常用钻井液材料密度范围
- 格式:doc
- 大小:34.00 KB
- 文档页数:1
石油钻井用钻井液类型及相关知识一、抑制性聚合物钻井液(一)代号:P—Fe(二)特点:本钻井液是以PHP作为絮凝剂,抑制地层造浆;以FCLS配合烧碱水作为稀释剂,控制钻井液粘度、切力及流变性能,以CMC作为降失水剂的抑制性钻井液体系。
具有适应范围广、维护处理简单、成本低等特点。
(三)推荐使用范围:油田各地区3200米以内的井,水型不限。
(四)主要组分:1、低密度固相含量不大于10%2、PHP 0.1-0.3%3、FCLS 1—2%4、CMC 0.3—0.5%5、烧碱水用于调节PH值6、加重按设计要求(五)性能指标1、密度:非加重钻井液不大于1.15g/cm32、漏斗粘度:28—45S3、API失水:10—5ml4、静切力G:2—5/3—8 Pa5、含砂量:<0.5%6、PH值:淡水9—11;咸水:11—137、塑性粘度:8—20mPa.S8、动切力:3—6Pa(六)维护处理要点:1、大循环改小循环以后,使用震动筛、除砂器控制固相含量,配合清水调整性能1—2周,进行转化处理。
本次处理主要以控制低粘、低切、降低失水为目的。
(采用PHP、FCLS 、NaOH、CMC综合处理)。
2、转化处理以后,用PHP配合烧碱水进行维护处理。
PHP应配成0.5—1%溶液,每班定量均匀加入。
东营组以上地层,钻井液中PHP保持0.1—0.15%的含量。
进入沙河街组地层,PHP保持0.2—0.3%的含量,烧碱量以维护要求的PH为佳。
3、每只钻头下钻完,根据性能要求,用清水、FCLS配合烧碱水处理,用CMC控制失水。
根据失水量的大小决定其用量,然后用PHP维护性能。
FCLS 与烧碱水的比例:一般按淡水2:1;咸水1:1或1:2。
4、钻进中坚持使用好固控设备,保持含砂量小于0.5%。
5、加重前,先用FCLS与烧碱水进行降粘切处理之后再进行加重。
加重时,应按加入的重晶石数量补充0.05—0.1%的PHP量,以确保重晶石在钻井液中的悬浮。
常用钻井液材料一膨润土类一、组成膨润土是岩浆岩或变质岩中硅酸盐矿物(如长石)风化沉积形成的,其组成为1、粘土矿物:蒙脱石、高岭石、伊利石和海泡石,钻井用膨润土主要粘土矿物为蒙脱石,含量在70%以上。
2、砂子:石膏、石英、长石、云母、氧化铁等含量越小越好。
3、染色物:木屑、树叶及腐质物起染色作用,膨润土有红色、黄色、紫色等不同颜色,就是这个原因。
4、可溶性盐类:碳酸盐、硫酸盐和氯化物等。
二、分类膨润土分为钙基膨润土钠基膨润土和改性膨润土三种。
1、钙基膨润土:造浆率8-12立方米每吨。
2、钠基膨润:造浆率15-18立方米每吨。
3、改性膨润土:通过加入纯碱、烧碱、羧甲基纤维素、低分子量聚丙烯酰胺等无机盐和有机分散剂来提高膨润土的造浆率,达到钠基膨润土性能指标。
三、作用及用途1、堵漏:黄土层漏失、基岩裂隙漏失都需要用来配浆堵漏。
2、护壁:在井壁上形成泥饼,减少钻井液内的水份向井壁渗透,起到保护井壁稳定的作用。
3、携砂:配制一定数量的高比重大粘度的膨润土泥浆定期打入井内,将井内掉块、岩屑顺利携带出井外,保持井内干净。
4、配治塌泥浆:井壁长时间浸泡发生垮塌,常规泥浆仍不能维护井壁时,就要加膨润土以提高比重、切力、粘度达到稳定井壁之目的。
5、配加重泥浆:遇到涌水或高压油气层时,都需在泥浆中加膨润土来平衡地层压力。
6、配完井液和封闭浆:为顺利测井,完钻时需配完钻液;在易塌井段需配封闭浆,这些都需加膨润土。
四、影响膨润土性能的因素1、原矿质量:原矿石蒙脱石含量高低是影响膨润土性能最重要的因素,蒙脱石含量越高,膨润土造浆率相应地就高。
2、粒度:粒度越细造浆率相应的就越高,反之亦然。
3、添加剂:合理地加入分散剂,会明显改善膨润土的性能。
4、水质:膨润土在高矿化度和酸性中水造浆率会明显降低甚至不造浆。
五、简单测试1、造浆率:1吨膨润土配制出胶体率95%以上的泥浆的体积。
如造浆率15立方米每吨,就是在100克水中加6.67克膨润土搅拌30分钟倒入试管(100毫升)中,24小时胶体率在95%以上。
钻井液常规性能测定一.密度的测定1、按平安检查表内容检查仪器,确保仪器平安可靠。
2、将钻井液加热到所需温度。
3、在密度计的杯中注满钻井液,盖上杯盖慢慢拧动压紧。
4、用手指压住杯盖小孔,用清水冲洗并擦干样品杯。
5、把密度计的刀口放在底座的刀垫上,移动游码直到平衡,记录读值。
6、将密度计冼净擦干备用。
二.测定马氏漏斗粘度1、按平安检查表内容检查仪器,确保仪器平安可靠。
2、将漏斗悬挂在墙上,且保证垂直;量杯置于漏斗流出管下面。
3、用手指堵住漏斗流出管下口,将搅拌均匀的泥浆倒入漏斗至筛网底;放开手指,同时启动秒表,待泥浆流满量杯到达它的边缘时,按停秒表。
秒表所示时间即为泥浆粘度,单位为s。
4、使用完毕,将仪器洗净擦干。
三.流变的测定〔ZNN-D6六速旋转粘度计〕1、按平安检查表内容检查仪器,确保仪器平安可靠。
2、使用前检查读数指针是否对准刻度盘“0〞位,落下托盘,装配好内、外筒。
3、将搅拌均匀的泥浆倒入样品杯至刻度线、将样品杯置于托盘上,上升托盘使液面至外筒刻度线,拧紧托盘手轮。
4、调整变速手把和转速开关,迅速从高到低进行测量,待刻度盘稳定后,分别读取各转速下刻度盘的偏转格数。
5、测量完毕,落下托盘,卸下外筒,将内、外筒及样品杯洗净擦干。
四.钻井液失水的测定1、按平安检查表内容检查仪器,确保仪器平安可靠。
2、用手指堵住泥浆杯底部小孔,将搅拌均匀的泥浆倒入杯内至刻度线处,按顺序放入“O〞型密封圈、滤纸、杯盖和杯盖卡,将杯盖卡旋转90°并拧紧旋转手柄。
3、将组装好的泥浆杯组件倒置嵌入气源接头并旋转90°;将量筒置于失水仪下方并对准滤液流出孔。
4、调节气源压力至0.7MPa,翻开气源手柄并同时启动秒表,收集滤液于量筒之中。
5、当秒表指示为30min时,将悬于滤液流出孔的液滴收集于量筒之中并移开量筒,此量筒中液体体积即为滤失量。
6、关闭气源手柄,放出泥浆杯中余气;卸下泥浆杯组件,倒去泥浆并洗净擦干。
终—终了立管压力,MPa ;压—压井所用泥浆密度,g/cm 3;—低泵速时立管压力,MPa。
低立—使用泥浆密度,g/cm3;m、加重剂量:W加=r加* V*(r压-r m)/(r加-r压)—加重剂用量,T;加—加重剂密度,g/cm3;加—加重前原泥浆体积,m3;—压井泥浆密度,g/cm3;压—使用泥浆密度,g/cm3;m=(V总-V钻体)/60Q周—泥浆循环一周时间,min;周—井眼容积,L;总—钻柱体积,L;钻体=12.7Q/(D2-d2)返—泥浆上返速度,m/s;返D—井眼直径,cm;d—钻柱外径,cm。
=D径2/2km—千米井眼容积,m3;km—井径,in。
径=(D2-d2)/12.73环H—卡点深度,m;P—钻杆连续提升时平均拉力,T;L—钻杆连续提升时平均伸长,cm;K—计算系数;K=EF/105=21F。
6公斤/厘米22。
钻杆60(2 3/8″×7.112) 24960(2 3/8″×8) 27473(2 7/8″×9) 38089(3 1/2″×9.35) 491114.3(4 1/2″×10.92) 745127(5″×9.19) 715139.7(5 1/2″×10.54) 898139.7(5 1/2″×9.17) 790139.7(5 1/2″×7.72) 670Ф60×5 180Ф73×5.5 240Ф89×6.5 37514、钻杆允许扭转圈数:N=扭转系数(圈/米)×卡点深度114.3(4 1/2″) D级钢0.00441 E级钢0.00638127(5″) D级钢0.00404 E级钢0.0055139.7(51/2″) D级钢0.00368 E级钢0.0050273(2 7/8″) D级钢0.00957 E级钢0.01340η塑=φ600-φ300 厘泊=5(φ300-η塑) 达因/厘米2表观=1/2φ600 厘泊η=3.3221g φ600/φ300φ600/(500n)达因秒/厘米21、油气上窜速度:V油=(H油-H钻头*t/t迟)/t静V油—油气上窜速度,米/小时;H油—油气层深度,米;H钻头—循环泥浆时钻头所在深度,米;t—从开泵循环到见油气显示的时间,分;t迟—钻头所在井深时的迟到时间,分;t静—泥浆静止时间,小时。
二、钻井液的类型随着钻井液工艺技术的不断发展,钻井液的种类越来越多。
目前,国内外对钻井液有各种不同的分类方法。
其中较简单的分类方法有以下几种:按其密度大小可分为非加重钻井液和加重钻井液。
按与粘土水化作用的强弱可分为非抑制性钻井液和抑制性钻井液。
按其固相含量的不同,将固相含量较低的叫做低固相钻井液,基本不含固相的叫做无固相钻井液。
然而,一般所指的分类方法是按钻井液中流体介质和体系的组成特点来进行分类的。
根据流体介质的不同,总体上分为水基钻井液、油基钻井液和气体型钻井流体等三种类型。
由于水基钻井液在实际应用中一直占据着主导地位,根据体系在组成上的不同又将其分为若干种类型。
下面是在参考国外钻井液分类标准的基础上,在国内得到认可的各种钻井液类型。
1.分散钻井液(Dispersed Drilling Fluids)分散钻井液是指用淡水、膨润土和各种对粘土与钻屑起分散作用的处理剂(简称为分散剂)配制而成的水基钻井液。
它是一类使用历史较长、配制方法较简单且配制成本较低的常用钻井液。
其主要特点是:(1)可容纳较多的固相,较适于配制高密度钻井液。
(2)容易在井壁上形成较致密的泥饼,故其滤失量一般较低。
3)某些分散钻井液,如以磺化栲胶、磺化褐煤和磺化酚醛树脂作为主处理剂的三磺钻井液具有较强的抗温能力,适于在深井和超深井中使用。
但与其它钻井液类型相比,它也有一些缺点。
除抑制性和抗污染能力较差外,还因体系中固相含量高,对提高钻速和保护油气层均有不利的影响。
2.钙处理钻井液(Calcium-treatedDrillingFluids)钙处理钻井液的组成特点是体系中同时含有一定浓度(质量浓度)的Ca2+和分散剂。
Ca2+通过与水化作用很强的钠膨润土发生离子交换,使一部分钠膨润土转变为钙膨润土,从而减弱水化的程度。
分散剂的作用是防止Ca2+引起体系中的粘土颗粒絮凝过度,使其保持在适度絮凝的状态,以保证钻井液具有良好、稳定的性能。
钻井液密度的选择对于钻井作业的成功至关重要。
其不仅影响钻井过程,还关乎井筒的稳定性和安全性。
密度过低或过高都可能带来一系列问题,如井壁失稳、井涌、井漏等。
因此,确定最大允许钻井液密度需综合考虑多种因素。
常规情况下,钻井液密度的范围通常在1.0g/cm³~2.8g/cm³之间。
在陆地上的钻井,一般使用密度在
1.0g/cm³~1.6g/cm³之间的钻井液。
而在海上钻井,则一般需要使用密度在1.8g/cm³~
2.5g/cm³之间的钻井液。
此外,中国石油天然气总公司对附加当量压井液密度值有明确规定:对于油水井,密度为0.05~0.1g/cm³;对于气井,密度为0.07~0.15g/cm³。
在确定压井液密度时,还需考虑地层孔隙压力大小、油气水层的埋藏深度、钻井时的钻井液密度、井控装置等因素,确保压井液密度既能保护油气层,又能防止粘卡,满足井眼稳定的要求。
总之,最大允许钻井液密度的确定需综合考虑地质条件、工程要求和安全因素,以确保钻井作业的顺利进行。
实际作业中,建议参考行业标准和专业建议,根据具体情况进行调整和优化。