做了某种玉米种子发芽率的试验,结果如下:种子总数100 400 800 1000 3500 7000 9000 14000发芽种子数91 354 716 901 3164 5613 8094 12614发芽的频率0.91 0.885 0.8950.901 0.904 0.902 0.899 0.901则该玉米种子发芽的概率估计值为0.9(结果精确到0.1).【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.9左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.9左右,∴该玉米种子发芽的概率为0.9,故答案为:0.9.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门315步而见木.【分析】根据题意写出AB、AC、CD的长,根据相似三角形的性质得到比例式,计算即可.【解答】解:由题意得,AB=15里,AC=4.5里,CD=3.5里,△ACB∽△DEC,∴=,即=,解得,DE=1.05里=315步,∴走出南门315步恰好能望见这棵树,故答案为:315.15.老师在课堂上出了一个问题:若点A(﹣2,y1),B(1,y2)和C(4,y3)都在反比例函数的图象上,比较y1,y2,y3的大小.小明是这样思考的:当k<0时,反比例函数的图象是y随x的增大而增大的,并且﹣2<1<4,所以y1<y2<y3.你认为小明的思考不正确(填“正确”和“不正确”),理由是y2<y3<y1.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【解答】解:∵反比例函数中k=﹣8<0,∴此函数图象的两个分支分别位于二四象限,并且在每一象限内,y随x的增大而增大.∵点A(﹣2,y1),B(1,y2)和C(4,y3)都在反比例函数的图象上,∴A在第二象限,点B、C在第四象限,∴y1>0,y2<y3<0,∴y2<y3<y1.故小明的思考不正确,故答案为:不正确,y2<y3<y1.16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.已知线段a,c如图.小芸的作法如下:①取AB=c,作AB的垂直平分线交AB于点O;②以点O为圆心,OB长为半径画圆;③以点B为圆心,a长为半径画弧,与⊙O交于点C;④连接BC,AC.则Rt△ABC即为所求.老师说:“小芸的作法正确.”请回答:小芸的作法中判断∠ACB是直角的依据是直径所对的圆周角为直角.【分析】根据圆周角定理的推论求解.【解答】解:小芸的作法中判断∠ACB是直角的依据是直径所对的圆周角为直角.故答案为直径所对的圆周角为直角.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题8分,第29题7分)解答应写出文字说明,演算步骤或证明过程.17.计算:cos45°﹣tan30°•sin60°.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=×﹣•=1﹣=.18.解方程:x2﹣3x﹣1=0.【分析】此题比较简单,采用公式法即可求得,首先确定a,b,c的值,然后检验方程是否有解,若有解代入公式即可求解.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1=,x2=.19.如图,⊙O的半径为5,AB为弦,OC⊥AB,交AB于点D,交⊙O于点C,CD=2,求弦AB 的长.【分析】求出OD,根据垂径定理得出AB=2AD,根据勾股定理求出AD,即可得出答案.【解答】解:∵⊙O的半径为5,∴OA=OC=5,∵CD=2,∴OD=5﹣2=3,∵OC⊥AB,OC过O,∴AB=2AD,∠ODA=90°,在Rt△ODA中,由勾股定理得:AD===4,∴AB=2AD=8.20.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.21.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.将△ABC绕点A 顺时针旋转90°得到△AB1C1.(1)在网格中画出△AB1C1;(2)计算点B旋转到B1的过程中所经过的路径长.(结果保留π)【分析】(1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1即可得到△AB1C1;(2)点B旋转到B1的过程中所经过的路径为以A为圆心,AB为半径,圆心角为90°的弧,于是根据弧长公式可计算出点B旋转到B1的过程中所经过的路径长.【解答】解:(1)如图,△AB1C1为所作;(2)AB==5,所以B旋转到B1的过程中所经过的路径长==π.22.已知二次函数y=2x2﹣8x.(1)用配方法将y=2x2﹣8x化成y=a(x﹣h)2+k的形式;(2)求出该二次函数的图象与x轴的交点A,B的坐标(A在B的左侧);(3)将该二次函数的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,请直接写出得到的新图象的函数表达式.【分析】(1)利用配方法即可直接求解;(2)在解析式中令y=0,求得x即可求得A和B的横坐标;(3)根据二次函数的平移法则即可直接写出平移后的解析式.【解答】解:(1)y=2x2﹣8x=2(x2﹣4x+4﹣4)=2(x﹣2)2﹣8;(2)在y=2x2﹣8x中令y=0,则2x2﹣8x=0,解得:x1=0,x2=4,则A的坐标是(0,0),B的坐标是(4,0);(3)y=2(x﹣2)2﹣8沿x轴向左平移2个单位,再沿y轴向上平移3个单位后的解析式是:y=2x2﹣5.23.如图,一次函数y=x+2的图象与反比例函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求反比例函数y=(k≠0)的表达式;(2)若P是y轴上一点,且满足△ABP的面积为6,求点P的坐标.【分析】(1)把A点坐标代入一次函数解析式可求得m的值,可得到A点坐标,再把A点坐标代入反比例函数解析式可求得k的值;(2)联立方程,解方程组即可求得B的坐标,设直线与y轴的交点为C(0,2),根据△ABP的面积为6得出PC•|x B|+PC•|x A|=6,求出PC的长,即可求得P点的坐标.【解答】解:(1)∵一次函数图象过A点,∴m=1+2,解得m=3,∴A点坐标为(1,3),又∵反比例函数图象过A点,∴k=1×3=3,∴反比例函数y=(k≠0)的表达式为y=.(2)∵,解得或∴B(﹣3,﹣1),设直线与y轴的交点为C(0,2),∵△ABP的面积为6,∴PC•|x B|+PC•|x A|=6,∴PC(1+3)=6,∴PC=3,∴P(0,5)或(0,﹣1).24.北京联合张家口成功申办2022年冬奥会后,滑雪运动已成为人们喜爱的娱乐健身项目.如图是某滑雪场为初学者练习用的斜坡示意图,出于安全因素考虑,决定将斜坡的倾角由45°降为30°,已知原斜坡坡面AB长为200米,点D,B,C在同一水平地面上,求改善后的斜坡坡角向前推进的距离BD.(结果保留整数.参考数据:≈1.41,≈1.73,≈2.45)【分析】根据题意和正切的概念分别求出CB、CD的长,计算即可.【解答】解:∵∠C=90°,∠ABC=45°,∴AC=BC=100≈141米,tan∠D=,∴CD==100≈245米,∴BD=CD﹣CB=104米,答:改善后的斜坡坡角向前推进的距离BD为104米.25.如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.【分析】(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.【解答】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.26.有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是x≠1;(2)下表是y与x的几组对应值.x …﹣3 ﹣2 ﹣1 0 2 3 4 5 …y …﹣﹣﹣﹣1﹣﹣3 m …求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可):该函数没有最大值,也没有最小值.【分析】(1)由图表可知x≠0;(2)根据图表可知当x=4时的函数值为m,把x=4代入解析式即可求得;(3)根据坐标系中的点,用平滑的直线连接即可;(4)观察图象即可得出该函数的其他性质.【解答】解:(1)x≠1,故答案为x≠1;(2)令x=4,∴y=+4=;∴m=;(3)如图(4)该函数的其它性质:该函数没有最大值,也没有最小值;故答案为该函数没有最大值,也没有最小值.27.在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(﹣1,t),B(3,t),与y轴交于点C (0,﹣1).一次函数y=x+n的图象经过抛物线的顶点D.(1)求抛物线的表达式;(2)求一次函数y=x+n的表达式;(3)将直线l:y=mx+n绕其与y轴的交点E旋转,使当﹣1≤x≤1时,直线l总位于抛物线的下方,请结合函数图象,求m的取值范围.【分析】(1)根据A和B对称,可求得对称轴,则b的值即可求得,然后根据函数经过点(0,﹣1),代入即可求得c的值,则抛物线解析式即可求得;(2)首先求得抛物线的顶点,代入一次函数解析式即可求得n的值,求得一次函数的解析式;(3)首先求得抛物线上当x=﹣1和x=1时对应点的坐标,然后求得直线y=mx+n经过这两个点时对应的m的值,据此即可求解.【解答】解:(1)二次函数的对称轴是x==1,则﹣=1,解得:b=﹣2,∵抛物线与y轴交于点C(0,﹣1).∴c=﹣1,则二次函数的解析式是y=x2﹣2x﹣1;(2)二次函数y=x2﹣2x﹣1的顶点坐标是(1,﹣2),代入y=x+n得﹣2=1+n,解得:n=﹣3,则一次函数y=x+n的表达式是y=x﹣3;(3)如图所示:在y=x2﹣2x﹣1中,当x=﹣1时,y=2;当x=1时,y=﹣2.当直线y=mx﹣3经过点(﹣1,2)时,﹣m﹣3=2,解得:m=﹣5;当直线y=mx﹣3经过点(1,﹣2)时,m﹣3=﹣2,解得:m=1.则当﹣5<m<1时,当﹣1≤x≤1时,直线l总位于抛物线的下方.28.如图1,△ABC和△CDE都是等腰直角三角形,∠C=90°,将△CDE绕点C逆时针旋转一个角度α(0°<α<90°),使点A,D,E在同一直线上,连接AD,BE.(1)①依题意补全图2;②求证:AD=BE,且AD⊥BE;③作CM⊥DE,垂足为M,请用等式表示出线段CM,AE,BE之间的数量关系;(2)如图3,正方形ABCD边长为,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP 的距离.【分析】(1)①根据旋转的特性画出图象;②由∠ACD、∠BCE均与∠DCB互余可得出∠ACD=∠BCE,由△ABC和△CDE都是等腰直角三角形可得出AC=BC、DC=EC,结合全等三角形的判定定理SAS即可得出△ADC≌△BEC,从而得出AD=BE,再由∠BCE=∠ADC=135°,∠CED=45°即可得出∠AEB=90°,即证出AD⊥BE;③依照题意画出图形,根据组合图形的面积为两个三角形的面积和可用AE,BE去表示CM;(2)根据题意画出图形,比照(1)③的结论,套入数据即可得出结论.【解答】解:(1)①依照题意补全图2,如下图(一)所示.②证明:∵∠ACD+∠DCB=∠ACB=90°,∠BCE+∠DCB=∠DCE=90°,∴∠ACD=∠BCE.∵△ABC和△CDE都是等腰直角三角形,∴AC=BC,DC=EC.在△ADC和△BEC中,有,∴△ADC≌△BEC(S AS),∴AD=BE,∠BEC=∠ADC.∵点A,D,E在同一直线上,△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∠ADC=180°﹣∠CDE=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∴AD⊥BE.③依照题意画出图形,如图(二)所示.∵S△ABC+S△EBC=S△CAE+S△EAB,即AC•BC+BE•CM=AE(CM+BE),∴AC2﹣AE•BE=CM(AE﹣BE).∵△CDE为等腰直角三角形,∴DE=2CM,∴AE﹣BE=2CM,∴CM=.(2)依照题意画出图形(三).其中AB=,DP=1,BD=AB=由勾股定理得:BP==3.结合(1)③的结论可知:AM===1.故点A到BP的距离为1.29.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.右图为点P及其关于⊙C的反演点P′的示意图.(1)如图1,当⊙O的半径为1时,分别求出点M(1,0),N(0,2),T(,)关于⊙O的反演点M′,N′,T′的坐标;(2)如图2,已知点A(1,4),B(3,0),以AB为直径的⊙G与y轴交于点C,D(点C位于点D下方),E为CD的中点.①若点O,E关于⊙G的反演点分别为O′,E′,求∠E′O′G的大小;②若点P在⊙G上,且∠BAP=∠OBC,设直线AP与x轴的交点为Q,点Q关于⊙G的反演点为Q′,请直接写出线段GQ′的长度.【分析】(1)利用反演点定义,先求出:ON′,OT′,OM′的长度,然后求出它们的坐标;(2)①求出:E′G,O′G,O′E′,利用勾股定理逆定理证明△E′O′G是RT△;②考虑两种情形,点P在直线AB左右都存在.【解答】解:(1)∵ON•ON′=1,ON=2,∴ON′=,∴反演点N′坐标(0,),∵OM•OM′=1,OM=1,∴OM′=1反演点M′坐标(1,0)∵,∴,∵T′在第一象限的角平分线上,∴反演点T′坐标(1,1)(2)①由题意:AB=2,r=,∵E(0,2),G(2,2),EG=2,E′G•EG=5,∴,∵OG•O′G=5,OG=2,∴O′G=,∵E′(﹣,2),O′(,),∴O′E′=,∴E′G2=E′O′2+O′G2,∴∠E′O′G=90°②如图:∵∠BAP1=∠OBC,∠CAP1+∠CBP1=∠CAB+∠BAP1+∠CBP1=180°,∠OBC+∠CBP1+∠P1BQ1=180°,∠CAB=45°,∴∠P1BQ1=45°,∵∠AP1B=∠BP1Q1=90°,∴△PBQ1是等腰直角三角形,由△AP1B∽△BOC得到:,∵,∴,BQ1=2,Q1(5,0),∵Q1′G•GQ1=5,∴Q1′G=,∵∠P2AB=∠BAP1,∴P1,P2关于直线AB对称,∵P1(4,1),易知:P2(,﹣),∴直线AP2:Y=﹣7X+11,∴Q2(),由:Q2′G•Q2G=5得到:Q2′G=.。
2024-2025学年北师大版九年级下册数学期末测试题(三)1.某块玄武岩形成的时间为亿年.用科学记数法表示此玄武岩形成的时间最小为()A.年B.年C.年D.年2.两组数据,,,9,12与,7,的平均数都是5,若将这两组数据合并为一组新数据,则这组新数据的众数是()A.B.7C.2D.93.如图,已知菱形的边长为4,E是的中点,平分交于点F,交于点G,若,则的长是()A.3B.C.D.4.按下面图示的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的正数x有()A.1个B.2个C.3个D.4个5.设的整数部分是a,小数部分是b,则的值为()A.1B.C.3D.6.已知关于x得一元二次方程有两个不相等的实数根x1,x2,若,则m的值是()A.2B.C.2或D.不存在7.如图1,点从的顶点出发,沿匀速运动到点图2是点运动时线段的长度随时间变化的关系图象,其中点为曲线部分的最低点,则的边的长度为()A.B.C.D.8.如图,菱形的顶点分别在反比例函数和的图象上,若,则的值为()A.B.C.D.9.如图,已知是的两条切线,A,B为切点,线段交于点M.其中正确说法的是()A.B.C.四边形有外接圆D.M是外接圆的圆心10.如图,是同一种蔬菜的两种栽植方法.甲:四珠顺次连接成为一个菱形,且.乙:四株连接成一个正方形.其中两行作物间的距离为行距;一行中相邻两株作物的距离为株距;设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积.设株距都为a,其它客观因素都相同.则对于下列说法:①甲的行距比乙的小;②甲的行距为;③甲、乙两种栽植方式,空隙地面积相同;④甲的空隙地面积比乙的空隙地面积少.其中正确的为()A.①B.②C.③D.④11.如图所示,已知二次函数的图象与x轴交于,两点,与y轴的正半轴交于点C,顶点为D,则下列结论:①;②;③当是等腰三角形时,a的值有2个;④当是直角三角形时,.其中正确的()A.①B.②C.③D.④12.如图,正方形中为的中点,将沿翻折得到,延长交于,垂足为H,连接.其中正确的是()A.B.C.D.13.已知关于x,y的方程组的解满足的最小整数值是_________14.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点A处有一块爆米花残渣,且,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为__.15.如图,矩形ABCD中,AB=6,AD=4,点E是BC的中点,点F在AB上,FB=2,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为_____.16.如图,四边形都是正方形,其中点在y轴上,点在反比例函数的图象上,已知B1(-1,1),则点的坐标为_______17.为了解中考体育科目训练情况,从城区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______;(2)图1中的度数是______,并把图2条形统计图补充完整;(3)若城区九年级学生有18000人,如果全部参加这次中考体育科目测试,请估计不及格的人数为______;(4)测试老师想从4位同学(分别记为甲、乙、丙、丁)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中甲的概率.18.我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿摆成如图1所示.已知,鱼竿尾端A离岸边,即.海面与地面平行且相距,即.(1)如图1,在无鱼上钩时,海面上方的鱼线与海面的夹角,海面下方的鱼线与海面垂直,鱼竿与地面的夹角.求点O到岸边的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角,此时鱼线被拉直,鱼线,点O恰好位于海面.求点O到岸边的距离.(参考数据:,,,,,)19.如图,在中,,以为圆心,的长为半径的圆交边于点,点在边上且,延长交的延长线于点.(1)求证:是圆的切线;(2)已知,,求长度及阴影部分面积.20.如图,在平面直角坐标系中,函数的图象与函数的图象相交于点,并与轴交于点B.点C是线段上一点,的面积是面积的一半.(1),;(2)求点的坐标;(3)若将绕点顺时针旋转,得到,当点正好落在轴正半轴上时,判断此时点是否落在函数的图象上,并说明理由.21.南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)种类真丝衬衣真丝围巾进价(元/件)a80售价(元/件)300100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?22.如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.23.为等边三角形,,于点,为线段上一点,.以为边在直线右侧构造等边三角形,连接,为的中点.(1)如图1,与交于点,连接,求线段的长;(2)如图2,将绕点逆时针旋转,旋转角为,M为线段EF的中点,连接,.当时,猜想的大小是否为定值,并证明你的结论;(3)连接,在绕点逆时针旋转过程中,当线段最大时,请直接写出的面积________.。
九年级数学期末测试试卷(3)
一、选择题(本大题共6小题,每小题3分,共18分,在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母填在下面的表格内) 1、一元二次程x2-1=0的根为 A.、1x B、1x C、1x,1x D、 0x,1x 2、如果12xx,是一元二次方程2620xx的两个实数根,那么12xx的值是 A.6 B.2 C.6 D.2 3、方程2232mxxxmx是关于x的一元二次方程,则m的取值范围为 A、m≠0 B、m≠1 C、m≠-1 D、m≠±1 4、袋中放有一套(五枚)北京2008年奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“欢迎”的概率是 A、251 B、201 C、101 D、51 5、关于x的一元二次方程220xmxm的根的情况是 A、有两个不相等的实数根 B、有两个相等的实数根 C、没有实数根 D、无法确定 二、填空题 (本大题共11小题,每小题2分,共22分,请把答案填在题中的横线上) 7、抛物线y=-3x2-x=1开口向 ,对称轴是直线 x = 8、将抛物线23yx向左平移一个单位后,得到的抛物线解析式是 . 9、写出一个一元二次方程,使它的两实数根之和为3,该方程式可以是 10、已知-2是方程220xxk的一个根,则k的值是 11、现有长度分别为2、4、6、7、8的五条线段,从中任取三条能构成三角形的概率为___________ 12、一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是 . 13、一只口袋中放着8只红球和16只白球,现从口袋中随机摸一只球,则摸到白球的概率是 14、如果关于x的一元二次方程22(21)10kxkx有两个不相等的实数根,那么k的取值范围是 15、抛物线228yxxm与x轴只有一个公共点,则m的值为 . 16、如图为二次函数y=ax2+bx+c的图象,在下列说法中: ①ac<0; ②方程ax2+bx+c=0的根是x1= -1, x2= 3 ③a+b+c>0 ④当x>1时,y随x的增大而增大。 正确的说法有_____________。(把正确的答案的序号都填在横线上) 三、解方程:(共16分) 17、220xx(本题3分) 18、2610xx(本题4分)
19、22)25(96xxx(本题4分) 20、2(5)2(5)80xx(本题5分)
四、解答题: (本大题共7小题,共54分,请写出必要的计算过程,推演步骤或文字说明)
21、已知x1、x2是关于x的方程22(21)0xaxa的两个实数根,且12(2)(2)11xx,求a的值。(本题5分)
22、如图所示,某校在一块长36m,宽24m的土地上修一个矩形游泳池,并在四边筑一条宽度一定的路,占去原来面
积的38,求路宽.
23、小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中
象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人
同时出象牌,则两人平局.
(1)一次出牌小刚出“象”牌的概率是多少?
(2)如果用ABC,,分别表示小刚的象、虎、鼠三张牌,用1A,1B,1C分别表示小明的象、虎、鼠三张牌,那么
一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.(本题6分)
25、如图,已知二次函数y=ax2-4x+c的图象.求:
(1)二次函数的表达式;
贝贝 晶晶 欢欢 迎迎 妮妮
小刚 小明
A1 B1 C
1
A B C
第23题图
2
(2)图象的顶点坐标;
(3)根据图象回答:x为何值时y>0. (本题6分)
26、已知二次函数y=ax2+bx+c.„„(*)
(1)当a=1,b=-2,c=1时,请在图的直角坐标系中画出此时二次函数的图象;
(2)用配方法求该二次函数(*)的图象的顶点坐标. (本题6分)
27、已知二次函数的图象以A(-1,4)为顶点,且过B(2,-5)
(1) 求该函数的关系式;
(2) 求该函数图象与坐标轴的交点坐标;
(3) 将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至点A、B,求OAB的面积。(6分)
28、桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个
经过A、C、B三点的抛物线,以桥面的水平线为X轴,经过抛物线的顶点C与X轴垂直的直线为Y轴,建立直角坐
标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,F
G=2米求经过A、B、C三点的抛物线的解析式。
(1) 求柱子AD的高度。
29、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的
定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式.
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大
值?最大值是多少?(7分)
2008-2009学年第一学期初三数学参考答案
一、选择题(每题3分共18分) C 、 C、 B、 B、 A、 C. 填空题:(每题2分,共20分) 7、下,x=-61 8、23(1)yx 9、答案不唯一 10、0 11、35 12、10% 13、32 14、14k且0k 15、8 16、①②④ 二、计算题:(每题4分,共24分) 17、解:(2)0xx 2 18、解:2(3)8x 2 120,2xx 2 223x 1 12223,223xx 1 19、解:22(3)(52)xx 1 20、解:(54)(52)0xx 2 (352)(352)0xxxx 1 (1)(7)0xx 1 (2)(38)0xx 1 11,7xx 1 1282,3xx 1 21、解:1212xxa,212xxa 1 22(21)441aaa 1 方程有两个实数根 0 得:14a 1 12(2)(2)11xx 121,5aa (不合题意,舍去) 1 1a 1 22、 设路宽为xm, (36-2x)(24-2x)=(1-38)×36×24, x2-30x+81=0, x1=3,x2=27(不合题意,舍去). 答:路宽为3m. 23、 解:(1)13 (2分)(2)图略(2分) 13(2分) 24、 由题意得100÷20200=1000(条), 184+416100+200×1000=2000(千克).
4×2000=8000(元).
答:鱼塘中估计有鱼1000条,共重2000千克,这个养鱼专业户能收入8000元.
25、 (1)对称轴是x=2,
a4
4
=2.
a=1.
又因为二次函数经过(1,0)点,
所以0=1-4+c.
c=3.
所以二次函数为y=x2-4x+3;
(2)因为顶点的横坐标是2,
所以纵坐标是22-4×2+3=-1.
所以顶点坐标是(2,-1);
(3)因为二次函数图象在x轴上方时函数值大于0,
所以x>3或x<1.
26、
(1)当a=1,b=-2,c=1时,y=x2-2x+1=(x-1)2,
所以该二次函数图象的顶点坐标为(1,0),对称轴为直线x=1.
利用函数对称性列表如下:
x-10123y41014
在给定的坐标系中描点,画出图象如下:
(2)由y=ax2+bx+c是二次函数,知a≠0.
y=a(x2+bax)+c=a[x2+bax+(b2a)2]+c-a×(b2a)2
=a(x+b2a)2+4ac-b24a.
所以该二次函数图象的顶点坐标为(-b2a,4ac-b24a).
27、解:(1)2(1)4yx (2分)
(2)与Y轴交点(0,3),与X轴交点(-3,0),(1,0) (3分)
(3)(2,4)A、(5,5)B (1分)
0159(243955)152ABS
(1分)
28、解:(1)设所求抛物线解析式为2()yaxhk,其中顶点为(0,1) 1
21yax 1
把F(-4,2)代入:得116a 1
2116yx 1
(2)当8x时,5y 1
即AD=5 1
29、
解:(1)6010xy 2
(2)2401200010xzx 2
(3)2421080010xwx(或21(210)1521010wx) 1
当每天定价为410元时,W有最大值,最大值为15210。 2