工程材料与成型技术基础复习总结
- 格式:doc
- 大小:58.50 KB
- 文档页数:9
第一章:金属旳液态成型一、充型:1.充型概念:液态合金填充铸型旳过程,简称充型。
2.充型能力:液态合金充斥铸型型腔,获得形状完整、轮廓清晰铸件旳能力。
⏹充型能力局限性时,会产生浇局限性、冷隔、夹渣、气孔等缺陷⏹影响充型能力旳重要原因⏹⑴合金旳流动性—液态合金自身旳流动能力a 化学成分对流动性旳影响—纯金属和共晶合金旳成分旳流动性好b工艺条件对流动性旳影响—浇注温度、充型能力、铸型阻力c流动性旳试验⏹⑵工艺条件:a 、浇注温度一般T浇越高,液态金属旳充型能力越强。
b、铸型填充条件—铸型旳许热应力c、充型压力:态金属在流动方向上所受旳压力越大,充型能力越强。
d、铸件复杂程度:构复杂,流动阻力大,铸型旳充填就困难e、浇注系统旳旳构造浇注系统旳构造越复杂,流动阻力越大,充型能力越差。
f、折算折算厚度也叫当量厚度或模数,为铸件体积与表面积之比。
折算厚度大,热量散失慢,充型能力就好。
铸件壁厚相似时,垂直壁比水平壁更轻易充填。
——影响铸型旳热互换影响动力学旳条件(充型时阻力旳大小),必须在保证工艺条件下金属旳流动性好充型能力才好。
二、冷却⑴影响凝固旳方式旳原因:a.合金旳结晶温度范围—合金旳结晶温度范围愈小,凝固区域愈窄,愈倾向于逐层凝固。
金属和共晶成分旳合金是在恒温下结晶旳。
由表层向中心逐层推进(称为逐层凝固)方式,固体层内表面比较光滑,流动阻力小,流动性好。
b.铸件旳温度梯度—在合金结晶温度范围已定旳前提下,凝固区域旳宽窄取决与铸件内外层之间旳温度差。
若铸件内外层之间旳温度差由小变大,则其对应旳凝固区由宽变窄。
⑵凝固:a.逐层凝固—充型能力强,便于防止缩孔、缩松。
灰铸铁和铝硅合金等倾向于逐层凝固。
b.糊状凝固—充型能力差,难以获得结晶紧实旳铸件球铁倾向于糊状凝固。
c.中间凝固—⑶收缩:a.液态收缩从浇注温度到凝固开始温度之间旳收缩。
由温度下降引起。
T浇—T液用体收缩率表达b.凝固收缩从凝固开始到凝固终止温度间旳收缩。
工程材料与成形技术基础工程材料与成形技术基础是现代工程领域中非常重要的一门学科,它涉及到了材料的选择、性能分析、成形工艺等方面的知识。
在工程实践中,材料的选择和成形技术的应用直接影响着产品的质量和性能,因此,对工程材料与成形技术基础的深入理解和掌握至关重要。
首先,工程材料的选择对产品的性能有着重要的影响。
不同的工程材料具有不同的物理和化学性质,因此在实际应用中需要根据产品的使用环境和要求来选择合适的材料。
比如,在高温环境下工作的零部件需要具有耐高温的特性,而在海水中使用的零部件则需要具有抗腐蚀的特性。
因此,工程材料的选择需要综合考虑各种因素,以确保产品能够在特定环境下具有良好的性能。
其次,对工程材料性能的分析是工程材料与成形技术基础中的重要内容之一。
通过对材料的力学性能、热学性能、耐磨性、耐腐蚀性等方面的分析,可以帮助工程师们更好地了解材料的特性,从而为产品设计和工艺选择提供依据。
例如,在设计机械零部件时,需要对材料的强度、韧性等性能进行分析,以确保产品在工作时不会发生断裂或变形。
此外,成形技术是工程材料与成形技术基础中的另一个重要内容。
成形技术包括了各种加工工艺,如锻造、铸造、焊接、切削等,这些工艺对产品的形状、尺寸和表面质量有着直接的影响。
因此,工程师需要根据产品的要求选择合适的成形技术,并对成形工艺进行合理的设计和控制,以确保产品能够满足设计要求。
总之,工程材料与成形技术基础是工程领域中不可或缺的一门学科,它对产品的质量和性能有着直接的影响。
通过对工程材料的选择、性能分析和成形技术的应用,工程师们可以更好地设计和制造出符合要求的产品,从而推动工程技术的发展和进步。
希望本文能够对工程材料与成形技术基础有所帮助,谢谢阅读!。
工程材料与成型基础复习资料一、填空题1、按照材料的组成、结合键的特点,可将工程材料分为、、复合材料和四大类。
2、材料在加工过程中表现出的、及等。
3、根据外力作用方式的不同强度有、、、抗剪切强度和抗扭强度等。
4、工程材料的性能主要取决于其、及。
5、热处理工艺与其他工艺过程,而且在机械零件的过程中占有的地位。
6、低合金结构钢有高的、、及较好的耐蚀性。
7、常见的晶格类型主要有,和三种。
8、普通灰铸铁材质只适合制造、的中、小铸件,不易用来制造。
1、金属材料高分子材料陶瓷材料2、切削性能铸造性能焊接性能3、抗拉强度抗压强度抗弯强度4、化学成分组织结构加工工艺过程5、密切相关加工制造重要6、屈服强度良好的塑性焊接性能7、体心立方晶格;面心立方晶格;密排立方晶格二、判断题2、金属材料的强度与热处理工艺无密切关系。
()3、结构是指物质内部原子在平面的分布及排列规律。
()4、合金的塑性变形随含碳量的增大而降低。
()5、在实际冷却过程中,处在临界点以下的奥氏体并不立即发生转变。
()6、材料愈易产生弹性变形其刚度愈小。
()7、调质钢加入合金元素主要是考虑提高其热硬性。
()8、灰铸铁的减震性能比钢好。
()9、热加工过程,实际上是加工硬化和再结晶这两个重叠的过程2、X3、X4、V5、V6、X7、X8、V三、选择题1、材料抵抗()的能力称为刚度。
A、弹性变形B、永久变形C、破坏D、断裂2、疲劳强度是指在大小和方向重复循环变化的载荷作用下材料抵抗()的能力。
A、变形B、弯曲C、断裂D、破坏3、高分子材料的结合键是()。
A、金属键与共价键B、离子键与共价键C、离子键与分子键D、共价键与分子键4、能使单晶体产生塑性变形的应力为()。
A、正应力B、切应力C、复合应力D、轴向应力6、钢经调质处理后获得的组织是()A、回火马氏体B、回火屈氏体C、回火索氏体D、贝氏体7、实际生产中,金属冷却时()。
A、理论结晶温度总是低于实际结晶温度B、理论结晶温度总是等于实际结晶温度C、理论结晶温度总是大于实际结晶温度D、实际结晶温度和理论结晶温度没有关系8、黄铜、青铜和白铜的分类是根据()A、合金元素B、密度C、颜色D、主加元素10、根据金属铝的密度,它属于()。
工程材料与成形技术基础的感想
在学习工程材料与成形技术基础的过程中,我收获了很多知识和体会。
首先,我深刻认识到了材料的重要性。
不同的材料具有不同的特点和用途,对于不同的工程项目,需要选用不同的材料。
了解材料的特性和性能,可以帮助我们更好地选择和使用材料,提高工程的质量和效率。
其次,我学习了成形技术的基本原理和方法。
成形技术是制造过程中非常重要的一环,它能够将材料加工成所需的形状和尺寸,为后续的加工和使用奠定基础。
掌握成形技术的基本原理和方法,可以帮助我们更好地理解制造过程,提高工艺的稳定性和效率。
最后,我认识到了实践的重要性。
学习知识不是为了停留在书本上,而是要应用到实际中去。
在课堂上,我们不仅学习了理论知识,还进行了实验和实践练习,这让我更加深入地了解了材料和成形技术的基础知识。
总之,学习工程材料与成形技术基础是我大学学习生涯中的一次宝贵经历。
通过这门课程的学习,我不仅扩展了知识面,还学会了更多的思考和应用能力。
我相信,这些知识和经验将会在我今后的学习和工作中发挥重要作用。
- 1 -。
机械工程材料与热成型知识点强度:金属材料抵抗塑性变形和断裂的能力。
指标有:弹性极限、屈服极限、抗拉极限疲劳强度-1—无数次交变应力作用下不发生破坏的最大应力。
塑性:金属材料在断裂前产生最大塑性变形的能力。
指标为硬度:材料抵抗局部塑性变形、压痕和划痕的能力。
指标为HB、HRC。
冲击韧性:材料抵抗冲击破坏的能力。
指标为αk材.料的使用温度应在冷脆转变温度以上。
点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指晶格空位、间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如刃型位错、螺型位型。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
结晶晶粒度控制方法:①增加过冷度;②变质处理;③机械振动、搅拌变质剂:在浇注前所加入的难熔杂质称为变质剂。
加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象。
回复:为了消除金属的加工硬化现象,将变形金属加热到某一温度,以使其组织和性能发生变化。
在加热温度较低时,原子的活动能力不大,这时金属的晶粒大小和形状没有明显的变化,只是在晶内发生点缺陷的消失以及位错的迁移等变化,因此,这时金属的强度、硬度和塑性等机械性能变化不大,而只是使内应力及电阻率等性能显著降低。
此阶段为回复阶段。
再结晶:被加热到较高的温度时,原子也具有较大的活动能力,使晶粒的外形开始变化。
从破碎拉长的晶粒变成新的等轴晶粒。
材料成型技术基础复习提纲整理第一章绪论1、现代制造过程的分类(质量增加、质量不变、质量减少)。
2、那几种机械制造过程属于质量增加(不变、减少)过程。
(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。
(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。
(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。
第二章液态金属材料铸造成形技术过程1、液态金属冲型能力和流动性的定义及其衡量方法液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。
液态金属的充型能力通常用铸件的最小壁厚来表示。
液态金属自身的流动能力称为“流动性”。
液态金属流动性用浇注流动性试样的方法来衡量。
在生产和科学研究中应用最多的是螺旋形试样。
2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。
流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。
(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。
(3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。
浇注温度越高,充型能力越好。
在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。
液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。
(0)绪论材料的分类及在机械工程技术中的应用、材料科学的发展、本课程的目的、任务和学习方法。
(一)金属材料的力学性能1、了解相关力学性能;2、理解强度、刚度、弹性、塑性、硬度、冲击韧性、疲劳强度的概念;3、理解σb、σs、σ、HBS(W)、HRC、HRA、HV、δ、δ5、ψ、σ-1等的含义。
(二)金属及合金的晶体结构与结晶1、晶体与非晶体,及其特点;掌握晶格、晶胞、晶格常数、晶面和晶向。
】2、掌握晶体的3种类型:体心、面心、密排六方;及其相关知识,如原子个数、致密度、属于此类型的金属。
3、理解单晶体与多晶体;掌握晶体缺陷的3种类型:点缺陷、线缺陷、面缺陷;并能举例;位错(密度)。
4、金属结晶、过冷(度)现象、晶粒大小、金属结晶过程(形核与长大)、晶粒大小、细化晶粒的方法、铸锭组织(3个晶区)、同素异晶转变。
5、合金、组元、组织、相的基本概念、合金的相结构、固溶体(概念、种类(置换与间隙固溶体、有限与无限固溶体)、固溶强化)、金属化合物(概念、特点)、机械混合物。
6、冷、热变形加工的划分标志;实例。
(三)铁碳合金相图1、纯铁的同素异构转变、二元合金相图基本知识、匀晶相图、共晶相图分析;合金的组成与组织。
2、铁碳合金的基本组织:铁素体、奥氏体、渗碳体、珠光体、莱氏体;铁碳合金的基本相:铁素体、奥氏体、渗碳体。
:3、铁碳合金相图(默画)分析:共晶反应、共析反应、相图中点、线的含义,特别是重要的点、线;铁碳合金的分类及室温组织。
4、典型合金结晶过程:共析钢、亚共析钢、过共析钢的结晶过程;共晶白口铁、亚共晶白口铁、过共晶白口铁的结晶过程。
5、铁碳合金成分、组织和性能之间的关系,相图的应用。
(四)钢的热处理1、热处理的概念、目的、种类。
2、钢加热时组织的转变:奥氏体化(以共析钢为例,其4个阶段)、晶粒的长大及控制(快速加热、短时间保温)。
3、钢冷却组织转变:过冷奥氏体的等温转变、C曲线及分析;过冷奥氏体连续冷却转变、马氏体转变。
1.塑性成形是利用金属的塑性,在外力作用下使金属发生塑性变形,从而获得所需要形状和性能产品的一种加工方法2.单晶体:晶格位向相同的一群同类型晶胞聚合在一起,组成单晶体。
3.各向异性:单晶体由于不同晶面和晶向上原子排列不同,使原子的密度和原子间的结合力强弱不同,因而在不同方向上其机械、物理和化学性能不同。
4.多晶体:工业用金属是由许多尺寸很小,位向不同的小的单晶体组成。
5.滑移:在剪应力的作用下,晶体的一部分相对于另一部分,沿着一定的晶面和晶向产生移动。
产生滑移的晶面和晶向,分别称为滑移面和滑移方向。
6.滑移系:通常每一种晶格有几个可能产生滑移的晶面,即同时存在几个滑移面;而每一个滑移面,又同时存在几个滑移方向。
一个滑移面和其上一个滑移方向,构成一个滑移系。
7.单晶体塑性变形的另一种方式叫双晶,又叫孪晶。
8.孪生:单晶体在剪应力作用下,晶体一部分对应一定的晶面(双晶面),沿一定的方向,进行相对移动。
结果使晶体的变形部分与未变形部分以双晶面为对称面互相对称。
9.冷成形—冷塑性成形、冷变形:金属在回复、再结晶温度以下的一种成形方法,通常在变形过程中会出现位错密度上升、发生加工硬化的现象。
10.热成形—热塑性成形、热变形:金属在再结晶温度以上进行的成形方法,通常变形过程材料软化占优势。
11.加工硬化—应变硬化:金属在低于再结晶温度时,由于塑性应变而产生塑性降低、强度和硬度增加的现象。
12.静态回复:当加热温度不高时,晶体内只有间隙原子和空位的运动。
这时变形金属晶粒的外形无明显变化,仍呈纤维状,只消除了晶格畸变,其机械性能几乎无变化,物理化学性能则大部分恢复。
随着温度的升高,原子具有了较大的活动能力,位错开始运动。
实质上是原子从高能态的混乱排列向低能态的规则排列转变的过程,结果是晶体的内应力大大下降,强度稍有下降,塑性稍有提高。
13.静态再结晶:变形金属加热到较高温度时,由于原子获得了更大的活动能力,首先在变形晶粒的晶界或滑移带、峦晶带等变形剧烈的地区产生晶核,即为一些原子规则排列的小晶块,然后晶核逐渐长大,成为具有正常晶格的新晶粒,新晶粒长大到彼此边界相遇,过程结束,这一生核、长大的过程称为再结晶。
工程材料与成型技术基础1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力。
2.工程上常用的强度指标有屈服强度和抗拉强度。
3.弹性模量即引起单位弹性变形所需的应力。
4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留一部分残余成形,这种不恢复的参与变形,成为塑性变形。
5.产生塑性变形而不断裂的性能称为塑性。
6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。
7.发生塑性变形而力不增加时的应力称为屈服强度。
8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材料软硬程度的指标。
9.硬度是检验材料性能是否合格的基本依据之一。
10.11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两种硬度。
12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。
13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称为疲劳断裂。
14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的最大应力。
熔点。
16.晶格:表示金属内部原子排列规律的抽象的空间格子。
晶面:晶格中各种方位的原子面。
晶胞:构成晶格的最基本几何单元。
17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。
面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。
密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。
18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间隙原子、置换原子、空位。
19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。
20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很小的缺陷,如晶界和亚晶界。
21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。
结晶过程由形成晶核和晶核长大两个阶段组成。
22.纯结晶是在恒温下进行的。
23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其差值称为过冷度ΔT,即ΔT=Tm﹣Tn。
24.同一液态金属,冷却速度愈大,过冷度也愈大。
25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金,当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。
这种方法称为变质处理。
26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。
27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。
28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。
强度、硬度、耐热性和耐磨性明显提高,这一现象称为弥散强化。
30.杠杆定律→大题(P26)。
31.相图分析→大题(P32)。
32.铁碳合金的分类33.碳钢是指碳的质量分数小于2.11%的铁碳合金。
34.碳钢的分类35.铸铁是应用广泛的一种铁碳合金,其wc﹥2.11%.36.按照石墨形貌的不同,这一类铸铁可以分为灰铸铁(片状石墨)、可锻铸铁(团絮状石墨)、球墨铸铁(球状石墨)和蠕墨铸铁(蠕虫状石墨)四种。
37.钢的热处理是将固态钢采用适当的方式进行加热、保温、和冷却,以获得所需组织结构与性能的一种工艺。
38.热处理的特点是改变零件内部组织,不改变其形状与尺寸,消除毛坯缺陷,改善毛坯切削性能,改善零件的力学性能。
即改善工艺性能和力学性能。
39.热处理分为普通热处理(退火、正火、淬火和回火)、表面热处理(表面淬火、渗碳、渗氮、碳氮共渗)及特殊热处理(形变热处理)。
40.不是所有材料都能进行热处理强化,满足条件:①有固态相变②经冷加工使组织结构处于热力学不稳定状态③表面能被活性介质的原子渗入从而改变化学成分。
41.退火作用是为了降低硬度,提高塑性改善切削性能。
42.淬火的作用:获得高硬度的马氏体。
43.奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程,珠光体向奥氏体转变。
44.奥氏体化是钢组织转变的基本条件。
45.应用等温转变曲线分析奥氏体化在连续冷却中的转变(P53)46.球化退火是使钢中碳化物球化而进行的退火,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。
热处理后的组织为珠状珠光体,应用于共析钢、过共析钢和合金工具钢。
目的:降低硬度、改善切削加工性,改善热处理工艺性能,为淬火做组织准备。
47.正火,又称常化,是将工件加热至727到912摄氏度之间以上40~60min,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
应用于亚共析钢,铁素体和索氏体、亚共析钢,索氏体、过共析钢,索氏体和二次渗碳体。
目的:对于低碳钢、低碳低合金钢,细化晶粒,提高硬度,改善切削加工性,对于共析钢,消除二次网状渗碳体,有利于球化退火的进行。
48.钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,再以大于临界冷却速度快速冷却,从而发生马氏体转变的热处理工艺。
淬火钢得到的组织主要是马氏体(或下贝氏体),此外还有少残余奥氏体及未溶的第二相。
目的:提高钢的硬度和耐磨性。
49.回火是将淬火钢重新加热到A1以下某一温度,保温,然后冷却的热处理工艺。
50.低温回火的组织为回火马氏体,它有饱和的α相和与其共格的ε-Fe2.4C组成,低温回火的目的是保持淬火马氏体的高硬度和高耐磨性,降低淬火应力和脆性,用于各种高碳钢的道具、量具、冷冲模具、滚动轴承和渗碳工件。
51.中温回火后的组织为回火托氏体,它有尚未发生的再结晶的针状铁素体和弥散分布的极细小的片状或粒状渗碳体组成,目的是为了获得高的屈强比、高的弹性极限、高的韧性,用于各种弹簧、锻模。
52.高温回火的组织为回火索氏体,它有已再结晶的铁素体和均匀分布的细粒状渗碳体组成,失去了原来淬火马氏体的片状或板条状形态,呈现多边形颗粒状,同时渗碳体聚集长大。
目的:获得综合力学力学性能,在保持较高强度的同时,具有较好的塑性和韧性,适用于处理传递运动和力的重要零件,如:传动轴、齿轮。
53.淬火后高温回火的热处理称为调质。
54.产生回火脆性:淬火合金钢在某一温度范围内回火时,出现冲击韧性剧烈下降的现象,称为回火脆性。
在350℃附近回火,碳钢的和合金钢都会出现冲击韧性下降,产生脆化现象,这种回火脆性称为第Ⅰ类回火脆性。
它与回火的冷却方式无关,且无法消除,因此一般不在250-400℃温度范围内回火。
淬火合金钢在450-650℃回火时出现的回火脆性,称为第Ⅱ类回火脆性。
它与杂质在奥氏体晶界上的偏析有关,消除第Ⅱ类回火脆性的方法:回火后快速冷却,使杂质来不及在晶界上偏析。
(简答题)55.液态金属充型铸造,获得尺寸精确,轮廓清晰的铸件,取决于充型能力。
在液态金属充型过程中,一般伴随结晶现象,若充型能力不足,在型腔被填满之前形成晶粒将充型的通道堵塞,金属液态迫使停止流动,于是铸件将产生不足或冷隔等缺陷。
56.充型能力取决于金属液本身的流动能力。
57.影响充型能力的因素和原因58.铸件的凝固方式分为三种类型:逐层凝固方式、体积凝固(糊状凝固)方式和中间凝固方式。
59.铸件在凝固和冷却过程中,其体积和尺寸减小的现象称为收缩。
收缩是铸件许多缺陷产生的基本原因。
60.金属从浇注温度冷却到室温经过三个收缩阶段:⑴液态收缩:金属在液体状态时的收缩,其原因是由于气体排出,空穴减少,原子间间距减小。
⑵凝固收缩:金属在凝固过程中的收缩,其原因是由于空穴减少,原子间间距减小。
液态收缩和凝固收缩又称为体积收缩,是缩孔或缩松形成的基本原因。
⑶固态收缩:金属在固态过程中的收缩,其原因在于空穴减少,原子间间距减少。
固态收缩还引起铸件外部尺寸的变化,古称尺寸收缩线收缩。
线收缩对铸件形状和尺寸精度影响很大,是铸造应力、变形和裂纹等缺陷产生的基本原因。
61.在常用合金中,钢的收缩率最大,灰铸铁收缩率最小。
62.铸件凝固结束后常常在某些部位出现孔洞,大而集中的称为缩孔,细小而分散的孔洞称为缩松。
结晶间隔大的合金,易产生缩松,纯金属共晶成分的合金,易形成集中的缩孔。
63.金属材料经冷塑性变形后,随变形度的增加,其强度、硬度提高,塑性和韧性下降,这种现象称为加工硬化。
64.晶体只有在切应力的作用下才会发生塑性变形。
65.金属在再结晶温度以下进行的塑性变形称为冷变形加工,此时产生加工硬化。
金属在再结晶温度以上进行的塑性变形称为热变形加工。
66.热变形加工可使金属中的气孔和疏松焊合,并改善夹杂物,碳化物的形态、大小和分布,提高钢的强度、塑性及冲击韧度。
67.热变形时铸锭中的非金属夹杂物沿变形方向被拉长为纤维组织(热加工流线)。
68.自由锻用于单件、小批量锻件的生产以及大型锻件的产生。
69.自由锻相比模锻具有以下特点:模锻件形状和尺寸精度高,表面质量好,加工余量小,节省金属材料;生产率高;操作简单,易于实现自动化;模锻设备要求较高,吨位要求大,锻模结构复杂,成本高,生产准备周期较长。
70.模锻适用于中、小型锻件的成批及大量生产。
71.板料冲压是利用冲模在压力机上对材料施加压力,使材料产生分离或变形,从而获得一定形状、尺寸和性能的加工方法。
板料冲压通常在室温下进行,故又称冷冲压。
72.弯曲件在弯曲变形后,会伴随一些弹性恢复从而造成工件弯曲角度、弯曲半径与模具的形状、尺寸不一致的现象称为弯曲件的回弹现象。
73.焊接方法:熔化焊、压力焊和钎焊。
74.电阻焊是利用接触电阻热将接头加热到塑性或熔化状态,再通过电极施加压力,形成原子间结合的焊接方法。
75.钎焊分为两类:硬钎焊和软钎焊。
硬钎焊的特点是所用钎料的熔化温度高于450℃,接头的强度大,用于受力较大、温度较高的场合。
所用的钎料多为铜基、银基。
钎料熔化温度低于450℃的钎焊是软钎焊。
软钎焊常用锡铅钎料,适用于受力不大,工作温度低的场合。
76.焊接残余应力变形产生的原因:结构件在焊接以后2产生变形,内部易产生残余应力。
焊接残余应力会增加结构工作的应力,降低结构的承载能力。
焊接时,焊缝被加热,焊缝区应膨胀,但由于焊缝区域周围的金属未被加热和膨胀,所以该部分的金属制约了焊缝区受热的自由膨胀,焊缝产生塑性变形并缩短。
焊缝冷却后,焊缝区域比周围区域短,但是焊缝周围区域并没有缩短,从而阻碍焊缝区域的自由收缩,产生焊接以后工件的变形与应力。
77.低碳钢的焊接:焊接性良好,焊接时没有淬硬、冷裂倾向。
78.铸铁的焊接:铸铁碳含量高,塑性低,焊接性差。
铸铁焊接容易产生裂纹。
79.焊接时,为什么对焊接区进行保护?有哪些保护措施?答:防止空气进入熔池,减少焊缝金属中的氧、氮含量、氧含量增加,焊缝的强度、硬度、塑性、韧性下降。