假设检验习题
- 格式:docx
- 大小:38.32 KB
- 文档页数:3
第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × ) 样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
一、判断题1对假设H 0,从子样提供的信息,作出判断接受H 0,我们可以认为假设H 0客观上一定是正确的。
() 2在假设检验中,因为显著性水平α是犯第一类错误的概率,所以它越少越好。
()3、当n 充分大时,T 检验的临界值也可以查正态分布得到。
( ) 二、填空题1、假设检验的基本原理是2、假设检验中,显著性水平α的意义是3、假设检验中第一类错误是指 ,第二类错误是指 。
4、总体X~N (μ,σ2),且σ2已知,检验假设H 0:μ=μ0,H 1:μ≠μ0应选用 检验,相应的统计量为 式中X 为 ,n 为 ,查 表找临界值 ,当 时,拒绝原假设。
5、设总体X~N (μ,σ2),μ未知,检验H 0:σ2≤σ2,H 1:σ2>σ2应选用 检验,相应的统计量为 ,当 时,拒绝原假设H 0。
三、计算题1、已知某炼铁厂铁水含碳量服从正态分布N (4.55,0.1082),现测定了9炉铁水,其平均含碳量为4.484,如果估计方差没有变化,可否认为现在生产的铁水平均含碳量为4.55?(α=0.05) 解:H 0:μ=4.55,H 1:μ≠4.55对α=0.05,查表可得2αz =1.96若H 0为真时,则|Z |=|3/108.055.4484.4|/0-=-nX σμ|=1.83|Z|<1.96,故接受H 0 即可承认现在生产铁水的平均含碳量为4.552、已知某一试验,其温度服从正态分布N (μ,σ2),现在测量了温度的5个值为:1250,1265,1245,1260,1275,求得X =1259,S 2=11.942问是否可认为μ=1277?(α=0.05)解:由题目已知条件, 对于H 0:μ=1277 H 1:μ≠1277 对于α=0.05,查表可得2αt (4)=2.776若H0为真时,则|T|=||| 3.37==∵3.37>2.776,故拒绝H 0即不可认为μ=1277三、计算题某种导线的电阻服从正态分布N (μ,0.0052),今从新生产的一批导线中抽取9根,测其电阻,得S=0.008Ω,对于α=0.05,能否认为这批导线的电阻的标准差为0.005?解:设H 0:σ2=0.0052,H 1:σ2≠0.0052对于α=0.005,查表可得22αχ(8)=17.5若H 0为真时,则χ2=22202005.0008.0)19()1(⨯-=-σSn =20.48∵20.48>17.5,故否定H 0,即认为这批导线电阻的标准差不等于0.005。
医用统计学-总体均数的估计与假设检验练习题二、是非题1.即使变量偏离正态分布,只要样本含量相当大,样本均数也近似正态分布。
()3.两次t检验都是对两样本均数的差别做统计检验,一次P<0.01,另一次0.01<P<0.05,就表明前者两样本均数差别大,后者两样本均数差别小。
()4.对两样本均数的差别做统计检验,两组数据具有方差齐性,但与正态分布相比略有偏离,样本含量都较大,因此仍可做t检验。
()三、最佳选择题2、两样本均数比较的t检验,差别有统计学意义时,P越小,说明()。
A、两样本均数差别越大B、两总体均数差别越大C、越有理由认为两总体均数不同D、越有理由认为两样本均数不同E、越有理由认为两总体均数不同3、甲乙两人分别随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得X1和S12,X2和S22,则理论上()。
A、X1=X 2B、S12= S22C、作两样本均数的t检验,必然得出无差别的结论D、作两方差齐性的F检验,必然方差齐E、由甲、乙两样本均数之差求出的总体均数的95%可信区间,很可能包括04、在参数未知的正态总体中随机抽样,∣X-μ∣≥()的概率为5%。
A、1.96σB、1.96C、2.58D、t0.05,v SE、t0.05,vsx5、某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L,标准差为4g/L,则其95%的参考值范围()。
A、74±4×4B、74±1.96×4C、74±2.58×4D、74±2.58×4÷10E、74±1.96×4÷106、关于以0为中心的t分布,错误的是()。
A、t分布是一簇曲线B、t分布是单峰分布C、当ν∝时,t uD、t分布以0为中心,左右对称E、相同ν时,∣t∣越大,P越大7、在两样本均数比较的t检验中,无效假设是()A、两样本均数不等B、两样本均数相等C、两总体均数不等D、两总体均数相等E、两样本均数等于总体均数8、两样本均数比较时,分别取以下检验水准,以()所取第二类错误最小。
1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。
第六章 分类资料的假设检验题库一、选择题1.2χ分布的形状( )。
A. 同正态分布B. 同t 分布C.为对称分布D. 与自由度ν有关E. 与样本含量n 有关 2.四格表的自由度( )。
A. 不一定等于1B. 一定等于1C. 等于行数×列数D. 等于样本含量-1E. 等于格子数-13.5个样本率作比较,24,01.02χχ>,则在α=0.05的检验水准下,可认为( )。
A. 各总体率不全相等 B. 各总体率均不等 C. 各样本率均不等 D. 各样本率不全相等 E. 至少有两个总体率相等4.测得某地6094人的两种血型系统,结果如下。
欲研究两种血型系统之间是否有联系,应选择的统计分析方法是( )。
某地6094人的ABO 与MN 血型ABO 血型MN 血型M N MN O431 490 902 A 388 410 800 B 495 587 950 AB137 17932A.秩和检验B.2χ检验C.Ridit 检验D.相关分析E.Kappa 检验 5.假定两种方法检测结果的假阳性率和假阴性率均很低。
现有50份血样用甲法检查阳性25份,用乙法检查阳性35份,两法同为阳性和阴性的分别为23份和13份。
欲比较两种方法检测结果的差别有无统计学意义,应选用( )。
A. u 检验B. t 检验C. 配对t 检验D. 配对四格表资料的2χ检验 E. 四格表资料的2χ检验6.某医师欲比较两种疗法治疗2型糖尿病的有效率有无差别,每组各观察了30例,应选用( )。
A.两样本率比较的u 检验B.两样本均数比较的u 检验C. 四格表资料的2χ检验 D. 配对四格表资料的2χ检验 E. 四格表资料2χ检验的校正公式7.用大剂量Vit.E 治疗产后缺乳,以安慰剂对照,观察结果如下:Vit.E 组,有效12例,无效6例;安慰剂组有效3例,无效9例。
分析该资料,应选用( )。
A. t 检验 B.2χ检验 C.F 检验 D.Fisher 精确概率法 E. 四格表资料的2χ检验校正公式8.欲比较胞磷胆碱与神经节苷酯治疗脑血管疾病的疗效,将78例脑血管疾病患者随机分为2组,结果如下。
练 习 题一、最佳选择题1.( C )小,表示用该样本均数估计总体均数的可靠性大。
A. CV B. S C. σXD. RE.四分位数间距2.两样本均数比较的t 检验,差别有统计意义时,P 越小,说明( C )。
A.两样本均数差别越大 B.两总体均数差别越大 C.越有理由认为两总体均数不同 D.越有理由认为两样本均数不同E.越有理由认为两总体均数相同3.甲乙两人分别从随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得1X 和21S ;2X 和22S ,则理论上( E )。
A.12X X =B.2212S S =C.作两样本均数的t 检验,必然得出无差别的结论D.作两方差齐性的F 检验,必然方差齐E.由甲、乙两样本均数之差求出的总体均数95%可信区间,很可能包括0 4.在参数未知的正态总体中随机抽样,X μ-≥( A )的概率为5%。
A. 1.96σ B. 1.96 C. 2.58 D.0.05, t S ν E.0.05, X t S ν 5.某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的平均数为74g/L ,标准差为4g/L ,则其95%的参考值范围(B )。
A.74±4⨯4B.74±1.96×4C.74±2.58⨯4D.74±2.58⨯4÷10E. 74±1.96⨯4÷10 6.关于以0为中心的t 分布,错误的是( E )。
A. t 分布是一簇曲线B. t 分布是单峰分布C.当ν→∝时,t →uD. t 分布以0为中心,左右对称E.相同ν时,|t|越大,P 越大7.在两样本均数比较的t 检验中,无效假设是( D )。
A.两样本均数不等 B.两样本均数相等 C.两总体均数不等D.两总体均数相等E.样本均数等于总体均数8.两样本均数比较时,分别取以下检验水准,以( E )所取第二类错误最小。
习题八假设检验该统计量服从N (0, 1)。
3. 要使犯两类错误的概率同时减小,只有 _增加样本容量4 . 设X 1,X 2,...,X n 和丫1,丫2,…,Y m 分别来自正态总体X 〜N(x , X )和 Y ~ N( Y , 丫),两总体相互独立。
1 )当X 和Y 已知时,检验假设H ° : X Y 所用的统计量为 U X 丫n 若X 和Y 未知,但X X Y(m 1)S2 (n 1)S2 1 ~~1m n立时,该统计量服从_ 6 .设X !,X 2,...,X nY~ N( Y , YX 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),在显著性水平 下,检验假设H °: 80; H 1: 80;的拒绝域为 ____ |T | t 2(n 1)— 在显著性水平 下,检验2 2XY 、填空题1 •设X i ,X 2,…,X n 是来自正态总体的样检验假设H 。
:0的t t -检验使用统计量t2•设X i ,X 2,..., X n 是来自正态总体的样本, 其中参数 X —s _ Vn 其中参数2未知,则验假设应用 U 检验法,检验的统计量是_U未知,2已知。
要检X;当H °成立时;当H 0成立时该统计量服从 N (0, 1) Y ,检验假设H 。
: x Y 所用的统计量;当H 0成立时该统计量服从t(m n 2) _______ 。
5•设X 「X 2,…,X n 是来自正态总体的样本,其中参数H 。
: 2o ,应用—2_检验法,检验的统计量是 —2未知,要检验假设 °耍;当 H 。
成2(n 1)_。
和Y,Y 2,…,Y m 分别来自正态总体X ~ N( ),两总体相互独立。
要检验假设H °: XS 2验的统计量为 F 工。
7•设总体X ~ N( , 2), , 2都是未知参数,把从X , X )和 Y ,应用F 检验法,检 检验假设H 0 :X; H i :的统计量为—U—,拒绝域为),, m(2)假设H°: 2 2;已:2 o;的拒绝域为—2 22(n 1)或2 22(n 1)_;8. 设总体X ~ N( , 2), , 2都是未知参数,把从X中抽取的容量为n的样本均值记为X,样本标准差记为S (修正),当2已知时,在显著性水平下,{U u }_。
a)某大学为了了解学生每天上网的时间,在全校7500名学生中采取重复抽样的方法求该校大学生平均上网时间的置信区间,置信水平为95%。
b)某居民小区为研究职工上班从家到单位的距离,抽取了由16人组成的一个随机样本,他们到单位的距离(单位:千米)分别是:假定总体服从正太分布,求职工上班从家里到单位平均距离的95%的置信区间。
c)顾客到银行办理业务时往往需要等待一段时间,而等待时间的长短与许多因素有关,比如,银行业务员办理业务的速度,顾客等待排队的方式等。
为此银行准备采取两种排队方式进行试验。
第一种排队方式是:所有顾客都进行一个等待队列;第二种排队方式是:顾客在三个窗口处列队三排等待。
为比较那种排队方式使顾客等待的时间更短,银行各随机抽取10名顾客,他们在办理业务时所等待的时间(单要求(1)构建第一种排队方式等待时间标准差的95%的置信区间;(2)构建第二种排队方式等待时间标准差的95%的置信区间;(3)根据(1)与(2)的计算结果,你认为那种排队方式更好?d)为了控制贷款规模,某商业银行有个内部要求,平均每项贷款数额不能超过60万元。
随着经济的发展,贷款规模有增大的趋势。
银行经理想了解在同样项目条件下,贷款的平均规模是否明显地超过60万元,故一个n=144的随机样本被抽出,测得x=68.1万元,s=45。
用a=0.01的显著性水平,采用p值进行检验。
e) 有人说在大学中男生的学习成绩比女生的学习成绩好。
现从一个学校中随机抽取了25名男生和16名女生,对他们进行了同样题目的测试。
测试结果表明,男生的平均成绩为82分,方差为56分,女生的平均成绩为78分,方差为49分。
假设显著性水平α=0.02,从上述数据中能得到什么结论?f) 糖厂用自动打包机打包,每包标准重量是100千克。
每天开工后需要检验一次打包机工作是否正常。
某日开工后测得9包重量(单位:千克)如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5已知包重服从正态分布,试检验该日打包机工作是否正常(a=0.05)?区间估计、假设检验课堂练习1.【例】一家食品生产企业以生产袋装食品为主,为对食品质量进行监测,企业质检部门经常要进行抽检,以分析每袋重量是否符合要求。
参数估计和假设检验习题解答(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--参数估计和假设检验习题1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.97521.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=,即,以95%的把握认为这批产品的指标的期望值μ为1600.2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为根,各台布机断头数的标准差为根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为根,标准差为根。
问,新工艺上浆率能否推广(α=解: 012112:, :,H H μμμμ≥<3.某电器零件的平均电阻一直保持在Ω,改变加工工艺后,测得100个零件的平均电阻为Ω,如改变工艺前后电阻的标准差保持在Ω,问新工艺对此零件的电阻有无显著影响(α=解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.4.有一批产品,取50个样品,其中含有4个次品。
在这样情况下,判断假设H 0:p ≤是否成立(α=解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,50,n =由检验统计量0.9733Z ===<,接受H 0:p ≤.即, 以95%的把握认为p ≤是成立的.5.某产品的次品率为,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =0.950.05, 1.65z α=-=-,由检验统计量4001.5973i x npZ -===-∑>, 接受0:0.17H p ≥,即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2(1)t t n α>-,24,n = x =11958,s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量2.1537t ===>,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
假设检验习题
班级_________ 学号_______ 姓名________ 得分_________
一、选择题
1、假设检验的基本思想是()
A、中心极限定理
B、小概率原理
C、大数定律
D、置信区间
2、如果一项假设规定的显著水平为0.05,下列表述正确的是()
A、接受H0时的可靠性为95%
B、接受H1时的可靠性为95%
C、H0为假时被接受的概率为5%
D、H1为真时被拒绝的概率为5% 3、某种药物的平均有效治疗期限按规定至少必须达到37小时,平均有效治疗期限的标准差已知为11小时。
从这一批这种药物
中抽取100件进行检验,以该简单随机样本为依据,确定应接收还是应拒收这批药物的假
设形式为()
A、H0:μ=37 H1:μ≠37
B、H0:μ≥37 H1:μ<37
C、H0:μ
<37 H1:μ≥37 D、H0:μ>37 H1:μ≤37
4、在一次假设检验中,当显著水平设为0.05时,结论是拒绝原假设,现将显著水平
设为0.1,那么()
A、仍然拒绝原假设
B、不一定拒绝原假设
C、需要重新进行假设检
验 D、有可能拒绝原假设
5、下列场合适合于用t统计量的是()
A、总体正态,大样本,方差未知
B、总体非正态,大样本,方差未知
C、总
体正态,小样本,方差未知 D、总体非正态,小样本,方差未知 6、犯第Ⅰ类错误
是指()
A、否定不真实的原假设
B、不否定真实的原假设
C、否定真实的原假设
D、不否定不真实的原假设 7、在假设检验中,接受原假设时,
()
A.可能会犯第一类错误
B. 可能会犯第二类错误
C.同时犯两类错误
D.不会犯错误
8、进行假设时,在其他条件不变的情形下,增加样本量,检验结论犯两类错误的概
率将()
A.都减小
B. 都增加
C.都不变
D.一个增加一个减少
9、两个样本均值经过t检验判定有显著差别,P值越小,说明()
A.两样本均值差别越大
B. 两总体均值差别越小
C.越有理由认为两样本均值有差别
D. 越有理由认为两总体均值有差别 10、在假设
检验中,1??是指()
A.拒绝了一个真实的原假设的概率
B.接受了一个真实的原假设概率
C.
拒绝了一个错误的原假设的概率 D. 接受了一个错误的原假设概率 11、在假设检验中,1??是指()
A.拒绝了一个正确的原假设的概率
B.接受了一个正确的原假设的概率
C. 拒绝了一个错误的原假设的概率
D. 接受了一个错误的原假设的概率
1
二、计算题
1、机床加工一种零件。
根据历史数据可知,该厂职工加工零件所需要的操作时间服
从正态
分布,总体均值为16分钟,标准差为3.2分钟。
现采用新的机床加工,随机抽取10
名员工进行操作,结果测得平均所需要时间为13.5分钟,试问在显著水平0.05的前提下,采用新机床前后,职工的平均操作时间有无明显差异?(用临界规则和P值法同时检验)
2、机床加工一种零件。
根据历史数据可知,该厂职工加工零件所需要的操作时间服
从正态
分布,总体均值为16分钟,标准差为3.2分钟。
现采用新的机床加工,随机抽取10
名员工进行操作,结果测得平均所需要时间为13.5分钟,试问在显著水平0.05的前提下,采用新机床前后,职工的平均操作时间有无明显缩短?
3、某城市2000年人口普查资料显示平均家庭人数为3.8人。
2021年从该城市随机
抽取400
户进行调查,结果每户家庭人数为3.7人,标准差为1.01人,试问在0.05的显著水
平下,该市的家庭平均人口数有所下降?
4、某品牌手机广告宣称其某款手机的电池充足电后可连续待机150个小时,假设电
池待机
时间服从正态分布,手机厂现随机检测10个该款手机电池,得到足电电池的待机时
间(小时)分别为:143,145,148,151,155,156,156,158,160,161,试问在显著水
平为0.05的条件下,该厂的广告是否可信?
5、要比较甲乙两城市某类消费的支出水平。
甲城市随机调查100人,平均消费支出为1300
元,标准差为80元;乙城市随机调查120人,平均消费支出为1320元,标准差为100元。
试在显著水平为0.05的前提下,甲乙两城市的消费支出水平是否有差异?
2
6、要比较甲乙两城市某类消费的支出水平。
甲城市随机调查9人,平均消费支出为31百
元,标准差为10.2百元;乙城市随机调查11人,平均消费支出为28百元,标准差为7.8百元。
假设甲乙两城市这类消费服从正态分布且方差相等。
试在显著水平为0.05的前提下,甲乙两城市的消费支出水平是否有差异?
7(英文改编题)为比较甲乙两台机床的加工精度是否相等,分别独立抽取了甲机床加工的12个零件和乙机床加工的12个零件的直径。
测得加工零件的直径数据后,利用EXCEL数据工具输出的结果如下:(假设总体方差相等,显著水平为0.05。
)
t-检验: 双样本等方差假设
平均方差观测值合并方差假设平均差 df t Stat P(T<=t) 单尾 t 单尾临界
P(T<=t) 双尾 t 双尾临界机床甲 32.5 17.99636364 12 17.67727273 0 22
2.155607659 0.021158417 1.717144335 0.042316835 2.073873058 机床乙 28.8
17.3581818 12 (1) 请建立原假设和备择假设。
是否有证据说明甲乙两机床是否存在差异?请说明理由 (2) 如果显著水平为0.01,那么(1)中的结论是否有变化?为什么? (3) 在以上的检验中,还需要什么假设?
3
感谢您的阅读,祝您生活愉快。